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Abstract
In this paper, we study the existence and uniqueness of a periodic solution for a
third-order neutral delay differential equation (NDDE) by applying Mawhin’s
continuation theorem of coincidence degree and analysis techniques. An illustrative
example is given as an application to support our results. To confirm the accuracy of
our results, we also present a plot of the behavior of the periodic solution.

MSC: 34C25

Keywords: Existence and uniqueness; Neutral delay differential equation; Mawhin’s
continuation theorem

1 Introduction
Neutral delay differential equations (NDDEs) are a family of differential equations depend-
ing on the past as well as the present state that involve derivatives with delays as well as
the function itself. The study of the neutral functional differential equations is essentially
based on the questions of the action and estimates of the spectral radii of the operators in
the spaces of discontinuous functions, for example, in the spaces of summable or essen-
tially bounded functions.

NDDEs have many interesting applications in various branches of science such as,
physics, electrical control and engineering, physical chemistry, and mathematical biology,
etc., see [4].

The existence and uniqueness of periodic solutions for NDDE are of great interest in
mathematics and its applications to the modeling of various practical problems, see [11,
13, 15]. There have been many papers written on the various aspects of the theory of
periodic function differential equations (FDE) and periodic NDDE, see for example [1–3,
5–7, 9, 10, 12, 14, 16–21, 23, 24].

In 2014, Xin and Zhao [24] established sufficient conditions for the existence of a peri-
odic solution to the following neutral equation with variable delay

(
x(t) – c(t)x

(
t – δ(t)

))′′ + f
(
t, x′(t)

)
+ g
(
t, x
(
t – τ (t)

))
= e(t).
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In 2018, Mahmoud and Farghaly [19] studied the sufficient conditions for the existence
of a periodic solution for a kind of third-order generalized NDDE with variable parameter

d3

dt3

(
x(t) – c(t)x

(
t – δ(t)

))
+ f
(
t, ẍ(t)

)
+ g
(
t, ẋ(t)

)
+ h
(
t, x
(
t – τ (t)

))
= e(t),

where |c(t)| �= 1, c, δ ∈ C2(R,R) and c, δ are ω-periodic functions for some ω > 0, τ , e ∈
C[0,ω] and

∫ ω

0 e(t) dt = 0; f , g , and h are continuous functions.
In 2022, Taie and Alwaleedy [22] investigated the existence and uniqueness of a periodic

solution for the third-order neutral functional differential equation

d3

dt3

(
x(t) – d(t)x

(
t – δ(t)

))
+ a(t)ẍ + b(t)f

(
t, ẋ(t)

)

+
n∑

i=1

ci(t)g
(
t, x
(
t – τi(t)

))
= e(t),

where, |d(t)| �= 1, d, δ ∈ C3(R,R) are ω-periodic functions for some ω > 0, δ̇(t) < 1 for all t ∈
[0,ω]; a, b, ci, e(i = 1, 2, . . . , n) are continuous periodic functions defined on R with period
ω > 0, such that a, b, ci have the same sign and

∫ ω

0 e(t) dt = 0; f , g are continuous functions
defined on R

2 and periodic in the first argument.
The aim of this paper is to investigate sufficient conditions ensuring the existence and

uniqueness of a periodic solution for the following third-order NDDE

d3

dt3

(
x(t) – αx

(
t – γ (t)

))
+ af

(
ẋ(t)

)
ẍ(t) + bg

(
t, ẋ(t)

)

+
n∑

i=1

cih
(
x
(
t – γi(t)

))
= e(t), (1.1)

where, γi, e : R → R are T-periodic, |α| �= 1, γ ∈ C2(R,R), γ are T-periodic functions for
some T > 0,γ , e ∈ C[0, T], and

∫ T
0 e(t) dt = 0; f , g , and h are continuous functions defined

on R
2 and periodic in t with f (u(t)) = f (u(T)), g(t, u(t)) = g(t + T , u(t + T)), h(x(t)) = h(x(t +

T)), and g(t, 0) = 0.

2 Preparation
Let CT = {x ∈ C(R,R) : x(t + T) = x(t), t ∈ R} with the norm ‖x‖∞ = maxt∈[0,T] |x(t)|, then
(CT ,‖ · ‖∞) is a Banach space. Here, the neutral operator A is a natural generalization of
the familiar operator A1 = x(t) – cx(t – δ), A2 = x(t) – c(t)x(t – δ). However, A possesses
a more complicated nonlinearity than A1, A2. Then, for example the neutral operator A1

is homogeneous in the following estimate d
dt (A1x)(t) = (A1ẋ)(t), but the neutral operator

A is inhomogeneous in general. Hence, many of the new results for differential equations
with the neutral operator A, will not be a direct extension of known theorems for NDDEs.

Moreover, define an operator A : CT → CT as

(Ax)(t) = x(t) – αx
(
t – γ (t)

)
, (2.1)

where, |α| �= 1, γ ∈ C2(R,R) is T-periodic for some T > 0.
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Lemma 2.1 ([24]) If |α| �= 1, then the operator A has a continuous inverse A–1 on CT ,
satisfying

(1) (A–1f )(t) =
{ f (t) +

∑∞
j=1 αj f (s –

∑j–1
i=1 γ (Di)), for |α| < 1,∀f ∈ CT ,

– f (t+γ (t))
α –

∑∞
j=1

1
αj+1 f (s + γ (t) +

∑j–1
i=1 γ (Di)), for |α| > 1,∀f ∈ CT ;

(2) |(A–1f )(t)| ≤ ‖f ‖
|1–|α|| , ∀f ∈ CT ;

(3)
∫ T

0 |(A–1f )(t)|dt ≤ 1
|1–|α||

∫ T
0 |f (t)|dt, ∀f ∈ CT ;

where D1 = t, Dj+1 = t –
∑j

i=1 γ (Di), j = 1, 2, . . . .

Let X and Y be real Banach spaces and L : D(L) ⊂ X → Y be a Fredholm operator with
index zero, here D(L) denotes the domain of L. This means that ImL is closed in Y and
dim Ker L = dim(Y / Im L) < +∞. Consider supplementary subspaces X1, Y1, of X, Y , re-
spectively, such that X = Ker L⊕X1, Y = Im L⊕Y1, and let P1 : X → Ker L and Q1 : Y → Y1

denote the natural projections. Clearly, Ker L ∩ (D(L) ∩ X1) = {0}, thus the restriction
LP1 := L|D(L)∩X1 is invertible. Let L–1

P1
denote the inverse of LP1 .

Let � be an open bounded subset of X with D(L)∩� �= ∅. A map N : � → Y is said to be
L-compact in � if Q1N(�) is bounded and the operator L–1

P1
(I – Q1)N : � → X is compact.

Lemma 2.2 (Gaines and Mawhin [8]) Suppose that X and Y are two Banach spaces, and
L : D(L) ⊂ X → Y is a Fredholm operator with index zero. Furthermore, � ⊂ X is an open
bounded set and N : � → Y is L-compact on �. Assume that the following conditions hold:

(1) Lx �= λNx, for all x ∈ ∂� ∩ D(L), λ ∈ (0, 1);
(2) Nx /∈ Im L, for all x ∈ ∂� ∩ Ker L;
(3) deg{JQ1N ,� ∩ Ker L, 0} �= 0, where J : Im Q1 → Ker L is an isomorphism.

Then, the equation Lx = Nx has a solution in � ∩ D(L).

3 Existence result
In this section, we will study the existence of a periodic solution for (1.1).

Now, we rewrite (1.1) in the following form:

⎧
⎪⎪⎨

⎪⎪⎩

d
dt (Ax1)(t) = x2(t),
d2

dt2 (Ax1)(t) = ẋ2(t) = x3(t),

ẋ3(t) = –af (ẋ1(t))ẍ1(t) – bg(t, ẋ1(t)) –
∑n

i=1 cih(x1(t – γi(t))) + e(t).

(3.1)

Here, if x(t) = (x1(t), x2(t), x3(t))� is a T-periodic solution to (3.1), then x1(t) must be a
T-periodic solution to (1.1). Thus, the problem of finding a T-periodic solution for (1.1)
reduces to finding one for (3.1).

Recall that CT = {φ ∈ C(R,R) : φ(t + T) ≡ φ(t)} with the norm ‖φ‖ = maxt∈[0,T] |φ(t)|.
Define X = Y = CT ×CT = {x = (x1(·), x2(·), x3(·)) ∈ C(R,R3) : x(t) = x(t +T), t ∈R} with the
norm ‖x‖ = max{‖x1‖,‖x2‖,‖x3‖}. Clearly, X and Y are Banach spaces. Moreover, define

L : D(L) =
{

x ∈ C1(
R,R3) : x(t + T) = x(t), t ∈R

}⊂ X → Y ,

by

(Lx)(t) =

⎛

⎜
⎝

d
dt (Ax1)(t)

ẋ2(t)
ẋ3(t)

⎞

⎟
⎠ .
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Also, we can define N : X → Y by

(Nx)(t) =

⎛

⎜
⎝

x2(t)
x3(t)

–af (ẋ1(t))ẍ1(t) – bg(t, ẋ1(t)) –
∑n

i=1 cih(x1(t – γi(t))) + e(t)

⎞

⎟
⎠ . (3.2)

Then, (3.1) can be converted to the abstract equation Lx = Nx. From the definition of L,
we obtain

Ker L ∼= R
3, Im L =

⎧
⎪⎨

⎪⎩
y ∈ Y :

∫ T

0

⎛

⎜
⎝

y1(s)
y2(s)
y3(s)

⎞

⎟
⎠ ds =

⎛

⎜
⎝

0
0
0

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
.

Therefore, we find that L is a Fredholm operator with index zero. Let P1 : X → Ker L and
Q1 : Y → Im Q1 ⊂R

3 be defined by

P1x =

⎛

⎜
⎝

(Ax1)(0)
x2(0)
x3(0)

⎞

⎟
⎠ ; Q1y =

1
T

∫ T

0

⎛

⎜
⎝

y1(s)
y2(s)
y3(s)

⎞

⎟
⎠ ds,

then Im P1 = Ker L and Ker Q1 = Im L. Set LP1 = L|(D(L)∩Ker P1) and L–1
P1

: Im L → (D(L) ∩
Ker P1) denotes the inverse of LP1 , it follows that

[
L–1

P1 y
]
(t) =

⎛

⎜
⎝

(A–1Fy1)(t)
(Fy2)(t)
(Fy3)(t)

⎞

⎟
⎠ , (3.3)

where

[Fy1](t) =
∫ t

0
y1(s) ds, [Fy2](t) =

∫ t

0
y2(s) ds, [Fy3](t) =

∫ t

0
y3(s) ds.

From (3.2), we obtain

(Q1Nx)(t) =
1
T

∫ T

0

⎛

⎜
⎝

x2(t)
x3(t)

–af (ẋ1(t))ẍ1(t) – bg(t, ẋ1(t)) –
∑n

i=1 cih(x1(t – γi(t))) + e(t)

⎞

⎟
⎠ dt.

(3.4)

Thus, from (3.3) and (3.4), it is clear that Q1N and L–1
P1

(I – Q1)N are continuous, and
Q1N(�) is bounded, and then L–1

P1
(I – Q1)N(�) is compact for any open bounded � ⊂ X,

which means N is L-compact on �̄.
Now, we will present the following hypotheses that will be used repeatedly during our

work:
(H1) There exists a positive constant k1 such that |f (u)| ≤ k1, for u ∈R;
(H2) There exist positive constants k2, h1 such that |g(t, u)| ≤ k2, |h(x)| ≤ hi, for

(t, u) ∈R×R and (t, x) ∈R×R;
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(H3) There exists a positive constant D such that |h(x)| > bk2
ci

and
x[f (u) + g(t, v) + h(x)] �= 0, for t, u, v, x ∈R and |x| > D;

(H4) There exist positive constants bo, c0 such that |h(x1) – h(x2)| ≤ bo|x1 – x2|,
|g(t, u1) – g(t, u2)| ≤ co|u1 – u2| for all t, x1, x2, u1, u2 ∈R.

The following theorem is our main result on the existence of a periodic solution for (1.1).

Theorem 3.1 Suppose that assumptions (H1)–(H4) hold. Assume that the following as-
sumption is satisfied:

If |α| < 1 and
(i) 1 – |α| – |α|γ1(γ1 – 2) – M4 > 0, where

M4 =
1
2

(
√

M3 + αγ2T),

M3 =

(

bk2 + b0c
n∑

i=1

∥∥∥
∥

1
(1 – γ̇i)

∥∥∥
∥∞

D

+ nc max
{∣∣h(t, 0)

∣∣ : 0 ≤ t ≤ T
}

+ ‖e‖∞

)

M1T ,

M1 = 1 + α(1 + γ1),

γ1 = max
t∈[0,T]

|γ̇ |, γ2 = max
t∈[0,T]

|γ̈ |; c = max
t∈[0,T]

|ci|,

then equation (1.1) has at least one T-periodic solution.

Proof We know that (3.1) has a T-periodic solution, if and only if, the following operator
equation

Lx = λNx, (3.5)

has a T-periodic solution. From (3.2), we see that N is L-compact in �̄, where � is an
open bounded subset of XT . For λ ∈ (0, 1], define �1 = {x ∈ CT : Lx = λNx}. Then, x =
(x1, x2, x3)� ∈ �1 satisfies:

⎧
⎪⎪⎨

⎪⎪⎩

d
dt (Ax1)(t) = λx2(t),

ẋ2(t) = λx3(t),

ẋ3(t) = λ(–af (ẋ1(t))ẍ1(t) – bg(t, ẋ1(t)) –
∑n

i=1 cih(x1(t – γi(t))) + e(t)).

(3.6)

Substituting of x3(t) = 1
λ2

d2

dt2 (Ax1)(t) into the third equation of (3.6), we obtain

d3

dt3

(
Ax1(t)

)
= –aλ3f

(
ẋ1(t)

)
ẍ1(t) – bλ3g

(
t, ẋ1(t)

)

– λ3
n∑

i=1

cih
(
x1
(
t – γi(t)

))
+ λ3e(t). (3.7)
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By integrating both sides of (3.7) over [0, T], we find

∫ T

0

(

bg
(
t, ẋ1(t)

)
+

n∑

i=1

cih
(
x1
(
t – γi(t)

))
)

dt = 0, (3.8)

which implies that there is at least one point t1, such that

bg
(
t1, ẋ1(t1)

)
+

n∑

i=1

cih
(
x1
(
t1 – γi(t1)

))
= 0.

By using (H2), we have

bg
(
t1, ẋ1(t1)

)
+

n∑

i=1

cih
(
x1
(
t1 – γi(t1)

))≤ bk2 +
n∑

i=1

cihi := K .

In view of (H3) we see that |x1(t1 – γ (t1))| ≤ D. Since x1(t) is periodic with period T ,
t1 – γ (t1) = nT + η, η ∈ [0, T] and n is an integer, then |x1(η)| ≤ D.

Thus, for t ∈ [η,η + T], we obtain

∣
∣x1(t)

∣
∣ =
∣∣
∣∣x1(η) +

∫ t

η

ẋ1(s) ds
∣∣
∣∣≤ D +

∫ t

η

∣
∣ẋ1(s)

∣
∣ds

and

∣∣x1(t)
∣∣ =
∣∣x1(t – T)

∣∣ =
∣
∣∣
∣x1(η) –

∫ η

t–T
ẋ1(s) ds

∣
∣∣
∣≤ D +

∫ η

t–T

∣∣ẋ1(s)
∣∣ds.

Combining the above two inequalities, we obtain

‖x1‖∞ = max
t∈[0,T]

∣∣x1(t)
∣∣ = max

t∈[η,η+T]

∣∣x1(t)
∣∣

≤ max
t∈[η,η+T]

{
D +

1
2

(∫ t

η

∣
∣ẋ1(s)

∣
∣ds +

∫ η

t–T

∣
∣ẋ1(s)

∣
∣ds

)}

≤ D +
1
2

∫ T

0

∣∣ẋ1(s)
∣∣ds ≤ D +

1
2

T‖ẋ1‖∞. (3.9)

Since x1(0) = x1(T), there is a constant ζ ∈ [0, T] such that ẋ1(ζ ) = 0. Thus, we have

∣∣ẋ1(t)
∣∣ =
∣∣∣
∣ẋ1(ζ ) +

∫ t

ζ

ẍ1(s) ds
∣∣∣
∣

≤
∫ t

ζ

∣∣ẍ1(s)
∣∣ds, t ∈ [ζ , T + ζ ] (3.10)

and

∣∣ẋ1(t)
∣∣ =
∣
∣∣
∣ẋ1(ζ + T) +

∫ t

ζ+T
ẍ1(s) ds

∣
∣∣
∣

≤ ∣∣ẋ1(ζ + T)
∣∣ +
∫ ζ+T

t

∣∣ẍ1(s)
∣∣ds =

∫ ζ+T

t

∣∣ẍ1(s)
∣∣ds, t ∈ [0, T]. (3.11)
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Combining the inequalities (3.10) and (3.11), we have

‖ẋ1‖∞ = max
t∈[0,T]

∣
∣ẋ1(t)

∣
∣≤ 1

2

∫ T

0

∣
∣ẍ1(s)

∣
∣ds, t ∈ [0, T]. (3.12)

Now, by differentiating (2.1) with respect to t, we obtain

d
dt
(
(Ax1)(t)

)
=

d
dt
(
x1(t) – αx1

(
t – γ (t)

))

= ẋ1(t) – αẋ1
(
t – γ (t)

)(
1 – γ̇ (t)

)
.

Since γ1 = maxt∈[0,T] |γ̇ (t)| and from (3.9), we find

∣∣
∣∣

d
dt
(
(Ax1)(t)

)
∣∣
∣∣≤ ‖ẋ1‖∞ + α‖ẋ1‖∞(1 + γ1) ≤ (

1 + α(1 + γ1)
)‖ẋ1‖∞. (3.13)

Then,

∣∣
∣∣

d
dt
(
(Ax1)(t)

)
∣∣
∣∣≤ M1‖ẋ1‖∞, (3.14)

where

M1 = 1 + α(1 + γ1).

Also, we find

d2

dt2

(
(Ax1)(t)

)
= ẍ1(t) – αẍ1

(
t – γ (t)

)(
1 – γ̇ (t)

)2 + αẋ1
(
t – γ (t)

)
γ̈ (t).

Then, we obtain

d2

dt2

(
(Ax1)(t)

)
=
(
ẍ1(t) – αẍ1

(
t – γ (t)

))

– α
(
γ̇ (t) – 2

)
γ̇ (t)ẍ1

(
t – γ (t)

)
+ αẋ1

(
t – γ (t)

)
γ̈ (t).

Therefore, from the definition of the operator A, we find

d2

dt2

(
(Ax1)(t)

)
= (Aẍ)(t) – α

(
γ̇ (t) – 2

)
γ̇ (t)ẍ1

(
t – γ (t)

)

+ αẋ1
(
t – γ (t)

)
γ̈ (t).

Then, we can write the above equation as

(Aẍ)(t) =
d2

dt2

(
(Ax1)(t)

)
– αẋ1

(
t – γ (t)

)
γ̈ (t)

+ α
(
γ̇ (t) – 2

)
ẍ1
(
t – γ (t)

)
γ̇ (t). (3.15)
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Now, by multiplying both sides of (3.7) by d
dt ((Ax1)(t)) and integrating it from 0 to T , we

obtain

∫ T

0

d3

dt3 ((Ax1)(t)
d
dt
(
(Ax1)(t)

)
dt = –

∫ T

0

∣∣
∣∣

d2

dt2

(
(Ax1)(t)

)
∣∣
∣∣

2

dt

= –aλ3
∫ T

0
f
(
ẋ1(t)

) d
dt

(Ax1)(t)ẍ1(t) dt

– bλ3
∫ T

0
g
(
t, ẋ1(t)

) d
dt
(
(Ax1)(t)

)
dt

– λ3
∫ T

0

n∑

i=1

cih
(
x1
(
t – γi(t)

)) d
dt
(
(Ax1)(t)

)
dt

+ λ3
∫ T

0
e(t)

d
dt
(
(Ax1)(t)

)
dt.

Therefore, we obtain

∫ T

0

∣∣
∣∣

d2

dt2

(
(Ax1)(t)

)
∣∣
∣∣

2

dt

≤ ak1M1‖ẋ1‖∞
(
ẋ(T) – ẋ(t)

)

+ b
∫ T

0

∣
∣g
(
t, ẋ1(t)

)∣∣
∣∣
∣∣

d
dt
(
(Ax1)(t)

)
∣∣
∣∣dt

+
∫ T

0

n∑

i=1

ci
{∣∣h
(
t, x1

(
t – γi(t)

))
– h(t, 0) + h(t, 0)

∣∣}
∣
∣∣
∣

d
dt
(
(Ax1)(t)

)
∣
∣∣
∣dt

+
∫ T

0

∣∣e(t)
∣∣
∣
∣∣
∣

d
dt
(
(Ax1)(t)

)
∣
∣∣
∣dt.

Then, from the assumption (H4) we obtain

∫ T

0

∣
∣∣
∣

d2

dt2

(
(Ax1)(t)

)
∣
∣∣
∣

2

dt ≤ b
∫ T

0

∣∣g
(
t, ẋ1(t)

)∣∣
∣
∣∣
∣

d
dt
(
(Ax1)(t)

)
∣
∣∣
∣dt

+
∫ T

0

n∑

i=1

ci
(
b0
∣
∣x1
(
t – γi(t)

)∣∣ +
∣
∣h(t, 0)

∣
∣)
∣∣
∣∣

d
dt
(
(Ax1)(t)

)
∣∣
∣∣dt

+
∫ T

0

∣
∣e(t)

∣
∣
∣∣
∣∣

d
dt
(
(Ax1)(t)

)
∣∣
∣∣dt.

Now, by using (3.14), we can see that

∫ T

0

n∑

i=1

cib0
∣
∣x1
(
t – γi(t)

)∣∣
∣∣
∣∣

d
dt
(
(Ax1)(t)

)
∣∣
∣∣dt

≤ M1‖ẋ1‖∞
∫ T

0

n∑

i=1

cib0
∣
∣x1
(
t – γi(t)

)∣∣dt

≤ b0 M1‖ẋ1‖∞
n∑

i=1

ci

∫ T

0

∣
∣∣∣

1
(1 – γ̇i)

∣
∣∣∣
∣∣x1
(
u(t)

)∣∣du
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≤ b0M1c
n∑

i=1

∥
∥∥
∥

1
(1 – γ̇i)

∥
∥∥
∥∞

‖ẋ1‖∞
∫ T

0

∣∣x1
(
u(t)

)∣∣du.

By the assumptions (H1) and (H2), we conclude

∫ T

0

∣
∣∣
∣

d2

dt2

(
(Ax1)(t)

)
∣
∣∣
∣

2

dt ≤
(

bk2 + b0c
n∑

i=1

∥
∥∥
∥

1
(1 – γ̇i)

∥
∥∥
∥∞

‖x1‖∞

)

M1‖ẋ1‖∞T

+
(
nc max

{∣∣h(t, 0)
∣
∣ : 0 ≤ t ≤ T

}
+ ‖e‖∞

)
M1‖ẋ1‖∞T .

Thus, by (3.9), we obtain

∫ T

0

∣
∣∣
∣

d2

dt2

(
(Ax1)(t)

)
∣
∣∣
∣

2

dt ≤ 1
2

b0cT2M1

n∑

i=1

∥
∥∥
∥

1
(1 – γ̇i)

∥
∥∥
∥∞

‖ẋ1‖2
∞

+

(

bk2 + b0c
n∑

i=1

∥∥
∥∥

1
(1 – γ̇i)

∥∥
∥∥∞

D

+ nc max
{∣∣h(t, 0)

∣∣ : 0 ≤ t ≤ T
}

+ ‖e‖∞

)

M1‖ẋ1‖∞T .

For positive constants M2 and M3, the above inequality becomes

∫ T

0

∣∣
∣∣

d2

dt2

(
(Ax1)(t)

)
∣∣
∣∣

2

dt ≤ M2‖ẋ1‖∞ + M3|ẋ1‖2
∞, (3.16)

where

M2 =
1
2

b0cT2M1

n∑

i=1

∥
∥∥
∥

1
(1 – γ̇i)

∥
∥∥
∥∞

,

M3 =

(

bk2 + b0c
n∑

i=1

∥∥
∥∥

1
(1 – γ̇i)

∥∥
∥∥∞

D + nc max
{∣∣h(t, 0)

∣
∣ : 0 ≤ t ≤ T

}
+ ‖e‖∞

)

M1T .

By applying Lemma 2.1, we obtain

∫ T

0

∣∣ẍ1(t)
∣∣dt =

∫ T

0

∣∣(A–1A ẍ1
)
(t)
∣∣dt ≤

∫ T
0 |(Aẍ1)(t)|dt

1 – |α| .

Substituting from (3.15) and by using the conditions of Theorem 3.1, we find

∫ T

0

∣∣ẍ1(t)
∣∣dt ≤ 1

1 – |α|
{∫ T

0

∣
∣∣∣

d2

dt2

(
(Ax1)(t)

)
)
∣
∣∣∣dt

}

+
1

1 – |α|
{∫ T

0

∣
∣αẋ1

(
t – γ (t)

)
γ̈ (t)

∣
∣dt

}

+
1

1 – |α|
{∫ T

0

∣∣α
(
γ̇ (t) – 2

)
γ̇ (t)ẍ1

(
t – γ (t)

)∣∣dt
}

≤ 1
1 – |α|

{∫ T

0

∣∣
∣∣

d2

dt2

(
(Ax1)(t)

)
∣∣
∣∣dt

}
+

1
1 – |α|

{∫ T

0

∣
∣αẋ1

(
t – γ (t)

)
γ2
∣
∣dt

}
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+
1

1 – |α|
{∫ T

0

∣∣α(γ1 – 2)γ1ẍ1
(
t – γ (t)

)∣∣dt
}

.

From (3.9) and by using the Schwarz inequality, we conclude

[
1 – α

(γ1 – 2)
1 – |α|

]∫ T

0

∣∣ẍ1(t)
∣∣dt ≤ 1

1 – |α|
[

T
1
2

(∫ T

0

∣
∣∣
∣

d2

dt2

(
(Ax1)(t)

)
∣
∣∣
∣

2

dt
) 1

2
]

+
1

1 – |α|
(
αγ2T‖ẋ1‖∞

)
.

It follows that

[|1 – |α|| – αγ1(γ1 – 2)
] ∫ T

0

∣∣ẍ1(t)
∣∣dt ≤ T

1
2

(∫ T

0

∣
∣∣
∣

d2

dt2

(
(Ax1)(t)

)
∣
∣∣
∣

2

dt
) 1

2

+ αTγ2‖ẋ1‖∞.

Applying the inequality (m + n)r ≤ mr + nr for all m, n > 0, 0 < r < 1, implies from (3.16)
that

[|1 – |α|| – αγ1(γ1 – 2)
] ∫ T

0

∣∣ẍ1(t)
∣∣dt

≤√
TM2

(‖ẋ1‖∞
) 1

2 +
√

M3‖ẋ1‖∞ + αTγ2‖ẋ1‖∞

≤√
TM2

(‖ẋ1‖∞
) 1

2 + (
√

M3 + αTγ2)‖ẋ1‖∞.

Using (3.12), we find

[|1 – |α|| – αγ1(γ1 – 2)
] ∫ T

0

∣∣ẍ1(t)
∣∣dt

≤
√

1
2

TM2

(∫ T

0

∣
∣ẍ1(t)

∣
∣dt

) 1
2

+ M4

∫ T

0

∣
∣ẍ1(t)

∣
∣dt,

where

M4 =
1
2

(
√

M3 + αTγ2).

Then, we conclude

[|1 – |α|| – αγ1(γ1 – 2) – M4
] ∫ T

0

∣∣ẍ1(t)
∣∣dt ≤

√
1
2

TM2

(∫ T

0

∣∣ẍ1(t)
∣∣dt

) 1
2

. (3.17)

Since |1– |α||–αγ1(γ1 –2)–M4 > 0, we can conclude that there exists a positive constant
D1, such that

∫ T

0

∣∣ẍ1(t)
∣∣dt ≤ D1. (3.18)

It follows from (3.12) that

‖ẋ1‖∞ ≤ 1
2

D1.
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Thus, from (3.9) we obtain

‖x1‖∞ ≤ D2,

where

D2 = D +
1
4

TD1.

Using the first equation of system (3.6), we have

∫ T

0
x2(t) dt =

∫ T

0

d
dt
(
(Ax1)(t)

)
dt = 0,

which mean that there exists a constant t1 ∈ [0, T], such that x2(t1) = 0, then from (3.16)
we find

‖x2‖∞ ≤
∫ T

0

∣∣ẋ2(t)
∣∣dt =

∫ T

0

∣
∣∣
∣

d2

dt2

(
(Ax1)(t)

)
∣
∣∣
∣dt ≤ T

1
2

(∫ T

0

∣
∣∣
∣

d2

dt2

(
(Ax1)(t)

)
∣
∣∣
∣

2

dt
) 1

2

≤ √
T
(√

M2‖ẋ1‖∞ + M3‖ẋ1‖2
∞
) 1

2 .

Therefore, we obtain

‖x2‖∞ ≤ D3, D3 > 0,

where

D3 =
√

T
(√

M2‖ẋ1‖∞ + M3‖ẋ1‖2
∞
) 1

2 .

From the second equation of system (3.6), we have

∫ T

0
x3(t) dt =

∫ T

0

d2

dt2

(
(Ax1)(t)

)
dt =

∫ T

0
ẋ2(t) dt = 0,

then, there is a constant t2 ∈ [0, T], such that x3(t2) = 0, hence

‖x3‖∞ ≤
∫ T

0

∣
∣ẋ3(t)

∣
∣dt.

By the third equation of system (3.6), we have

ẋ3(t) = –aλf
(
ẋ1(t)

)
ẍ – bλg

(
t, ẋ1(t)

)
– λ

n∑

i=1

cih
(
t, x1

(
t – γi(t)

))
+ λe(t).
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Using (H1), (H2), and (H4), we obtain

‖x3‖∞ ≤
∫ T

0

∣∣ẋ3(t)
∣∣dt

≤ a
∫ T

0

∣
∣f
(
ẋ1(t)

)∣∣
∣
∣ẍ1(t)

∣
∣dt + b

∫ T

0

∣
∣g
(
t, ẋ1(t)

)∣∣dt

+
∫ T

0

n∑

i=1

ci
(
h
(
x1
(
t – γi(t)

))
– h(t, 0) + h(t, 0)

)
dt +

∫ T

0

∣∣e(t)
∣∣dt

≤ a
∫ T

0

∣∣f
(
ẋ1(t)

)∣∣∣∣ẍ1(t)
∣∣dt + b

∫ T

0

∣∣g
(
t, ẋ1(t)

)∣∣dt

+
∫ T

0

n∑

i=1

ci
(
bo
∣
∣x1
(
t – γi(t)

)∣∣ +
∣
∣h(t, 0)

∣
∣)dt +

∫ T

0

∣
∣e(t)

∣
∣dt

≤ (
bk2 + bo‖x1‖∞ + nc max

{∣∣h(t, 0)
∣∣ : 0 ≤ t ≤ T

}
+ ‖e‖∞

)
T := D4.

To prove condition (1) of Lemma 2.2, we assume that for any λ ∈ (0, 1) and any x = x(t)
in the domain of L, which also belongs to ∂�, we must have Lx �= λNx. For otherwise in
view of (3.6), we obtain

‖x1‖∞ ≤ D2‖x2‖∞ ≤ D3, ‖x3‖∞ ≤ D4.

Let D5 = max{D2, D3, D4}+ 1, � = {x = (x1, x2, x3)� : ‖x‖ < D5}, then we see that x belongs
to the interior of �, which is contrary to the assumption that x ∈ ∂�. Therefore, condition
(1) of Lemma 2.2 is satisfied. Now, for all x ∈ ∂� ∩ Ker L

Q1Nx =
1
T

∫ T

0

⎛

⎜
⎝

x2(t)
x3(t)

–af (ẋ1(t))ẍ(t) – bg(t, ẋ1(t)) –
∑n

i=1 cih(x1(t – γi(t))) + e(t)

⎞

⎟
⎠ dt.

If Q1Nx = 0, then x2(t) = 0, x3(t) = 0, x1 = D5 or –D5. However, if x1(t) = D5, then by H3 we
obtain

0 =
∫ T

0
h(t, D5) dt,

from which there exists a point t2 such that h(t2, D5) = 0. From assumption (H3), we have
D5 ≤ D, which yields a contradiction. Similarly if x1 = –M4. Therefore, we have Q1Nx �= 0,
hence for all x ∈ ∂� ∩ Ker L, x /∈ Im L, so condition (2) of Lemma 2.2 is satisfied.

Define the isomorphism J : Im Q1 → Ker L as follows:

J(x1, x2, x3)� = (–x3, x1, x2)�.

Let H(μ, x) = μx+(1–μ)JQ1Nx, (μ, x) ∈ [0, 1]×�, then for all (μ, x) ∈ (0, 1)× (∂�∩Ker L),

H(μ, x) =

⎛

⎜
⎜⎜
⎝

μx1(t) + 1–μ

T
∫ T

0 [af (ẋ1(t))ẍ(t) + bg(t, ẋ1(t))
+
∑n

i=1 cih(x1(t – γi(t))) – e(t)] dt
(μ + (1 – μ))x2(t)
(μ + (1 – μ))x3(t)

⎞

⎟
⎟⎟
⎠

.
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Since
∫ T

0 e(t) dt = 0, we can obtain

H(μ, x) =

⎛

⎜
⎜⎜
⎝

μx1(t) + 1–μ

T
∫ T

0 [af (ẋ1(t))ẍ(t) + bg(t, ẋ1(t))
+
∑n

i=1 cih(x1(t – γi(t)))] dt
(μ + (1 – μ))x2(t)
(μ + (1 – μ))x3(t)

⎞

⎟
⎟⎟
⎠

,

for all (μ, x) ∈ (0, 1) × (∂� ∩ Ker L).
Using (H3), it is obvious that x�H(μ, x) �= 0, for all (μ, x) ∈ (0, 1) × (∂� ∩ Ker L). Hence,

deg{JQ1N ,� ∩ Ker L, 0} = deg
{

H(0, x),� ∩ Ker L, 0
}

= deg
{

H(1, x),� ∩ Ker L, 0
}

= deg{I,� ∩ Ker L, 0} �= 0.

Hence, condition (3) of Lemma 2.2 is satisfied. By applying Lemma 2.2, we conclude that
equation Lx = Nx has a solution x = (x1, x2, x3)� on �̄ ∩ D(L), thus (1.1) has a T-periodic
solution x(t). �

4 Uniqueness result
Suppose that

|x|k =
(∫ T

0

∣∣x(t)
∣∣k dt

) 1
k

, k ≥ 1, |x|∞ = max
t∈[0,T]

∣∣x(t)
∣∣,

then we have the following uniqueness result.

Theorem 4.1 Suppose that all conditions of Theorem 3.1 hold and h(x) is a monotone
strictly decreasing function in x and |α| < 1 and assume that

(H5) There exists a positive constant k3 such that f (u(t)) = k3, for all u ∈R;
(H6) There exists a positive constant L such that |g(t, u) – g(t, v)| ≤ L|u – v|; for all

u, v ∈R.
such that

1
(1 – |α|)2

(

α
(
1 + |α|) +

1
2

ak3T +
1
4

c0bT2 +
cb0

8
T

5
2

n∑

i=0

∥∥∥
∥

1
(1 – γ̇i)

∥∥∥
∥∞

)

< 1.

Then, equation (1.1) has at most one T-periodic solution.

Proof Assume that r1(t) and r2(t) are two T-periodic solutions of (1.1), then we have z(t) =
r1(t) – r2(t). Thus, (1.1) takes the form

d3

dt3

((
r1(t) – r2(t)

)
– αr1

(
t – γ (t)

)
– αr2

(
t – γ (t)

))

+ af
(
ṙ1(t)

)
r̈1(t) – af

(
ṙ2(t)

)
r̈2(t) + bg

(
t, ṙ1(t)

)
– bg

(
t, ṙ2(t)

)

+
n∑

i=1

ci
{

h
(
r1
(
t – γi(t)

))
– h
(
r2
(
t – γi(t)

))}
= 0.



Taie and Bakhit Boundary Value Problems         (2023) 2023:25 Page 14 of 21

Since f (u) = k3, we obtain

d3

dt3

(
z(t) – αz

(
t – γ (t)

))
+ ak3z̈(t) + bg

(
t, ṙ1(t)

)
– bg

(
t, ṙ2(t)

)

+
n∑

i=1

ci
{

h
(
r1
(
t – γi(t)

))
– h
(
r2
(
t – γi(t)

))}
= 0. (4.1)

By integrating (4.1) from 0 to T and using the condition H6, we obtain

∫ T

0

[

b
{

g
(
t, ṙ1(t)

)
– g
(
t, ṙ2(t)

)}
+

n∑

i=1

ci
{

h
(
r1
(
t – γi(t)

))
– h
(
r2
(
t – γi(t)

))}
]

dt

≤
∫ T

0

[

bL
∣∣ṙ1(t) – ṙ2(t)

∣∣ +
n∑

i=1

ci
{

h
(
r1
(
t – γi(t)

))
– h
(
r2
(
t – γi(t)

))}
]

dt

≤ bL
∫ T

0

∣
∣ż(t)

∣
∣dt +

∫ T

0

n∑

i=1

ci
{

h
(
r1
(
t – γi(t)

))
– h
(
r2
(
t – γi(t)

))}
dt

≤ bL
∣
∣z(T) – z(0)

∣
∣ +
∫ T

0

n∑

i=1

ci
{

h
(
r1
(
t – γi(t)

))
– h
(
r2
(
t – γi(t)

))}
dt.

Using the integral mean-value theorem, it follows that there exists a constant s1 ∈ [0, T]
such that

n∑

i=1

ci
{

h
(
r1
(
s1 – γi(s1)

))
– h
(
r2
(
s1 – γi(s1)

))}
= 0. (4.2)

Let γ̄ = s1 – γi(s1) = nT + ζ , where ζ ∈ [0, T] and n is an integer. Hence, from equation
(4.2) together with condition (H6) implies that there exists a constant ζ ∈ [0, T] such that

z(ζ ) = r1(ζ ) – r2(ζ ) = r1(γ̄ ) – r2(γ̄ ) = 0.

We can write

∣
∣z(t)

∣
∣ =
∣∣
∣∣z(ζ ) +

∫ t

ζ

ż(s) ds
∣∣
∣∣≤

∫ t

ζ

∣
∣ż(s)

∣
∣ds.

Again, we have

∣∣z(t)
∣∣ =
∣
∣∣
∣z(ζ + T) +

∫ t

ζ+T
ż(s) ds

∣
∣∣
∣≤

∫ ζ+T

t

∣∣ż(s)
∣∣ds.

Hence, we have

2
∣∣z(t)

∣∣≤
∫ t

ζ

∣∣ż(s)
∣∣ds +

∫ ζ+T

t

∣∣ż(s)
∣∣ds =

∫ T

0

∣∣ż(s)
∣∣ds.

By using the Schwartz inequality, we find

2
∣
∣z(t)

∣
∣≤ √

T
(∫ T

0

∣
∣ż(s)

∣
∣2 ds

) 1
2

=
√

T |ż|2.
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Therefore, we obtain

∣∣z(t)
∣∣∞ ≤ 1

2
√

T |ż|2. (4.3)

From the definition of the operator, we have

(Az)(t) = x(t) – αx
(
t – γ (t)

)
.

Multiplying (4.1) by ...z (t) and integrating it over [0, T], we find

∫ T

0
(A...z )(t)...z (t) dt = –ak3

∫ T

0
z̈(t)...z (t) dt

– b
∫ T

0

[
g
(
t, ṙ1(t)

)
– g
(
t, ṙ2(t)

)]...z (t) dt

–
n∑

i=1

ci

∫ T

0
h
(
r1
(
t – γi(t)

)
– h
(
r2
(
t – γi(t)

)))...z (t) dt.

By using condition H4, we obtain

∫ T

0

∣
∣(A...z )(t)

∣
∣
∣
∣...z (t)

∣
∣dt ≤ ak3

∫ T

0

∣
∣z̈(t)

∣
∣
∣
∣...z (t)

∣
∣dt

+ bc0

∫ T

0

∣∣ż(t)
∣∣∣∣...z (t)

∣∣dt

+ b0

n∑

i=1

ci

∫ T

0

∣
∣z
(
t – γi(t)

)∣∣
∣
∣...z (t)

∣
∣dt. (4.4)

Hence, we have
∫ T

0
(A...z )(t)...z (t) dt =

∫ T

0
(A...z )(t)

[...z (t) – α
...z
(
t – γ (t)

)
+ α

...z
(
t – γ (t)

)]
dt.

From the definition of the operator A, we have

∫ T

0

∣
∣(A...z )(t)

∣∣∣∣...z (t)
∣∣dt =

∫ T

0

∣∣(A...z )(t)
∣∣2 dt + α

∫ T

0

∣∣(A...z )(t)
∣∣∣∣...z
(
t – γ (t)

)∣∣dt. (4.5)

Now, by applying the Schwartz inequality, we obtain

∫ T

0

∣∣...z
(
t – γ (t)

)∣∣∣∣(A...z )(t)
∣∣dt

≤
(∫ T

0

∣
∣...z
(
t – γ (t)

)∣∣2 dt
) 1

2
(∫ T

0

∣∣
∣∣

d3

dt3

(
(Ax1)(t)

)
∣∣
∣∣

2

dt
) 1

2

=
(∫ T

0

∣∣...z
(
t – γ (t)

)∣∣2 dt
) 1

2
(∫ T

0

∣∣...z (t) – α
...z
(
t – γ (t)

)∣∣2 dt
) 1

2
.

Then, we obtain
∫ T

0

∣
∣...z
(
t – γ (t)

)∣∣
∣
∣(A...z )(t)

∣
∣dt ≤ |...z |2

[|...z |2 + |α||...z 2|
]

=
(
1 + |α|)|...z |22. (4.6)
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By substituting from (4.6) into (4.5), we obtain

∫ T

0
(A...z )(t)...z (t) dt ≤

∫ T

0

∣∣(A...z )(t)
∣∣2 dt + |α|(1 + |α|)|...z |22. (4.7)

Substituting from (4.7) into (4.4) and using the Schwarz inequality, we find

∫ T

0

∣∣(A...z )(t)
∣∣2 dt ≤ |α|(1 + |α|)|...z |22ak3‖z̈‖2‖...z‖2 + c0b‖ż‖2‖...z‖2

+ cb0

n∑

i=0

∥∥
∥∥

1
(1 – γ̇i)

∥∥
∥∥∞

‖z‖∞‖...z‖2. (4.8)

Since z(0) = z(T), there exists a constant ξ ∈ [0, T], such that ż(ξ ) = 0 and

∣∣ż(t)
∣∣ =
∣
∣∣
∣ż(ξ ) +

∫ t

ξ

z̈(s) ds
∣
∣∣
∣

≤
∫ t

ξ

∣∣z̈(s)
∣∣ds, t ∈ [ξ , T + ξ ]. (4.9)

Also, for t ∈ [0, T], we have

∣∣ż(t)
∣∣ =
∣∣∣
∣ż(ξ + T) +

∫ t

ξ+T
z̈(s) ds

∣∣∣
∣

≤ ∣∣ż(ξ + T)
∣∣ +
∫ ξ+T

t

∣∣z̈(s)
∣∣ds

=
∫ ξ+T

t

∣∣z̈(s)
∣∣ds. (4.10)

By combining (4.9) and (4.10), we obtain

2
∣
∣ż(t)

∣
∣≤

∫ t

ξ

∣
∣z̈(s)

∣
∣ds +

∫ ξ+T

t

∣
∣z̈(s)

∣
∣ds

=
∫ T

0

∣
∣z̈(s)

∣
∣ds, t ∈ [0, T].

Therefore, by using the Schwartz inequality, we have

∣
∣ż(t)

∣
∣≤ 1

2
√

T
(∫ T

0

∣
∣z̈(s)

∣
∣2 ds

) 1
2

, for allt ∈ [0, T], (4.11)

hence, we obtain

|ż|∞ ≤ 1
2
√

T |z̈|2, (4.12)

therefore, we obtain

|ż|2 ≤ √
T max

t∈[0,T]

∣
∣ż(s)

∣
∣≤ 1

2
T
(∫ T

0

∣
∣z̈(s)

∣
∣2 ds

) 1
2

=
1
2

T |z̈|2. (4.13)
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Since ż(t) is a periodic function for t ∈ [0, T] by using the above similar technique we
obtain

∣
∣z̈(t)

∣
∣≤ 1

2

∫ T

0

∣
∣...z (t)

∣
∣dt,

which, together with the Schwartz inequality, implies

|z̈|∞ ≤ 1
2
√

T
(∫ T

0

∣
∣...z (s)

∣
∣2 ds

) 1
2

=
1
2
√

T |...z |2, (4.14)

then, we obtain

|z̈|2 ≤ √
T max

t∈[0,T]

∣
∣z̈(s)

∣
∣≤ 1

2
√

T
∫ T

0

∣
∣...z (s)

∣
∣ds ≤ 1

2
T |...z |2. (4.15)

By substituting (4.15) into (4.13), we obtain

|ż|2 ≤ 1
4

T2|...z |2. (4.16)

By using (4.13), (4.15), (4.16), and (4.3), (4.8) becomes

∫ T

0

∣
∣(A...z )(t)

∣
∣2 dt

≤
{

|α|(1 + |α|) +
1
2

ak3T +
1
4

c0bT2 +
cb0

8
T

5
2

n∑

i=0

∥∥
∥∥

1
(1 – γ̇i)

∥∥
∥∥∞

}

‖...z‖2
2. (4.17)

From Lemma 2.1, we have

|...z |22 =
∫ T

0

∣∣(A–1A
)...z (t)

∣∣2 dt ≤ 1
(1 – |α|)2

∫ T

0

∣∣(A...z )(t)
∣∣2 dt. (4.18)

Substituting (4.18) into (4.17), we conclude

∣
∣(A...z )(t)

∣
∣2
2 ≤

{

α
(
1 + |α|) +

1
2

ak3T +
1
4

c0bT2

+
cb0

8
T

5
2

n∑

i=0

∥
∥∥
∥

1
(1 – γ̇i)

∥
∥∥
∥∞

}
1

(1 – |α|)2

∣∣(A...z )(t)
∣∣2
2.

Hence, we conclude

{

1 –
1

(1 – |α|)2

(

α
(
1 + |α|) +

1
2

ak3T +
1
4

c0bT2

+
cb0

8
T

5
2

n∑

i=0

∥
∥∥∥

1
(1 – γ̇i)

∥
∥∥∥∞

)}
∣∣(A...z )(t)

∣∣2
2 ≤ 0.
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Since

1
(1 – |α|)2

(

α
(
1 + |α|) +

1
2

ak3T +
1
4

c0bT2 +
cb0

8
T

5
2

n∑

i=0

∥∥
∥∥

1
(1 – γ̇i)

∥∥
∥∥∞

)

< 1,

we find

∣
∣(A...z )(t)

∣
∣2
2 = 0.

Since Az(t), d
dt ((Az)(t)), d2

dt2 ((Az)(t)), and d3

dt3 ((Az)(t)) are T-periodic and continuous
functions, we have

Az(t) ≡ d
dt
(
(Az)(t)

)≡ d2

dt2

(
(Az)(t)

)≡ d3

dt3

(
Az(t)

)
= 0, for all t ∈R.

Now, applying Lemma 2.1 in [12], we obtain

z(t) ≡ ż(t) ≡ z̈(t) ≡ ...z (t) = 0, ∀t ∈ R.

Hence, we conclude r1(t) ≡ r2(t) for all t ∈R. �

Hence, (1.1) has a unique T-periodic solution.

5 Example
Consider the following third-order NDDE:

d3

dt3

(
x(t) –

1
130

x
(

t –
1

150
sin 4t

))
+

1
6

cos2 4tẍ(t)

+
1

120
sin 4t cos ẋ(t) +

1
10

(
4
π

x
(

t –
1

150
sin 4t

))
= cos 4t. (5.1)

Comparing (5.1) to (1.1), we find f (u) = cos2 4t, a = 1
6 , α = 1

130 , g(t, u) = sin 4t cos u, b = 1
120 ,

h(t, x) = 4
π

x(t – 1
150 sin 4t), h(t, 0) = 0, bo = 4

π
, c = 1

10 , γ (t) = 1
150 sin 14t, γ̇ (t) = 4

150 cos 4t,
e(t) = cos 4t, and let T = π

4 .
Also, we have

γ1 = max
t∈[0, π4 ]

∣∣γ̇ (t)
∣∣ =

2
75

,

and

γ2 = max
t∈[0, π4 ]

∣∣γ̈ (t)
∣∣ =

4
75

,
∥
∥∥∥

1
1 – γ̇

∥
∥∥∥∞

=
75
73

.

Therefore, by taking n = c = k2 = 1, we obtain

M1 = 1 + α(1 + γ1) = 1.008,

M3 =
{

bk2 + b0c
∥∥
∥∥

1
1 – γ̇

∥∥
∥∥∞

D + nc max
{∣∣h(t, 0)

∣
∣ : 0 ≤ t ≤ T

}
+ ‖e‖∞

}
M1T = 1.29,

M4 =
1
2
(√

M3 + |α|γ2T
)

= 0.568.
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Figure 1 Path of the periodic solution

Hence, we find

|1 – |α|| – |α|γ1(γ1 – 2) – M4 = 0.425 > 0.

To verify how to obtain (3.18) from (3.17), we calculate the following

M2 =
1
2

b0cT2M1

∥
∥∥∥

1
1 – γ̇

∥
∥∥∥∞

= 0.081.

Then, (3.17) becomes

0.425 ×
∫ T

0

∣∣ẍ1(t)
∣∣dt ≤

√
0.081π

2

(∫ T

0

∣∣ẍ1(t)
∣∣dt

) 1
2

.

Therefore, we obtain

(∫ T

0

∣∣ẍ1(t)
∣∣dt

) 1
2
{

0.425
(∫ T

0

∣∣ẍ1(t)
∣∣dt

) 1
2

–
√

0.081π

2

}
≤ 0,

which can be considered as a quadratic inequality, its roots are

(∫ T

0

∣∣ẍ1(t)
∣∣dt

) 1
2 ≤ 0 or

(∫ T

0

∣∣ẍ1(t)
∣∣dt

) 1
2 ≤ 0.839,

which implies that

∫ T

0

∣∣ẍ1(t)
∣∣dt ≤ 0.7044.

The rest of the proof is clear. Hence, by Theorem 3.1, (5.1) has at least one π
8 -periodic

solution.
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Now, by taking k3 = 1 and c0 = 1, we have

1
(1 – |α|)2

(
α
(
1 + |α|) +

1
2

ak3T +
1
4

c0bT2 +
cb0

8
T

5
2

∥∥∥
∥

1
(1 – γ̇ )

∥∥∥
∥∞

)
= 0.17 < 1.

Thus, (1.1) has a unique periodic solution, see Fig. 1.
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