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1 Introduction
In the paper, we consider the following system, which describes the vibrating beam equa-
tion coupled with a vibrating string equation:

⎧
⎨

⎩

utt + αuxxxx + δ1ut + k(u – v)+ + fB(u) = hB, in (0, L) ×R
+,

vtt – βvxx + δ2vt – k(u – v)+ + fS(v) = hS, in (0, L) ×R
+

(1)

with the simply supported boundary conditions at both ends

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0, t ≥ 0,

v(0, t) = v(L, t) = 0 t ≥ 0,
(2)

and the initial-value conditions

u(x, 0) = u0, ut(x, 0) = u1, x ∈ (0, L),

v(x, 0) = v0, vt(x, 0) = v1, x ∈ (0, L),
(3)

where the first equation of (1) represents the vibration of the road bed in the vertical di-
rection and the second equation describes that of the main cable from which the road bed
is suspended by the tie cables (see [1]). k > 0 denotes the spring constants of the ties, α > 0
and β > 0 are the flexural rigidity of the structure and the coefficient of tensile strength of
the cable, respectively. δ1, δ2 > 0 are constants, the force term hB, hS ∈ L2(0, L).
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We assume that the nonlinear functions fB ∈ C3(R) and fS ∈ C2(R) satisfy the following
conditions:

(F1) lim inf|s|→+∞
|fB(s)|

s
≥ δ, lim inf|s|→+∞

|fS(s)|
s

≥ δ;

(F2)
∣
∣fB(s)

∣
∣,

∣
∣fS(s)

∣
∣ ≤ C0

(
1 + |s|p), ∀p ≥ 1,

for any s ∈R, where C0, δ are positive constants.
As is well known, the suspension bridge equations were presented by Lazer and

Mckenna as new problems in the field of nonlinear analysis [2]. In [3], the authors obtained
the existence and uniqueness of a weak solution for k > –1 and showed decay estimates
of the solution for the suspension problem. Similar models have been studied by many
authors [4–14]. In [4], Ma and Zhong obtained the existence of weak solutions for suspen-
sion bridge equations, and the existence of strong solutions and strong global attractors
was also achieved in [5]. Park and Kang [6] showed the existence of pullback D-attractors
for nonautonomous suspension bridge equations. In [7], Kang obtained the existence of
global attractors for suspension bridge equations with memory, and Park and Kang [8]
investigated the existence of global attractors for suspension bridge equations with non-
linear damping. In [14], Jia and Ma obtained the existence of exponential attractors for
strong damped Kirchhoff type suspension bridge equations by using the decomposing
technique of operator semigroup.

For the coupled suspension bridge equations, Ahmed and Harbi discussed this problem
in [1], pointed out that the system is conservative and asymptotically stable with respect to
the rest state for k > 0, fB(u) ≡ 0 ≡ fS(v), and showed that the Cauchy problem of system (1)
has at least one weak solution. Holubová and Matas considered the initial-boundary value
problem for the more general nonlinear string-beam system in [15] and obtained the exis-
tence and uniqueness of the weak solution by the Faedo–Galerkin method. In [16], Litcanu
investigated the existence of weak T-periodic solutions of (1) and obtained a regularity re-
sult when k(u – v)+ = φ(u, v), fB(u) ≡ 0 ≡ fS(v). About the long time behavior of solutions
for suspension bridge model, Ma and Zhong [17] achieved the existence of global attrac-
tor of a weak solution for autonomous coupled suspension bridge equations. In the sequel,
they [18] obtained the existence of strong solutions and compact global attractors for au-
tonomous coupled suspension bridge equations. In [19], Ma and Wang obtained pullback
attractors for coupled suspension bridge equations. To our knowledge, although Jia and
Ma investigated the existence of exponential attractors for single suspension bridge equa-
tions, the existence of exponential attractors of (1) has no any results, while it is just our
concern.

The remaining paper is organized as follows. In Sect. 2, we introduce some notations
and recall several abstract results. In Sect. 3, we prove the existence of exponential at-
tractors for the coupled system of suspension bridge equations by using the decomposing
technique of operator semigroup introduced in [20, 21].

2 Preliminaries
We consider the Hilbert spaces that will be used in our paper. Let

Y0 = L2(0, L), Y1 = H1
0 (0, L), Y2 = D(A) = H2(0, L) ∩ H1

0 (0, L),

Y3 = D
(
A2) =

{
u ∈ H2(0, L) | A2u ∈ L2(0, L)

}
,
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where A = – ∂2

∂x2 , A2 = ∂4

∂x4 , and, (·, ·), ‖·‖ denote the scalar product and the norm of L2(0, L).
Moreover, we introduce spaces E0 and E1 as follows:

E0 = Y2 × Y1 × Y0 × Y0, E1 = Y3 × Y2 × Y2 × Y1,

and endow norms (denoted by ‖ · ‖s)

∥
∥(u, v)

∥
∥2

0 = α‖�u‖2 + β‖∇v‖2 + ‖u‖2 + ‖v‖2

and

∥
∥(u, v)

∥
∥2

1 = α
∥
∥�2u

∥
∥2 + β‖�v‖2 + ‖�u‖2 + ‖∇v‖2.

By the Poincaré inequality, there exist constants λ1,λ2 > 0 such that

‖∇u‖ ≥ λ1‖u‖, ‖�u‖ ≥ λ2‖u‖, ∀u ∈ Y2,

let λ = min{λ1,λ2}, we have

‖∇u‖ ≥ λ‖u‖, ‖�u‖ ≥ λ‖u‖, ∀u ∈ Y2. (4)

In the following, we recall some abstract results, see [18, 20–22] for more details.

Definition 1 ([22]) A compact set E ⊂ E0 is called an exponential attractor or an inertial
set for the semigroup S(t) if the following conditions hold:

(i) E is invariant of S(t), that is, S(t)E ⊂ E for every t ≥ 0;
(ii) dimF E < ∞, that is, E has finite fractal dimension;
(iii) There exist an increasing function J : R+ →R

+ and ν > 0 such that, for any setB ⊂ E0

with supz0∈B ‖z0‖0 ≤ R, there holds

distE0

(
S(t)B,E

) ≤ J(R)e–νt .

Theorem 2 ([20, 21]) Let X ⊂ E0 be a compact invariant subset. Assume that there exists
a time t∗ > 0 such that the following hold:

(i) the map

(t, z0) �→ S(t)z0 : [0, t∗] ×X →X

is Lipschitz continuous;
(ii) the map S(t∗) : X →X admits a decomposition of the form

S(t∗) = S0 + S1, S0 : X → E0, S1 : X → E1,

where S0 and S1 satisfy the conditions

∥
∥S0(z1) – S0(z2)

∥
∥

0 ≤ 1
8
‖z1 – z2‖0, ∀z1, z2 ∈X ,
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and

∥
∥S1(z1) – S1(z2)

∥
∥

1 ≤ C∗‖z1 – z2‖0, ∀z1, z2 ∈X ,

for some C∗ > 0.

Then there exists an invariant compact set E ⊂X such that

distE0

(
S(t)X ,E

) ≤ J0e– log 2
t∗ t , (5)

where

J0 = 2L∗ sup
z0∈X

‖z0‖0e
log 2

t∗ , (6)

and L∗ is the Lipschitz constant of the map S(t∗) : X →X . Moreover,

dimF E ≤ 1 +
log N∗
log 2

, (7)

where N∗ is the minimum number of 1
8C∗ -balls of E0 necessary to cover the unit ball of E1.

Lemma 3 ([18]) Under assumptions (F1)–(F2), the semigroup {S(t)}t≥0 corresponding to
problem (1) has a bounded absorbing set B0 in E0.

Lemma 4 ([18]) Assume that conditions (F1)–(F2) hold, the semigroup {S(t)}t≥0 corre-
sponding to problem (1) has a bounded absorbing set B1 in E1.

3 Existence of exponential attractors
In this section, we first state the result about the well-posedness of problem (1). Under
assumptions, we can derive an existence result by the standard Faedo–Galerkin method
(see [15, 18]).

Theorem 5 Suppose that k > 0, α,β , δ1, δ2 > 0 and (F1)–(F2) hold. If hB, hS ∈ L2(0, L),
(u0, v0, u1, v1) ∈ E1, then for any given T > 0, there exists a unique solution (u, v) of (1)–(3)
such that

u ∈ C
(
[0, T], Y2

)
, ut ∈ C

(
[0, T], Y0

)
,

v ∈ C
(
[0, T], Y1

)
, vt ∈ C

(
[0, T], Y0

)
.

Furthermore, (u0, v0, u1, v1) → (u(t), v(t), ut(t), vt(t)) is continuous in E1.

Consequently, it admits to define a C0 semigroup

S(t) : (u0, v0, u1, v1) → (
u(t), v(t), ut(t), vt(t)

)
, t ∈R

+,

and it maps E1 into itself.
To obtain the existence of exponential attractors, we need to prove some lemmas as

follows.
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Lemma 6 Given any R > 0 and any two initial data z1 = (u11, v11, u12, v12), z2 = (u21, v21,
u22, v22) ∈ E0 such that ‖zi‖0 ≤ R, there holds

∥
∥S(t)z1 – S(t)z2

∥
∥

0 ≤ eKt‖z1 – z2‖0, ∀t ∈R
+, (8)

for some K = K(R) > 0.

Proof Given two solutions z1 = (u1, v1, u1
t , v1

t ) and z2 = (u2, v2, u2
t , v2

t ), corresponding to dif-
ferent initial data z1 and z2, the difference z1 – z2 = (ω1,ω2,ω1

t ,ω2
t ) fulfills

d
dt

(
α
∥
∥�ω1∥∥2 + β

∥
∥∇ω2∥∥2 +

∥
∥ω1

t
∥
∥2 +

∥
∥ω2

t
∥
∥2) + 2δ1

∥
∥ω1

t
∥
∥2 + 2δ2

∥
∥ω2

t
∥
∥2

+ 2
(
k
(
u1 – v1)+ – k

(
u2 – v2)+,ω1

t
)

+ 2
(
fB

(
u1) – fB

(
u2),ω1

t
)

– 2
(
k
(
u1 – v1)+ – k

(
u2 – v2)+,ω2

t
)

+ 2
(
fS

(
v1) – fS

(
v2),ω2

t
)

= 0. (9)

Using (4) and Hölder’s inequality, we have

–2
(
k
(
u1 – v1)+ – k

(
u2 – v2)+,ω1

t
) ≤ 2k

∥
∥
(
u1 – v1)+ –

(
u2 – v2)+∥

∥
∥
∥ω1

t
∥
∥

≤ 2k
∥
∥ω1 – ω2∥∥

∥
∥ω1

t
∥
∥

≤ 2k
λ2

∥
∥�ω1∥∥2 +

2k
λ2

∥
∥∇ω2∥∥2 + k

∥
∥ω1

t
∥
∥2, (10)

2
(
k
(
u1 – v1)+ – k

(
u2 – v2)+,ω2

t
) ≤ 2k

∥
∥
(
u1 – v1)+ –

(
u2 – v2)+∥

∥
∥
∥ω2

t
∥
∥

≤ 2k
∥
∥ω1 – ω2∥∥

∥
∥ω2

t
∥
∥

≤ 2k
λ2

∥
∥�ω1∥∥2 +

2k
λ2

∥
∥∇ω2∥∥2 + k

∥
∥ω2

t
∥
∥2. (11)

By (F2) and Lemma 3, as well as the Sobolev embedding theorems, we know that fB(u),
f ′
B(u), f ′′

B (u), fS(u), f ′
S(u), f ′′

S (u) are uniformly bounded in L∞. That is, there exists a constant
M > 0 such that

∣
∣fB(u)

∣
∣
L∞ ,

∣
∣f ′

B(u)
∣
∣
L∞ ,

∣
∣f ′′

B (u)
∣
∣
L∞ ,

∣
∣fS(u)

∣
∣
L∞ ,

∣
∣f ′

S(u)
∣
∣
L∞ ,

∣
∣f ′′

S (u)
∣
∣
L∞ ≤ M. (12)

Therefore

–2
(
fB

(
u1) – fB

(
u2),ω1

t
)

= –2
(
f ′
B
(
θu1 + (1 – θ )u2)ω1,ω1

t
)

≤ 2‖f ′
B(θu1 + (1 – θ )u2‖∞‖ω1‖∥∥ω1

t
∥
∥ ≤ 2M

∥
∥ω1∥∥

∥
∥ω1

t
∥
∥

≤ M
λ2

∥
∥�ω1∥∥2 + M

∥
∥ω1

t
∥
∥2, (13)

–2
(
fS

(
v1) – fS

(
v2),ω2

t
)

= –2
(
f ′
S
(
θv1 + (1 – θ )v2)ω2,ω2

t
)

≤ 2‖f ′
S(θv1 + (1 – θ )v2‖∞‖ω2‖∥∥ω2

t
∥
∥ ≤ 2M

∥
∥ω2∥∥

∥
∥ω2

t
∥
∥

≤ M
λ2

∥
∥�ω2∥∥2 + M

∥
∥ω2

t
∥
∥2. (14)
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Combining with the above estimates, we have

d
dt

(
α
∥
∥�ω1∥∥2 + β

∥
∥∇ω2∥∥2 +

∥
∥ω1

t
∥
∥2 +

∥
∥ω2

t
∥
∥2)

≤ 4k + M
λ2

∥
∥�ω1∥∥2 +

4k + M
λ2

∥
∥∇ω2∥∥2 + (k + M)

∥
∥ω1

t
∥
∥2 + (k + M)

∥
∥ω2

t
∥
∥2. (15)

Thus, we can find a positive constant K = max{ 4k+M
αλ2 , 4k+M

βλ2 , k + M} such that

d
dt

(
α
∥
∥�ω1∥∥2 + β

∥
∥∇ω2∥∥2 +

∥
∥ω1

t
∥
∥2 +

∥
∥ω2

t
∥
∥2)

≤ K
(
α
∥
∥�ω1∥∥2 + β

∥
∥∇ω2∥∥2 +

∥
∥ω1

t
∥
∥2 +

∥
∥ω2

t
∥
∥2). (16)

The assertion follows from the Gronwall lemma. �

Lemma 7 There exists C ≥ 0 such that

sup
z0∈B1

∥
∥zt(t)

∥
∥

0 ≤ C.

Proof From (1) we have

utt = –α�2u – δ1ut – k(u – v)+ – fB(u) + hB

and

vtt = β�v – δ2vt + k(u – v)+ – fS(u) + hS.

By exploiting Lemma 3, Lemma 4, and (12), we get

‖utt‖ ≤ α
∥
∥�2u

∥
∥ + δ1‖ut‖ + k‖u – v‖ +

∥
∥fB(u)

∥
∥ + ‖hB‖ ≤ C (17)

and

‖vtt‖ ≤ β‖�v‖ + δ2‖vt‖ + k‖u – v‖ +
∥
∥fS(u)

∥
∥ + ‖hS‖ ≤ C. (18)

Further, by virtue of Lemma 4, we can get ‖�ut‖ ≤ C, ‖∇vt‖ ≤ C, thus

∥
∥zt(t)

∥
∥2

0 = α‖�ut‖2 + β‖∇vt‖2 + ‖utt‖2 + ‖vtt‖2 ≤ C. (19)

Namely,

sup
z0∈B1

∥
∥zt(t)

∥
∥

0 ≤ C. �

Like the method in [21], we define

X =
⋃

τ≥t1

S(τ )B1
E0

. (20)
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Lemma 8 For every T > 0, the mapping (t, z0) �→ S(t)z0 is Lipschitz continuous on [0, T] ×
X .

Proof For z1, z2 ∈X and t1, t2 ∈ [0, T], we have

∥
∥S(t1)z1 – S(t2)z2

∥
∥

0 ≤ ∥
∥S(t1)z1 – S(t1)z2

∥
∥

0 +
∥
∥S(t1)z2 – S(t2)z2

∥
∥

0. (21)

The first term of the above inequality is handled by estimate (8). Concerning the second
one,

∥
∥S(t1)z2 – S(t2)z2

∥
∥

0 =
∥
∥z(t1) – z(t2)

∥
∥

0 ≤
∣
∣
∣
∣

∫ t2

t1

∥
∥zt(τ )

∥
∥

0 dτ

∣
∣
∣
∣ ≤ C|t1 – t2|. (22)

Hence

∥
∥S(t1)z1 – S(t2)z2

∥
∥

0 ≤ L
[|t1 – t2| + ‖z1 – z2‖0

]
(23)

for some L = L(T) ≥ 0. �

Lemma 9 Let X ⊂ E0 be a compact invariant subset. Assume that there exists a time t∗ > 0
such that the map S(t∗) : X →X admits a decomposition of the form

S(t∗) = S0 + S1, S0 : X → E0, S1 : X → E1,

where S0 satisfies

∥
∥S0(z1) – S0(z2)

∥
∥

0 ≤ 1
8
‖z1 – z2‖0, ∀z1, z2 ∈X ,

and S1 satisfies

∥
∥S1(z1) – S1(z2)

∥
∥

1 ≤ C∗‖z1 – z2‖0, ∀z1, z2 ∈X ,

for some C∗ > 0.

Proof For z0 ∈ X , we denote by S0(t)z0 the solution at time t of the linear homogeneous
problem associated with (1)–(3), and let S1(t)z0 = S(t)z0 – S0(t)z0.

Given two solutions

z1(t) =
(
u1, v1; u1

t , v1
t
)

and z2(t) =
(
u2, v2; u2

t , v2
t
)

originating from z1, z2 ∈X , respectively.
Set z = z1 – z2 = (ū, v̄; ūt , v̄t) and decompose z into the sum

z̄ = z̄d + z̄c = (ω1,ω3;ω1t ,ω3t) + (ω2,ω4;ω2t ,ω4t),
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where z̄d satisfies

⎧
⎪⎪⎨

⎪⎪⎩

ω1tt + α�2ω1 + δ1ω1t = 0,

ω3tt – β�ω3 + δ2ω3t = 0,

zd(0) = z1 – z2,

(24)

and z̄c satisfies

⎧
⎪⎪⎨

⎪⎪⎩

ω2tt + α�2ω2 + δ1ω2t + k(u1 – v1)+ – k(u2 – v2)+ + fB(u1) – fB(u2) = 0,

ω4tt – β�ω4 + δ2ω4t – k(u1 – v1)+ + k(u2 – v2)+ + fS(v1) – fS(v2) = 0,

zc(0) = 0.

(25)

It is apparent that zd(t) = S0(t)z1 – S0(t)z2 and zc(t) = S1(t)z1 – S1(t)z2.
For (24), taking the scalar product of the first and second equations of (24) with 2ω1t +

δ1ω1 and 2ω3t + δ2ω3 in L2(0, L), respectively, we infer that

d
dt

(

‖ω1t‖2 + α‖�ω1‖2 + δ1(ω1t ,ω1) +
1
2
δ2

1‖ω1‖2 + ‖ω3t‖2 + β‖∇ω3‖2 + δ2(ω3t ,ω3)

+
1
2
δ2

2‖ω3‖2
)

+ δ1
(‖ω1t‖2 + α‖�ω1‖2) + δ2

(‖ω3t‖2 + β‖∇ω3‖2) = 0. (26)

Denote

E(t) = ‖ω1t‖2 + α‖�ω1‖2 + δ1(ω1t ,ω1) +
1
2
δ2

1‖ω1‖2

+ ‖ω3t‖2 + β‖∇ω3‖2 + δ2(ω3t ,ω3) +
1
2
δ2

2‖ω3‖2.

Due to the inequalities δ1(ω1t ,ω1) ≤ 1
2‖ω1t‖2 + 1

2δ2
1‖ω1‖2, δ2(ω3t ,ω3) ≤ 1

2‖ω3t‖2 + 1
2δ2

2‖ω3‖2,
we have

E(t) ≤ 3
2
‖ω1t‖2 + α‖�ω1‖2 + δ2

1‖ω1‖2 +
3
2
‖ω3t‖2 + β‖∇ω3‖2 + δ2

2‖ω3‖2

≤ 3
2
‖ω1t‖2 +

(

α +
δ2

1
λ2

)

‖�ω1‖2 +
3
2
‖ω3t‖2 +

(

β +
δ2

2
λ2

)

‖∇ω3‖2. (27)

Let κ = max{ 3
2 , 1 + δ2

1
λ2α

, 1 + δ2
2

λ2β
} > 0, we get

E(t) ≤ κ
∥
∥zd(t)

∥
∥2

0. (28)

Meanwhile

E(t) ≥ 1
2
‖ω1t‖2 + α‖�ω1‖2 +

1
2
‖ω3t‖2 + β‖∇ω3‖2 ≥ 1

2
∥
∥zd(t)

∥
∥2

0. (29)

Therefore, E(t) satisfies

1
2
∥
∥zd(t)

∥
∥2

0 ≤ E(t) ≤ κ
∥
∥zd(t)

∥
∥2

0. (30)
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Let δ = min{δ1, δ2} > 0, by (26), we deduce that

d
dt

E(t) ≤ –δ
∥
∥zd(t)

∥
∥2

0. (31)

Combining (30) with (31), we get

d
dt

E(t) ≤ –
δ

κ
E(t). (32)

Using (30) and the Gronwall lemma, we end up with

∥
∥zd(t)

∥
∥2

0 ≤ 2κe– δ
κ t∥∥zd(0)

∥
∥2

0, (33)

namely,

∥
∥S0(t)z1 – S0(t)z2

∥
∥

0 ≤ √
2κe– δ

2κ t‖z1 – z2‖0. (34)

Choose t∗ = 2κ
δ

ln 8
√

2κ , we get

∥
∥S0(t∗)z1 – S0(t∗)z2

∥
∥

0 ≤ 1
8
‖z1 – z2‖0. (35)

For system (25), choose 0 < ε < 1. Taking the scalar product of the first and second equa-
tions of (25) with �2φ = �2ω2t +ε�2ω2 and –�ψ = –�ω4t –ε�ω4 in L2(0, L), respectively,
we find

1
2

d
dt

(‖�φ‖2 + α
∥
∥�2ω2

∥
∥2 + ‖∇ψ‖2 + β‖�ω4‖2)

+ αε
∥
∥�2ω2

∥
∥2 + (δ1 – ε)‖�φ‖2 – ε(δ1 – ε)

(
ω2,�2φ

)

+ βε‖�ω4‖2 + (δ2 – ε)‖∇ψ‖2 – ε(δ2 – ε)(ω4, –�ψ)

+
(
k
(
u1 – v1)+ – k

(
u2 – v2)+,�2φ

)
+

(
–k

(
u1 – v1)+ + k

(
u2 – v2)+, –�ψ

)

+
(
fB

(
u1) – fB

(
u2),�2φ

)
+

(
fS

(
v1) – fS

(
v2), –�ψ

)
= 0. (36)

Thanks to Young’s inequality and Hölder’s inequality, we have

(
k
(
u1 – v1)+ – k

(
u2 – v2)+,�2φ

)

=
d
dt

(
k
(
u1 – v1)+ – k

(
u2 – v2)+,�2ω2

)
+ ε

(
k
(
u1 – v1)+ – k

(
u2 – v2)+,�2ω2

)

–
(
k
(
u1 – v1)+

t – k
(
u2 – v2)+

t ,�2ω2
)

≥ d
dt

(
k
(
u1 – v1)+ – k

(
u2 – v2)+,�2ω2

)
+ ε

(
k
(
u1 – v1)+ – k

(
u2 – v2)+,�2ω2

)

– k
∥
∥
(
u1 – v1)+

t –
(
u2 – v2)+

t

∥
∥
∥
∥�2ω2

∥
∥

≥ d
dt

(
k
(
u1 – v1)+ – k

(
u2 – v2)+,�2ω2

)
+ ε

(
k
(
u1 – v1)+ – k

(
u2 – v2)+,�2ω2

)

– k‖ūt – v̄t‖
∥
∥�2ω2

∥
∥
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≥ d
dt

(
k
(
u1 – v1)+ – k

(
u2 – v2)+,�2ω2

)
+ ε

(
k
(
u1 – v1)+ – k

(
u2 – v2)+,�2ω2

)

– k‖ūt‖
∥
∥�2ω2

∥
∥ – ‖v̄t‖

∥
∥�2ω2

∥
∥

≥ d
dt

(
k
(
u1 – v1)+ – k

(
u2 – v2)+,�2ω2

)
+ ε

(
k
(
u1 – v1)+ – k

(
u2 – v2)+,�2ω2

)

–
εα

4
∥
∥�2ω2

∥
∥2 –

8k2

εα
‖ūt‖2 –

8k2

εα
‖v̄t‖2 (37)

and

(
–k

(
u1 – v1)+ + k

(
u2 – v2)+, –�ψ

)

= –k
((

u1 – v1)+
x –

(
u2 – v2)+

x ,∇ψ
)

≥ –k
∥
∥
(
u1 – v1)+

x –
(
u2 – v2)+

x

∥
∥‖∇ψ‖ ≥ –k‖∇ū – ∇ v̄‖‖∇ψ‖

≥ –k‖∇ū‖‖∇ψ‖ – k‖∇ v̄‖‖∇ψ‖ ≥ –
δ2

4
‖∇ψ‖2 –

8k2

δ2
‖∇ū‖2 –

8k2

δ2
‖∇ v̄‖2. (38)

Denote ϕ(t) = θu1(t) + (1 – θ )u2(t), σ (t) = θv1(t) + (1 – θ )v2(t), applying Lemma 3, we have

∥
∥ϕt(t)

∥
∥ ≤ θ

∥
∥u1

t (t)
∥
∥ + (1 – θ )

∥
∥u2

t (t)
∥
∥ ≤ R0,

∥
∥∇σ (t)

∥
∥ ≤ θ

∥
∥∇v1(t)

∥
∥ + (1 – θ )

∥
∥∇v2(t)

∥
∥ ≤ R0.

(39)

By (12) and (39), we achieve

(
fB

(
u1) – fB

(
u2),�2φ

)
=

(
f ′
B
(
ϕ(t)

)
ū,�2ω2t

)
+ ε

(
f ′
B
(
ϕ(t)

)
ū,�2ω2

)

=
d
dt

(
f ′
B
(
ϕ(t)

)
ū,�2ω2

)
+ ε

(
f ′
B
(
ϕ(t)

)
ū,�2ω2

)

–
(
f ′′
B
(
ϕ(t)

)
ϕt(t)ū,�2ω2

)
–

(
f ′
B
(
ϕ(t)

)
ūt ,�2ω2

)

≥ d
dt

(
f ′
B
(
ϕ(t)

)
ū,�2ω2

)
+ ε

(
f ′
B
(
ϕ(t)

)
ū,�2ω2

)

– MR0‖ū‖∥∥�2ω2
∥
∥ – M‖ūt‖

∥
∥�2ω2

∥
∥

≥ d
dt

(
f ′
B
(
ϕ(t)

)
ū,�2ω2

)
+ ε

(
f ′
B
(
ϕ(t)

)
ū,�2ω2

)

–
εα

4
∥
∥�2ω2

∥
∥2 –

8M2R2
0

εα
‖ū‖2 –

8M2

εα
‖ūt‖2 (40)

and

(
fS

(
v1) – fS

(
v2), –�ψ

)
=

(
f ′
S
(
σ (t)

)
v̄, –�ψ

)

=
(
f ′′
S
(
σ (t)

)∇σ (t)v̄,∇ψ
)

+
(
f ′
S
(
σ (t)

)∇ v̄,∇ψ
)

≥ –MR0‖v̄‖‖∇ψ‖ – M‖∇ v̄‖‖∇ψ‖

≥ –
δ2

4
‖∇ψ‖2 –

8M2R2
0

δ2
‖v̄‖2 –

8M2

δ2
‖∇ v̄‖2. (41)
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Therefore, together with (36)–(41), it leads to

d
dt

(‖�φ‖2 + α
∥
∥�2ω2

∥
∥2 + ‖∇ψ‖2 + β‖�ω4‖2 + 2

(
k
(
u1 – v1)+ – k

(
u2 – v2)+,�2ω2

)

+ 2
(
f ′
B
(
ϕ(t)

)
ū,�2ω2

))
+ εα

∥
∥�2ω2

∥
∥2 + 2(δ1 – ε)‖�φ‖2 – 2ε(δ1 – ε)

(
�2ω2,φ

)

+ 2εβ‖�ω4‖2 + 2
(

δ2

2
– ε

)

‖∇ψ‖2 – 2ε(δ2 – ε)(–�ω4,ψ)

+ 2ε
(
k
(
u1 – v1)+ – k

(
u2 – v2)+,�2ω2

)
+ 2ε

(
f ′
B
(
ϕ(t)

)
ū,�2ω2

)

≤ 2
(

8k2

εα
‖ūt‖2 +

8k2

εα
‖v̄t‖2 +

8k2

δ2
‖∇ū‖2 +

8k2

δ2
‖∇ v̄‖2

+
8M2R2

0
εα

‖ū‖2 +
8M2

εα
‖ūt‖2 +

8M2R2
0

δ2
‖v̄‖2 +

8M2

δ2
‖∇ v̄‖2

)

. (42)

Furthermore, by Young’s inequality and Hölder’s inequality, we have

εα
∥
∥�2ω2

∥
∥2 + 2(δ1 – ε)‖�φ‖2 – 2ε(δ1 – ε)

(
�2ω2,φ

)

≥ εα
∥
∥�2ω2

∥
∥2 + 2(δ1 – ε)‖�φ‖2 –

2εδ1

λ

∥
∥�2ω2

∥
∥‖�φ‖

≥ εα

2
∥
∥�2ω2

∥
∥2 + 2

(

δ1 – ε –
4εδ2

1
λ2α

)

‖�φ‖2 (43)

and

2εβ‖�ω4‖2 + 2
(

δ2

2
– ε

)

‖∇ψ‖2 – 2ε(δ2 – ε)(–�ω4,ψ)

≥ 2εβ‖�ω4‖2 + (δ2 – 2ε)‖∇ψ‖2 –
2εδ2

λ
‖�ω4‖‖∇ψ‖

≥ εβ‖�ω4‖2 +
(

δ2 – 2ε –
4εδ2

2
λ2β

)

‖∇ψ‖2. (44)

Thus, we can choose ε small enough such that

δ1 – ε –
4εδ2

1
λ2α

≥ δ1

2
, δ2 – 2ε –

4εδ2
2

λ2β
≥ δ2

2
.

And let ε0 = min{ ε
2 , δ1, δ2

2 }, we conclude from (42) that

d
dt

(‖�φ‖2 + α
∥
∥�2ω2

∥
∥2 + ‖∇ψ‖2 + β‖�ω4‖2 + 2

(
k
(
u1 – v1)+ – k

(
u2 – v2)+,�2ω2

)

+
(
f ′
B
(
ϕ(t)

)
ū,�2ω2

))
+ ε0

(‖�φ‖2 + α
∥
∥�2ω2

∥
∥2 + ‖∇ψ‖2 + β‖�ω4‖2

+ 2
(
k
(
u1 – v1)+ – k

(
u2 – v2)+,�2ω2

)
+

(
f ′
B
(
ϕ(t)

)
ū,�2ω2

))

≤ 2
(

8k2

εα
‖ūt‖2 +

8k2

εα
‖v̄t‖2 +

8k2

δ2
‖∇ū‖2 +

8k2

δ2
‖∇ v̄‖2

+
8M2R2

0
εα

‖ū‖2 +
8M2

εα
‖ūt‖2 +

8M2R2
0

δ2
‖v̄‖2 +

8M2

δ2
‖∇ v̄‖2

)

. (45)
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Therefore, we arrive at

d
dt

(∥
∥
∥
∥

√
α

2
�2ω2 +

√
2k√
α

((
u1 – v1)+ –

(
u2 – v2)+)

∥
∥
∥
∥

2

+
∥
∥
∥
∥

√
α

2
�2ω2 +

√
2√
α

f ′
B
(
ϕ(t)

)
ū
∥
∥
∥
∥

2

+ ‖�φ‖2 + β‖�ω4‖2 + ‖∇ψ‖2
)

+ ε0

(∥
∥
∥
∥

√
α

2
�2ω2 +

√
2k√
α

((
u1 – v1)+ –

(
u2 – v2)+)

∥
∥
∥
∥

2

+
∥
∥
∥
∥

√
α

2
�2ω2 +

√
2√
α

f ′
B
(
ϕ(t)

)
ū
∥
∥
∥
∥

2

+ ‖�φ‖2 + β‖�ω4‖2 + ‖∇ψ‖2
)

≤
(

16k2

εα
+

16M2

εα

)

‖ūt‖2 +
16k2

εα
‖v̄t‖2 +

16k2

δ2
‖∇ū‖2 +

(
16k2

δ2
+

16M2

δ2

)

‖∇ v̄‖2

+
16M2R2

0
εα

‖ū‖2 +
16M2R2

0
δ2

‖v̄‖2

+
4k2

α

∫

�

((
u1 – v1)+ –

(
u2 – v2)+)((

u1 – v1)+
t –

(
u2 – v2)+

t

)
dx

+
4
α

(
f ′′
B (ϕ)ϕt(t)ū, f ′

B(ϕ)ū
)

+
4
α

(
f ′
B(ϕ)ūt , f ′

B(ϕ)ū
)

+
2ε0k2

α

∥
∥
(
u1 – v1)+ –

(
u2 – v2)+∥

∥2 +
2ε0

α

∥
∥f ′

B(ϕ)ū
∥
∥2. (46)

Moreover, by exploiting conditions (12), (39) and Young’s inequality, as well as Hölder’s
inequality, we have

4k2

α

∫

�

((
u1 – v1)+ –

(
u2 – v2)+)((

u1 – v1)+
t –

(
u2 – v2)+

t

)
dx

≤ 4k2

α

∥
∥
(
u1 – v1)+ –

(
u2 – v2)+∥

∥
∥
∥
(
u1 – v1)+

t –
(
u2 – v2)+

t

∥
∥

≤ 4k2

α
‖ū – v̄‖‖ūt – v̄t‖

≤ 2k2

α
‖ū – v̄‖2 +

2k2

α
‖ūt – v̄t‖2

≤ 4k2

α
‖ū‖2 +

4k2

α
‖v̄‖2 +

4k2

α
‖ūt‖2 +

4k2

α
‖v̄t‖2 (47)

and

4
α

(
f ′′
B (ϕ)ϕt(t)ū, f ′

B(ϕ)ū
) ≤ 4

α
M2R0‖ū‖2, (48)

and

4
α

(
f ′
B(ϕ)ūt , f ′

B(ϕ)ū
) ≤ 4

α
M2‖ūt‖‖ū‖ ≤ 2M2

α
‖ūt‖2 +

2M2

α
‖ū‖2, (49)

and

2ε0k2

α

∥
∥
(
u1 – v1)+ –

(
u2 – v2)+∥

∥2 ≤ 2ε0k2

α
‖ū – v̄‖2 ≤ 4ε0k2

α
‖ū‖2 +

4ε0k2

α
‖v̄‖2, (50)
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2ε0

α

∥
∥f ′

B(ϕ)ū
∥
∥2 ≤ 2ε0M2

α
‖ū‖2. (51)

Combining with (46)–(51), it leads to

d
dt

(∥
∥
∥
∥

√
α

2
�2ω2 +

√
2k√
α

((
u1 – v1)+ –

(
u2 – v2)+)

∥
∥
∥
∥

2

+
∥
∥
∥
∥

√
α

2
�2ω2 +

√
2√
α

f ′
B
(
ϕ(t)

)
ū
∥
∥
∥
∥

2

+ ‖�φ‖2 + β‖�ω4‖2 + ‖∇ψ‖2
)

+ ε0

(∥
∥
∥
∥

√
α

2
�2ω2 +

√
2k√
α

((
u1 – v1)+ –

(
u2 – v2)+)

∥
∥
∥
∥

2

+
∥
∥
∥
∥

√
α

2
�2ω2 +

√
2√
α

f ′
B
(
ϕ(t)

)
ū
∥
∥
∥
∥

2

+ ‖�φ‖2 + β‖�ω4‖2 + ‖∇ψ‖2
)

≤
(

16k2

εα
+

16M2

εα
+

4k2

α
+

2M2

α

)

‖ūt‖2 +
(

16k2

εα
+

4k2

α

)

‖v̄t‖2

+
(

16k2

δ2
+

16M2

δ2

)

‖∇ v̄‖2

+
16k2

δ2
‖∇ū‖2 +

(
16M2R2

0
εα

+
4k2

α
+

4M2R0

α
+

2M2

α
+

4ε0k2

α
+

4ε0M2

α

)

‖ū‖2

+
(

16M2R2
0

δ2
+

4k2

α
+

4ε0k2

α

)

‖v̄‖2

≤
(

16k2

εα
+

16M2

εα
+

4k2

α
+

2M2

α

)

‖ūt‖2 +
(

16k2

εα
+

4k2

α

)

‖v̄t‖2

+
(

16k2

δ2
+

16M2R2
0

εα
+

4k2

α
+

4M2R0

α
+

2M2

α
+

4ε0k2

α
+

4ε0M2

α

)

/λ2‖�ū‖2

+
(

16k2

δ2
+

16M2

δ2
+

(
16M2R2

0
δ2

+
4k2

α
+

4ε0k2

α

)

/λ2
)

‖∇ v̄‖2. (52)

Let

� = max

{
16k2

εα
+

16M2

εα
+

4k2

α
+

2M2

α
,
(

16k2

δ2
+

16M2R2
0

εα
+

4k2

α
+

4M2R0

α

+
2M2

α
+

4ε0k2

α
+

4ε0M2

α

) /

λ2α,
(

16k2

δ2
+

16M2

δ2

) /

β

+
(

16M2R2
0

δ2
+

4k2

α
+

4ε0k2

α

) /

λ2β)
}

.

We can deduce from (52) that

d
dt

(∥
∥
∥
∥

√
α

2
�2ω2 +

√
2k√
α

((
u1 – v1)+ –

(
u2 – v2)+)

∥
∥
∥
∥

2

+
∥
∥
∥
∥

√
α

2
�2ω2 +

√
2√
α

f ′
B
(
ϕ(t)

)
ū
∥
∥
∥
∥

2

+ ‖�φ‖2 + β‖�ω4‖2 + ‖∇ψ‖2
)

≤ �
(
α‖�ū‖2 + β‖∇ v̄‖2 + ‖ūt‖2 + ‖v̄t‖2) = �

∥
∥z̄(t)

∥
∥2

0 ≤ �eKt‖z1 – z2‖2
0. (53)
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Integrating (53) over (0, t∗), we have that

∥
∥
∥
∥

√
α

2
�2ω2(t∗) +

√
2k√
α

((
u1(t∗) – v1(t∗)

)+ –
(
u2(t∗) – v2(t∗)

)+)
∥
∥
∥
∥

2

+
∥
∥
∥
∥

√
α

2
�2ω2(t∗) +

√
2√
α

f ′
B
(
ϕ(t∗)

)
ū(t∗)

∥
∥
∥
∥

2

+
∥
∥�φ(t∗)

∥
∥2 + β

∥
∥�ω4(t∗)

∥
∥2 +

∥
∥∇ψ(t∗)

∥
∥2

≤
∥
∥
∥
∥

√
α

2
�2ω2(0) +

√
2k√
α

((
u1(0) – v1(0)

)+ –
(
u2(0) – v2(0)

)+)
∥
∥
∥
∥

2

+
∥
∥
∥
∥

√
α

2
�2ω2(0) +

√
2√
α

f ′
B
(
ϕ(0)

)
ū(0)

∥
∥
∥
∥

2

+
∥
∥�φ(0)

∥
∥2 + β

∥
∥�ω4(0)

∥
∥2 +

∥
∥∇ψ(0)

∥
∥2

+
∫ t∗

0
�eKt‖z1 – z2‖2

0 dt (54)

≤ �

K
(
eKt∗ – 1

)‖z1 – z2‖2
0 + α

∥
∥�2ω2(0)

∥
∥2

+
4k2

α

∥
∥
(
u1(0) – v1(0)

)+ –
(
u2(0) – v2(0)

)+∥
∥2

+ α
∥
∥�2ω2(0)

∥
∥2 +

4
α

∥
∥f ′

B
(
ϕ(0)

)
ū(0)

∥
∥2 +

∥
∥�φ(0)

∥
∥2 + β

∥
∥�ω4(0)

∥
∥2 +

∥
∥∇ψ(0)

∥
∥2

≤ �

K
(
eKt∗ – 1

)‖z1 – z2‖2
0 +

4k2

α

∥
∥ū(0) – v̄(0)

∥
∥2 +

4
α

∥
∥f ′

B
(
ϕ(0)

)
ū(0)

∥
∥2

≤ �

K
(
eKt∗ – 1

)‖z1 – z2‖2
0 +

8k2

α

(∥
∥ū(0)

∥
∥2 +

∥
∥v̄(0)

∥
∥2) +

4M2

α

∥
∥ū(0)

∥
∥2

≤ �

K
(
eKt∗ – 1

)
+

(
8k2

α
+

4M2

α

)

/λ2∥∥�ū(0)
∥
∥2 +

8k2

αλ2

∥
∥∇ v̄(0)

∥
∥2

≤ �

K
(
eKt∗ – 1

)
+

(
8k2

α
+

4M2

α

)

/αλ2‖z1 – z2‖2
0 +

8k2

αβλ2 ‖z1 – z2‖2
0

≤ C∗‖z1 – z2‖2
0, (55)

where C∗ = �
K (eKt∗ – 1) + 8k2+4M2

α2λ2 + 8k2

αβλ2 . Applying (12), Hölder’s inequality, and Cauchy’s
inequality as well as Lemma 3, we conclude from (54) that

α
∥
∥�2ω2(t∗)

∥
∥2 + β

∥
∥�ω4(t∗)

∥
∥2 +

∥
∥�φ(t∗)

∥
∥2 +

∥
∥∇ψ(t∗)

∥
∥2 ≤ C∗‖z1 – z2‖2

0,

namely,

‖z̄∗‖2
1 ≤ C∗‖z1 – z2‖2

0.

This completes the proof of Lemma 9. �

Our main result reads as follows.

Theorem 10 Under conditions (F1)–(F2), the semigroup S(t) acting on E0 possesses an
exponential attractor E .



Jin Boundary Value Problems        (2023) 2023:111 Page 15 of 15

Proof Lemma 8, Lemma 9, and Theorem 2 imply the existence of an exponential attrac-
tor. �
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