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Abstract
In the present paper, we consider the existence of solutions with a prescribed l2-norm
for the following discrete Schrödinger equations,

{
–�2uk–1 – f (uk) = λuk k ∈ Z,∑

k∈Z |uk|2 = α2,

where �2uk–1 = uk+1 + uk–1 – 2uk , f ∈ C(R), α is a fixed constant, and λ ∈R arises as a
Lagrange multiplier. To get the solutions, we investigate the corresponding
minimizing problem with the l2-norm constraint:

Eα = inf
{1
2

∑
|�uk–1|2 –

∑
F(uk) :

∑
|uk|2 = α2

}
.

An elaborative analysis on a minimizing sequence with respect to Eα is obtained. We
prove that there is a constant α0 ≥ 0 such that there exists a global minimizer if
α > α0, and there exists no global minimizer if α < α0. It seems that it is the first time
to consider the solution with a prescribed l2-norm of the discrete Schrödinger
equations.
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1 Introduction and main results
In the present paper, we consider the following discrete Schrödinger equations

⎧⎨
⎩–�2uk–1 – f (uk) = λuk k ∈ Z,∑

k∈Z |uk|2 = α2,
(Pα)

where f ∈ C(R), α > 0 is a given constant, and λ ∈ R arises as a Lagrange multiplier. Here
�uk–1 = uk – uk–1 and �2 = �(�) is the one dimensional discrete Laplacian operator.
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Discrete Schrödinger equations play an important role in many areas, such as nonlinear
optics [9], biomolecular chains [12], and Bose-Einstein condensates [16]. For more appli-
cations, we refer to [10, 11] and references therein.

Many authors concentrated on the periodic case of the equations, such as [6, 18–20, 22,
24, 28, 31–34]. As to the nonperiodic case, in Ma and Guo [17] and Zhang and Pankov [29],
the authors derived a discrete version of compact embedding theorem and obtained the
nontrivial solution of discrete Schrödinger equations with a coercive potential by calculus
of variations. In [8], Chen et al. investigated the sign-changing ground state solutions for
a class of discrete nonlinear Schrödinger equations. In Lin et al. [13], the authors obtained
the existence of the homoclinic solutions when the nonlinearity is asymptotically linear at
infinity. We refer the readers to [7, 21, 26, 27, 30] for related results.

The main feature of equation (Pα) is that the desired solution have a priori prescribed
l2-norm. The solutions with this type are usually referred as normalized solutions. This
kind of normalized solutions have been widely studied in the Schrödinger equations, the
continuous case. We refer the readers to [1, 2, 4, 5, 23]. However, little results have been
known concerning normalized solutions with respect to the discrete Schrödinger equa-
tions.

This kind of discrete Schrödinger equations actually has been studied in the past twenty
year. Weinstein [25] considered excitation thresholds for ground state localized modes,
sometimes referred to as ‘breathers’, for the wave equations of nonlinear Schrödinger type.
Excitation thresholds are rigorously characterized by variational methods. The excitation
threshold is related to the optimal constant in a class of discrete interpolation inequalities
related to the Hamiltonian energy.

In this paper, we will investigate the solutions (uα ,λα) with a priori prescribed l2-norm
of equation (Pα) by variational methods. More precisely, we consider a constrained varia-
tional problem as follows. Under a general assumption (f1) on the nonlinearity,

(f1) f ∈ C(R,R), and there exist C > 0 and p > 2 such that

∣∣f (t)
∣∣ ≤ C

(|t| + |t|p–1) for any t ∈R,

it is possible to define a C1 functional I : l2 → R by

I(u) =
1
2

∑
k∈Z

|�uk–1|2 –
∑
k∈Z

F(uk),

where u = (uk)k∈Z and F(t) =
∫ t

0 f (s) ds. Then the solutions of (Pα) can be characterized as
critical points of I restrained on the constraint,

Mα =
{

u ∈ l2 :
∑
k∈Z

|uk|2 = α2
}

.

If uα is a critical point of I on Mα , then uα is a solution of equation (Pα), where λα is
determined as the Lagrange multiplier. It is evident to check that I is bounded from be-
low on Mα . Thus, the existence of a minimizer of the following well-defined infimum is
expected,

Eα = inf
u∈Mα

I(u). (1.1)
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To get some suitable properties on Eα , we need the following assumptions on f ,
(f2) f (t) = o(t) as t → 0.
(f3) 2F(t) < f (t)t for any t ∈ R \ {0}.

Therefore, there exists a α0 ≥ 0 such that (see (2.12) in the proof of Theorem 1.2),

Eα = 0 if 0 < α ≤ α0, Eα < 0 if α > α0. (1.2)

We have an accurate description of the minimizing sequence on Mα with respect to Eα .
More precisely, our main results are stated as follows.

Theorem 1.1 Assume that (f1)-(f3) and α > 0. If {un}n∈N ⊂ Mα is a minimizing sequence
with respect to Eα , then one of the following cases holds:

(i) (vanishing) un → 0 in lq for q ∈ (2,∞] as n → ∞.
(ii) (nonvanishing) there exist uα ∈Mα and a family {kn}n∈N ⊂N such that

kn ∗ un → uα in l2

as n → ∞, where we denote that j ∗ u ≡ (uk+j).

Theorem 1.2 Assume that (f1)-(f3) hold. There exists α0 ≥ 0 satisfying (1.2) such that the
following statements hold:

(i) if 0 < α < α0, there is no minimizer with respect to Eα ;
(ii) if α > α0, there exists a minimizer with respect to Eα . Moreover, there exists a couple

of solution (uα ,λα) ∈Mα ×R
– satisfying the following equation:

–�2uk–1 – f (uk) = λuk , k ∈ Z.

Actually, we prove that there exists a constant α0 ≥ 0 such that there exists a global
minimizer if α > α0, and there exists no global minimizer if α < α0 in Theorem 1.2. It is
natural to consider if α0 = 0 or not. The following theorem shows that it heavily depends
on the behavior of f near 0.

Theorem 1.3 Assume that (f1)-(f3) hold. Then
(i) the strict subadditivity property holds, i.e., for any α + β > α0,

Eα+β < Eα + Eβ .

(ii) if limt→0
F(t)
t4 = +∞, then α0 = 0.

Remark 1.4 An analysis of the behavior of a minimizing sequence with respect to Eα is
obtained in Theorem 1.1. As to the continuous Schrödinger equations, it is a classical
result so-called concentration-compactness principle from Lions [14, 15]. Some excitation
thresholds for ground state localized results have been known in the discrete Schrödinger
equations. Weinstein has considered the special class of the nonlinearities |u|p–1u in his
early work [25]. In our Theorem 1.2, we research the normalized solutions to the discrete
Schrödinger equations with a general nonlinearity. We find that whether the minimizing
sequence vanishing or not, it heavily depends on the priori prescribed l2-norm.
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Remark 1.5 Lastly, a so-called strict subadditivity property is obtained in Theorem 1.3(i),
which is similar to the celebrated results in Lions [14, 15]. We conclude that the reason
for the existence of a minimizer only for α > α0 is that the strict subadditivity holds for
α > α0.

2 Proof of the main results
In the following, we denote the universal positive constants by C. As usual, the standard
real sequence space lq, q ∈ [1,∞], endowed with the norm

‖u‖q =
(∑

k∈Z
|uk|q

)1/q

, q ∈ [1,∞), ‖u‖∞ = sup
k∈Z

|uk|,

where u = (uk)k∈Z. The following embedding is well known,

lq1 ⊂ lq2 , ‖u‖q2 ≤ ‖u‖q1 , 1 ≤ q1 ≤ q2 ≤ ∞.

For simplicity of writing, we define that ‖�u‖2 := (
∑

k∈Z |�uk|2)1/2.

Lemma 2.1 Let {un}n∈N be a sequence in l2 satisfying limn→∞ ‖un‖2 = α. If we set that
ũn = α

‖un‖2
un := anun, the following fact holds:

ũn ∈Mα and lim
n→∞

(
I
(̃
un) – I

(
un)) = 0.

Proof It is clear that limn→∞ an = 1. Moreover, by a direct computation, it follows that

I
(̃
un) – I

(
un) =

a2
n – 1
2

∥∥�un∥∥2
2 –

∑
k∈Z

(
F
(
anun

k
)

– F
(
un

k
))

=
a2

n – 1
2

∥∥�un∥∥2
2 –

∑
k∈Z

∫ 1

0
f
(
un

k + (an – 1)sun
k
)
(an – 1)sun

k ds

=
a2

n – 1
2

∥∥�un∥∥2
2 – (an – 1)

∑
k∈Z

∫ 1

0
f
(
un

k + (an – 1)sun
k
)
sun

k ds.

(2.1)

Under the assumption (f1), we have

∣∣∣∣∑
k∈Z

∫ 1

0
f
(
un

k + (an – 1)sun
k
)
sun

k ds
∣∣∣∣

≤
∑
k∈Z

∫ 1

0
C

((|an| + 2
)∣∣un

k
∣∣2 +

(|an| + 2
)p–1∣∣un

k
∣∣p)ds

≤
∑
k∈Z

C
((|an| + 2

)∣∣un
k
∣∣2 +

(|an| + 2
)p–1∣∣un

k
∣∣p)

≤ C
((|an| + 2

)∥∥un∥∥2
2 +

(|an| + 2
)p–1∥∥un∥∥p

p

)
.

(2.2)

Since (2.1), (2.2), limn→∞ an = 1 and the boundedness of un in l2, we achieve our conclu-
sion. �
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Lemma 2.2 Under the assumptions (f1)-(f3), the following statements hold:
(i) –∞ < Eα ≤ 0 for any α > 0.

(ii) Eα+β ≤ Eα + Eβ for any α,β > 0.
(iii) Eα < 0 for sufficiently large α.
(iv) α �→ Eα is nonincreasing and continuous.

Proof (i) It follows from (f1) that

∣∣F(u)
∣∣ ≤ C

(|u|2 + |u|p).

For any u ∈Mα , one has that

I(u) =
1
2

∑
k∈Z

|�uk|2 –
∑
k∈Z

F(uk)

≥ –C‖u‖2
2 – C‖u‖p

p

≥ –C‖u‖2
2 – C‖u‖p

2 = –C1 > –∞,

where C1 = Cα2 + Cαp. Here we have used the fact that

‖u‖q ≤ ‖u‖2 for any u ∈ l2 and q ∈ (2,∞].

Let uN = (. . . , 0, (
α

N1/2 ), . . . , (
α

N1/2 )︸ ︷︷ ︸
N

, 0, . . .) and ‖uN‖2 = α. Moreover, it is easy to check that

∥∥uN∥∥p
p =

αp

N (p–2)/2 and
∥∥�uN∥∥2

2 =
2α2

N
. (2.3)

Combining (f1) with (f2), for any ε, there exists Cε > 0 such that

∣∣F(u)
∣∣ ≤ ε|u|2 + Cε|u|p. (2.4)

For any δ > 0, setting that ε = δ/(2α2) in (2.4) and N0 = [(2Cεα
pδ–1)2/(p–2)] + 1. Thus, for any

positive integer N > N0, the following holds:

∣∣∣∣∑
k∈Z

F
(
uN

k
)∣∣∣∣ ≤ ε

∥∥uN∥∥2
2 + Cε

∥∥uN∥∥p
p ≤ εα2 + Cε

αp

N (p–2)/2 <
δ

2
+

δ

2
= δ.

By the arbitrariness of δ > 0, we obtain

lim
N→∞

∣∣∣∣∑
k∈Z

F
(
uN

k
)∣∣∣∣ = 0. (2.5)

It follows from (2.3) and (2.5) that limN→∞ I(uN ) = 0. Here Eα ≤ 0 follows directly. Then
(i) holds.

(ii) Set that

C =
{

u = (uk)k∈Z ∈ l2 :
{

k : |uk| > 0
}

is a finite set
}

.
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Therefore, we know that C is dense in l2. By the definition of Eα and Eβ , for any ε > 0, there
exist u ∈Mα ∩ C and v ∈Mβ ∩ C such that

I(u) ≤ Eα + ε, I(v) ≤ Eβ + ε,

respectively. Since u, v ∈ C , by translation, there exist n0, r ∈N and r < n0 such that

supp u ⊂ B(–n0, r), supp v ⊂ B(n0, r),

where B(x, r) is a ball center at x with the radius r in the integer Z. Thus, u + v ∈ Mα+β .
Moreover, there is

Eα+β ≤ I(u + v) = I(u) + I(v) ≤ Eα + Eβ + 2ε.

Then Eα+β ≤ Eα + Eβ follows from the arbitrariness of ε.
(iii) For any s ∈R, let us,N = (. . . , 0, s, . . . , s︸ ︷︷ ︸

N

, 0, . . .). Then, ‖uN‖2
2 = Ns2 and

I
(
us,N)

=
1
2

∑
k∈Z

∣∣�us,N
k

∣∣ –
∑
k∈Z

F
(
us,N

k
)

= s2 – NF(s).

Taking s0 such that F(s0) > 0 by (f3) and N0 := [s2
0/F(s0)] + 1. Thus, for any N > N0, we have

Eα ≤ I
(
us0,N)

= s2
0 – NF(s0) < 0.

Here one obtains that Eα < 0 for α > N1/2
0 s0.

(iv) It follows from (i) and (ii) that

Eα+β ≤ Eα + Eβ ≤ Eα ,

for any α,β > 0. Thus, α �→ Eα is nonincreasing. Fix α > 0, we know that Eα–δ and Eα+δ are
monotonic and bounded as δ → 0+. Moreover, Eα–δ ≥ Eα ≥ Eα+δ and

lim
δ→0+

Eα–δ ≥ Eα ≥ lim
δ→0+

Eα+δ .

To prove the continuous, it remains to prove the inverse inequalities.
(a) limδ→0+ Eα–δ ≤ Eα . If Eα = 0, limδ→0+ Eα–δ ≤ Eα holds. We consider the case Eα < 0.

Let u ∈ Mα and uδ = (1 – δ/α)u with δ ∈ (0,α). It is easy to check that ‖uδ‖2 = α – δ and
uδ → u as δ → 0+ in l2. Therefore,

lim
δ→0+

Eα–δ ≤ lim
δ→0+

I(uδ) = I(u).

By the arbitrariness of u ∈Mα , limδ→0+ Eα–δ ≤ Eα holds.
(b) limδ→0+ Eα+δ ≥ Eα . Since the left-hand side converges, it sufficient to consider the

case δ = 1
n with n ∈N. Let un ∈Mα+1/n and I(un) ≤ Eα+1/n + 1

n for any n ∈N. Thus,

lim
n→∞ I

(
un) = lim

δ→0+
Eα+δ .
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Let vn = un/(1 + 1/(αn)) for any n ∈N. Moreover,

∥∥vn∥∥
2 =

‖un‖2

1 + 1/(αn)
=

α + 1/n
1 + 1/(αn)

= α,

which implies vn ∈Mα . By Lemma 2.1, we obtain

Eα ≤ I
(
vn) = I

(
un) + o(1)

as n → ∞. Thus, limδ→0+ Eα+δ = limn→∞ I(un) ≥ Eα . The proof is completed. �

Lemma 2.3 Under the assumptions (f1)-(f3), the following statements hold:
(i) Suppose that u is a minimizer on Mα with respect to Eα . Then Eβ < Eα for any β > α.

(ii) Suppose that u and v are two minimizers on Mα and Mβ with respect to Eα and Eβ ,
respectively. Then Eα+β < Eα + Eβ .

Proof (i) Suppose that u is a minimizer on Mα with respect to Eα and β > α. Consider the
following function

I(tu) – t2I(u) = t2
∑
k∈Z

(
F(uk) –

F(tuk)
t2

)
:= t2g(t), t ≥ 1,

where g(t) =
∑

k∈Z(F(uk) – F(tuk )
t2 ) for t ∈ [1, +∞). Clearly, g(1) = 0. By (f1), it is not difficult

to prove that g(t) ∈ C1((1, +∞)) and

g ′(t) =
1
t3

∑
k∈Z

(
2F(tuk) – f (tuk)tuk

)
.

Since u ∈Mα , there exists k0 ∈ Z such that uk0 �= 0. Therefore,

g ′(t) =
1
t3

∑
k∈Z

(
2F(tuk) – f (tuk)tuk

) ≤ 1
t3

(
2F(tuk0 ) – f (tuk0 )tuk0

)
< 0,

for any t > 1. Combining with the above inequality and g(1) = 0, we obtain that g(t) < 0 for
any t > 1. Set θ = β/α, it follows from θu ∈Mβ and I(u) ≤ 0 that

Eβ ≤ I(θu) < θ2I(u) = θ2Eα ≤ θEα ≤ Eα . (2.6)

(ii) Without loss of generality, taking 0 < α ≤ β in the above inequalities, we obtain

Eα+β <
α + β

β
Eβ =

α

β
Eβ + Eβ ≤ Eα + Eβ .

This proof is completed. �

Lemma 2.4 Assume that {un}n∈N is bounded in l2 and un ⇀ u weakly in l2. Then there
holds,

∑
k∈Z

F
(
un

k
)

=
∑
k∈Z

F
(
un

k – uk
)

+
∑
k∈Z

F(uk) + o(1), (2.7)

as n → ∞.
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Proof This proof follows from the Brezis–Lieb Lemma (see [3]), for completeness, we state
it here. Let vn = un – u, then vn ⇀ 0 weakly in l2 and vn

k → 0 for any k ∈ Z as n → ∞. It
follows from (f1), the mean value theorem, and the Young inequality that

∣∣F(
un

k
)

– F
(
vn

k
)

– F(uk)
∣∣ ≤ ∣∣F(

un
k
)

– F
(
vn

k
)∣∣ +

∣∣F(uk)
∣∣

=
∣∣F(

vn
k + uk

)
– F

(
vn

k
)∣∣ +

∣∣F(uk)
∣∣

=
∣∣f (vn

k + τuk
)
uk

∣∣ +
∣∣F(uk)

∣∣
≤ C

((∣∣vn
k
∣∣ + |uk|

)
+

(∣∣vn
k
∣∣ + |uk|

)p–1)|uk| +
∣∣F(uk)

∣∣
≤ C(

(∣∣vn
k
∣∣ + 2p∣∣vn

k
∣∣p–1 + |uk| + 2p|uk|p–1)|uk| +

∣∣F(uk)
∣∣

≤ εφε

(∣∣vn
k
∣∣) + ψε

(|uk|
)

+
∣∣F(uk)

∣∣,
where τ ∈ [0, 1], φ(|vn

k |) = C(|vn
k |2 + |2vn

k |p) and

ψε

(|uk|
)

= C
((

1 + ε–1)|uk|2 +
(
1 + ε1–p)|2uk|p

)
.

It follows that
∑

k∈Z ψε(|uk|) < ∞ and
∑

k∈Z φε(|vn
k |) < C < ∞ for some constant C, inde-

pendent on ε and n. Set

W n
k = max

{∣∣F(
un

k
)

– F
(
vn

k
)

– F(uk)
∣∣ – εφε

(∣∣vn
k
∣∣), 0

}
,

then W n
k ≤ ψε(|uk|)+F(uk). By the dominated convergence theorem, we have

∑
k∈Z W n

k →
0 as n → ∞. Therefore,

∣∣F(
un

k
)

– F
(
vn

k
)

– F(uk)
∣∣ ≤ W n

k + εφε

(∣∣vn
k
∣∣)

which implies that

∑
k∈Z

∣∣F(
un

k
)

– F
(
vn

k
)

– F(uk)
∣∣ ≤ Cε.

The result follows from the arbitrariness of ε > 0. This proof is completed. �

The proof Theorem 1.1 Assume that {un}n∈N ⊂Mα is a minimizing sequence with respect
to Eα . If {un} does not satisfy (i), we can assume that un

� 0 in l∞. In fact, if there exists
q0 ∈ (2,∞) such that un

� 0 in lq0 , then there exists a ξ > 0 such that

0 < ξ ≤ ∥∥un∥∥q0
q0

≤ ∥∥un∥∥q0–2
∞

∥∥un∥∥2
2 = α2∥∥un∥∥q0–2

∞ ,

which implies un
� 0 in l∞. There exist δ > 0 and a family of {kn}n∈N ⊂N such that

∣∣un
kn

∣∣ ≥ δ.

Set kn ∗ un = (un
k+kn

) for any n ∈N. Here, ‖kn ∗ un‖2 = ‖un‖2 = α. We assume that kn ∗ un ⇀

uα(�= 0) in l2. In the rest part, we try to prove uα ∈Mα . Arguing indirectly, set

vn = kn ∗ un – uα .
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By Lemma 2.4, one has

∑
k∈Z

F
(
un

k+kn

)
=

∑
k∈Z

F(uα,k) +
∑
k∈Z

F
(
vn

k
)

+ o(1),

as n → ∞. It is evident to check that

∥∥kn ∗ un∥∥2
2 = ‖uα‖2

2 +
∥∥vn∥∥2

2 + o(1),

and

∥∥�
(
kn ∗ un)∥∥2

2 = ‖�uα‖2
2 +

∥∥�vn∥∥2
2 + o(1),

as n → ∞. Combining with the above three inequalities, it obtains that

I
(
un) = I

(
kn ∗ un) = I(uα) + I

(
vn) + o(1). (2.8)

We claim that

vn → 0 in lp for any p ∈ (2,∞]. (2.9)

Arguing indirectly, we can assume vn
� 0 in l∞ similarly. By the boundedness of {vn} in

l2, there exist a family {zn} ⊂ Z and v ∈ l2 satisfying v �= 0 such that zn ∗ vn ⇀ v in l2. Set
wn = zn ∗ vn – v, then

∥∥kn ∗ vn∥∥2
2 = ‖v‖2

2 +
∥∥wn∥∥2

2 + o(1),

and

∥∥�
(
kn ∗ vn)∥∥2

2 = ‖�v‖2
2 +

∥∥�wn∥∥2
2 + o(1),

I
(
vn) = I

(
kn ∗ vn) = I(v) + I

(
wn) + o(1),

as n → ∞. Let ‖uα‖2 = c1 and ‖v‖2 = c2 and δ2 = α2 – c2
1 – c2

2. Thus limn→∞ ‖wn‖2 = δ ≥ 0.
If δ > 0, setting w̃n = anwn and an = δ/‖wn‖2 in Lemma 2.1, we have w̃n ∈Mδ and I(w̃n) =

I(wn) + o(1). Thus,

I
(
un) = I(uα) + I(v) + I

(
wn) + o(1)

= I(uα) + I(v) + I
(
w̃n) + o(1)

≥ I(uα) + I(v) + Eδ + o(1),

as n → ∞, which implies that

Eα ≥ I(uα) + I(v) + Eδ ≥ Ec1 + Ec2 + Eδ ≥ Ec1+c2+δ = Eα . (2.10)
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Hence uα and v are two minimizers on Mc1 and Mc1 with respect to Ec1 and Ec2 . By
Lemma 2.2, we have

Ec1 + Ec2 > Ec1+c2 .

It contradicts (2.10).
If δ = 0, then α = c1 +c2 and limn→∞ ‖wn‖2 = 0. Similar to the proof of (2.5), we can prove

that limn→∞
∑

k∈Z F(wn
k ) = 0 and lim infn→∞ I(wn) ≥ 0. It follows that

Eα ≥ I(uα) + I(v) ≥ Ec1 + Ec2 ≥ Ec1+c2 = Eα ,

which implies that uα and v are two minimizers on Mc1 and Mc1 with respect to Ec1 and
Ec2 . By Lemma 2.3, one obtains

Ec1 + Ec2 > Ec1+c2 ,

which is a contradiction. Thus, our claim (2.9) holds.
Lastly, we complete the proof by getting limn→∞ ‖vn‖2 = 0, that is ‖uα‖2 = α. It is

sufficient to prove that c1 = α. Otherwise, c1 < α holds. By (2.4) and (2.9), one has
limn→∞

∑
k∈Z F(vn

k ) = 0 and

lim inf
n→∞ I

(
vn) ≥ 0.

Combining with the above inequality and taking the limit in (2.8), we obtain Eα ≥ I(uα).
Then it follows from Lemma 2.2 and uα ∈Mc1 that

Eα ≥ I(uα) ≥ Ec1 ≥ Eα , (2.11)

which implies Ec1 = Eα . Moreover, uα is a minimizer with respect to Ec1 . By Lemma 2.3(i),
we obtain Ec1 > Eα for c1 < α. It contradicts (2.11). Then the desired result ‖uα‖2 = α and
(ii) hold. This completes the proof. �

The proof of Theorem 1.2 Define that

α0 = inf{α > 0 : Eα < 0}. (2.12)

By Lemma 2.2, α0 is well defined and the following fact holds:

Eα = 0 if 0 < α ≤ α0, Eα < 0 if α > α0.

(i) Arguing indirectly, if 0 < α < α0, there exists a minimizer with respect to Eα . By the
definition of α0, we have Eα = 0. It follows from Lemma 2.3(i) that

0 = Eα > Eα0 ,

which is impossible for Eα0 = 0.
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(ii) If α > α0, Eα < 0. Assume that {un}n∈N ⊂ Mα is a minimizing sequence with respect
to Eα . It is sufficient to show that {un} satisfies Theorem 1.1(ii). Arguing indirectly, if The-
orem 1.1(i) holds, that is un → 0 in lq for any q ∈ (2,∞]. Thus, we can prove that

lim
n→∞

∑
k∈Z

F
(
un

k
)

= 0.

It follows that

Eα = lim
n→∞ I

(
un) ≥ – lim

n→∞
∑
k∈Z

F
(
un

k
)

= 0,

which is impossible for Eα < 0. So kn ∗ un → uα in l2 and uα is a minimizer on Mα with
respect to Eα . Therefore, there exists λα ∈ R such that I ′(u) – λαuα = 0, i.e., (uα ,λα) is a
couple of solution to the following equation

–�2uk–1 – f (uk) = λuk , k ∈ Z.

Moreover,

λα2 =
(
I ′(uα), uα

)
= ‖�uα‖2

2 –
∑
k∈Z

f (uα,k)uα,k < ‖�uα‖2
2 –

∑
k∈Z

2F(uα,k) = 2Eα < 0,

which implies λ < 0. The proof is completed. �

The proof of Theorem 1.3 (i) Without loss of generality, we assume 0 < α ≤ β . We divide
into three cases: (1) Eα = Eβ = 0; (2) Eα = 0, Eβ < 0; (3) Eα < 0, Eβ < 0. If Case (1), it is evident
that Eα + Eβ = 0 > Eα+β for α + β > α. If Case (2), there exists a minimizer with respect to
Eβ by Theorem 1.2(ii). Then by Lemma 2.3(i), we obtain

Eβ > Eα+β .

Lastly, in case (3), there exist two minimizers with respect to Eα and Eβ by Theorem 1.2(ii),
respectively. Our conclusion follows from Lemma 2.3(ii).

(ii) For any fixed α > 0, take uα,N = (. . . , 0, (
α

N1/2 ), . . . , (
α

N1/2 )︸ ︷︷ ︸
N

, 0, . . .), then uα,N ∈ Mα . It

follows from limt→0
F(t)
t4 = +∞ that for M > α–2 there exists δ > 0 such that |t| < δ,

F(t) ≥ Mt4.

Let N be large such that α

N1/2 < δ, then

Eα ≤ I
(
uα,N)

=
1
2

∑
k∈Z

∣∣�uα,N
k

∣∣ –
∑
k∈Z

F
(
uα,N

k
)

=
α2

N
– NF

(
α

N1/2

)
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≤ α2

N
– NM

(
α

N1/2

)4

=
α2

N
(
1 – Mα2) < 0.

Thus, Eα < 0 for any α > 0, which implies that α0 = 0. The proof is completed. �
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