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Abstract
In this paper, we consider an acoustic equation with incomplete data, where the bulk
modulus coefficient and initial conditions are partially known. Our goal is to get
information about the bulk modulus coefficient independently of the initial
conditions from boundary observations. To achieve this goal, we apply the sentinel
method introduced by J.L. Lions, which is a functional that links the solution to the
given problem with a control function and a state observation. We prove that the
existence of the sentinel functional is equivalent to a boundary-null controllability
problem with constraints on the control. We use the Hilbert uniqueness method to
study this controllability problem to establish the control of minimal norm.
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1 Introduction and preliminaries
Let � ⊂ R

n be an open bounded domain with boundary � of class C2. For fixed time
T > 0, we denote Q = � × [0, T] and � = � × [0, T]. We consider the following acoustic
wave equation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2
t y –

∑n
i,j=1

∂
∂xi

(aij(x) ∂y
∂xj

) = 0 in � × (0, T),

y(0) = B(x) in �,

∂ty(0) = C(x) in �,

y = 0 on � × (0, T),

(1)

where ∂2
t y = ∂2y

∂t2 , and aij(x) = aij(x), i, j = 1, . . . , n, are C∞ function on Rn satisfying the uni-
form ellipticity condition

n∑

i,j=1

aij(x)ξiξj ≥ α

n∑

i,j=1

ξ 2
i , x ∈ � for some α > 0. (2)
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Given B ∈ H1
0 (�) and C ∈ L2(�), problem (1) admits a unique solution y ∈ C([0, T];

H1
0 (�) × L2(�)) [19].
In this paper, we assume that aij(x) = a(x)δij for all i, j = 1, . . . , n, where δij is the Kronecker

index, so that we can write our equation in the divergence form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2
t y – div(a(x)∇y) = 0 in � × (0, T),

y(0) = B(x) in �,

∂ty(0) = C(x) in �,

y = 0 on � × (0, T),

(3)

where a ∈ C1(�), and we assume that a(x) > 0 for all x ∈ �.
For equation (3), if the coefficient a and the functions B and C are known, then we can

prove that the problem has a unique solution; this is a direct problem.
In other cases, according to the studied phenomena, some quantities in governing equa-

tions may be unknown (partially known), i.e., we have problems with missing data (incom-
plete data); for example, in problems of meteorology the initial conditions are unknown,
in problems related to pollution, the term source is unknown, etc.

Moreover, the main purpose in studying these problems with incomplete data is identi-
fying those unknown quantities. This determination proceeds through specific measure-
ments and observations of the available data, which means that we have an inverse prob-
lem. When we have to identify the coefficient, we have a coefficient inverse problem, and
for the determination of the source term, we have a source inverse problem.

These problems have an important role in mathematical fields such as PDEs, microlo-
cal analysis, probability, etc. Moreover, they have important applications in wide fields of
applied science, for example, medical imaging (X-rays, scanners, . . . ), radar, image pro-
cessing, petroleum engineering, etc.

In this paper, we deal with the identification of the partially known coefficient a of the
form

a(x) = a0(x) + λ̂a0(x),

where a0 is known, and λ̂a0 is unknown important term.
In addition, we assume that the initial conditions are partially known and are of the

forms

B(x) = y0(x) + τ0̂y0(x),

C(x) = y1(x) + τ1̂y1(x),

where the function (y0, y1) ∈ H1
0 (�) × L2(�) are known, whereas τ0̂y0 and τ1̂y1 are both

unknown with ‖̂y0(x)‖H1
0 (�) ≤ 1 and ‖̂y1(x)‖L2(�) ≤ 1.

The parameters λ, τ0, and τ1 are sufficiently small real numbers.
We can formulate our inverse problem as follows: To get information on the important

term λ̂a0 regardless of computing the unimportant terms τ0̂y0 and τ1̂y1 in the equation



Elhamza and Hafdallah Boundary Value Problems         (2023) 2023:23 Page 3 of 10

with incomplete data

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2
t y – div((a0(x) + λ̂a0(x))∇y) = 0 in � × (0, T),

y(0) = y0 + τ0̂y0 in �,

∂ty(0) = y1 + τ1̂y1 in �,

y = 0 on � × (0, T),

(4)

from the knowledge of the conormal derivative

∂y
∂νa

∣
∣
∣
∣
O×(0,T)

, (5)

where O (the observatory) is a nonempty open subset of �, ∂y
∂νa

= a(x)∇y.ν(x) is the conor-
mal derivative, and ν(x) is the unit outward normal vector to � at x.

Physically, our inverse problem consists of the determination of the bulk modulus in
the acoustic equation (4) considered in a nonhomogeneous medium [8]. Coefficient in-
verse problems for acoustic equations are well studied in the literature, Imanuvilov and
Yamamoto [8] considered the identification of the bulk modulus coefficient in acoustic
equation (3) from a single measurement. For a similar coefficient inverse problem for an
acoustic equation, Bellassoued and Yamamoto [4] studied the global stability in determi-
nation of the coefficient a(x) from observation of the data in the boundary. For an inverse
problem of the acoustic equation where a(x) = (aij(x))1≤i,j≤n, n ∈N, we refer to [3] and [9].
Other authors have also dealt with other coefficient inverse problems in [2, 15, 16, 18],
and [7], where the authors consider the determination of the coefficient q(x) (the poten-
tial coefficient) in the equation ∂2y

∂t2 – �y + q(x)y from specific measurement; most of the
previously mentioned papers are based on the Carleman estimate.

The aim of this work is to use a method that has never been applied to inverse problems
to identify an unknown coefficient. This method was first used by Lions [11]; it is an up-
graded method of the least square method, where all unknown quantities are identified
with each other and cannot be separated, and this does not serve us in reaching our goal.
However, it has been applied to many problems. The most famous identification problems
were presented in the book of Lions [11]. We also mention some recent research [1, 12, 17],
and we also refer to [13].

Recently, the authors of [5] used the sentinel method to identify the potential coefficient
in the wave equation with incomplete data. In addition, the authors of [6] applied the
sentinel method to an identification problem of a fractional thermoelastic deformation
system with incomplete data.

This method is called the sentinel method and is applied to problems with missing data
to define the important terms independent of the nonimportant terms from the knowledge
of specific measurements. It is based on the functional S, depending on the parameters λ,
τ0, and τ1, defined as follows: for h0 ∈ L2(O × [0, T]),

S(λ, τ0, τ1) =
∫ T

0

∫

�

(h0χO + uχω)
∂y
∂νa

d� dt, (6)

where χO and χω denote the characteristic functions for the open subsets O and ω, re-
spectively, and u is a control function determined as
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1) For all τ0̂y0 and τ1̂y1,

∂S
∂τ0

(λ, τ0, τ1)
∣
∣
∣
∣
λ=0,τ0=0,τ1=0

=
∂S
∂τ1

(λ, τ0, τ1)
∣
∣
∣
∣
λ=0,τ0=0,τ1=0

= 0. (7)

2) The control u is of minimal norm in L2(ω × (0; T)) among “the admissible controls”,
i.e.,

‖u‖2
L2(ω×(0,T)) = min

ũ∈Uad
‖̃u‖2

L2(ω×(0;T)), (8)

where

Uad =
{

ũ ∈ L2(ω × (0, T)
)

such that
(
ũ, S(̃u)

)
satisfies (7)

}
.

The existence of a sentinel for the given problem is equivalent to solving a controllability
problem with constraints on the control. So we deal with the controllability problem to
determine the control function, which is the main objective of this paper.

2 Information given by sentinel
In this section, we present the main result of this paper, which allows us to give information
on the pollution term.

Let be yλ = ∂y
∂λ

the unique solution of the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2
t yλ – div(a0(x)∇yλ) – div(̂a0(x)∇y0) = 0 in � × (0, T),

yλ(0) = 0 in �,

∂tyλ(0) = 0 in �,

yλ = 0 on � × (0, T),

(9)

where y0 is the solution of (4) when λ = τ0 = τ1 = 0.
On the other hand, we consider the sentinel associated with the measure m0

Sobs(λ, τ ) =
∫ T

0

∫

�

(h0χO + uχω)m0(x, t,λ, τ ) dx dt, (10)

where m0 is the measured state of the system on the observatory O through the interval
[0, T].

Theorem 1 The information given by the sentinel about the important term λ̂a0(x) is as
follows:

∫ T

0

∫

�

div
(
λ̂a0(x)∇y0

)
q dx dt =

∫ T

0

∫

�

(h0χO + uχω)
(

m0 –
∂y0

∂νa

)

d� dt. (11)

Proof According to Taylor’s formula, we have

S(λ, τ0, τ1) 	 S(0, 0, 0) + τ0
∂S
∂τ0

(0, 0, 0) + τ1
∂S
∂τ1

(0, 0, 0) + λ
∂S
∂λ

(0, 0, 0) (12)

for small λ, τ0, and τ1.
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Due to (7), considering that S(λ, τ0, τ1) is observed, we have

λ
∂S
∂λ

(λ, τ0, τ1)
∣
∣
∣
∣
λ=0,τ0=0,τ1=0

	 Sobs(λ, τ0, τ1) – S(0, 0, 0), (13)

where

∂S
∂λ

=
∫ T

0

∫

�

(h0χO + uχω)
∂yλ

∂νa
d� dt,

where yλ is the unique solution of (9).
Multiplying both sides of the first equation in (9) by the solution q = q(x, t) of (19), we

have
∫ T

0

∫

�

{
∂2

t yλ – div
(
a0(x)∇yλ

)
– div

(
â0(x)∇y0

)}
q = 0.

Integrating by parts and applying Green’s formula, we obtain

∫ T

0

∫

�

div
(
â0(x)∇y0

)
q dx dt =

∫ T

0

∫

�

(h0χO + uχω)
∂yλ

∂νa
d� dt. (14)

Combining (14) and (13), we obtain the information about the pollution term given in the
previous theorem. �

3 Equivalence of the existence of a sentinel and the boundary
null-controllability problem

We denote by yτ0 = ∂y
∂τ0

(λ, τ0, τ1)|λ=0,τ0=0,τ1=0 the solution of

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2
t yτ0 – div(a0(x)∇yτ0 ) = 0 in � × (0, T),

yτ0 (0) = ŷ0 in �,

∂tyτ0 (0) = 0 in �,

yτ0 = 0 on � × (0, T),

(15)

and by yτ1 = ∂y
∂τ1

(λ, τ0, τ1)|λ=0,τ0=0,τ1=0 the solution of

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2
t yτ1 – div(a0(x)∇yτ1 ) = 0 in � × (0, T),

yτ1 (0) = 0 in �,

∂tyτ1 (0) = ŷ1 in �,

yτ1 = 0 on � × (0, T).

(16)

Remark 1 Condition 1 (the insensitivity condition) can be written in the form
∫

�×(0,T)
(hχO + uχw)

∂yτ0

∂νa
d� dt = 0 (17)

and
∫

�×(0,T)
(h0χO + uχw)

∂yτ1

∂νa
d� dt = 0. (18)
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In this section, we will show that the existence of the sentinel for (4) is equivalent to
solving an optimal control problem.

Our first result is the following:

Proposition 2 The existence of the sentinel defined in (6) for problem (4) is equivalent to
solving the following null-controllability problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2
t q – div(a0(x)∇q) = 0 in � × (0, T),

q(x, T) = 0 in �,

∂tq(x, T) = 0 in �,

q = h0χO + uχw on � × (0, T).

(19)

with null-controllability property

⎧
⎨

⎩

q(x, 0) = 0,

∂tq(x, 0) = 0
(20)

in �.

Proof Multiplying both sides of the first equation in (19) by the solution yτ0 of (15), inte-
grating by parts, and applying Green’s formula, we get

0 =
∫ T

0

∫

�

(
∂2

t q – div
(
a0(x)∇q

))
yτ0 dx dt

=
∫

�

[yτ0∂tq]T
0 dx –

∫

�

[q∂tyτ0 ]T
0 dx

+
∫ T

0

∫

�

(
∂2

t yτ0 – div
(
a0(x)∇yτ0

))
q dx dt

+
∫ T

0

∫

�

q
∂yτ0

∂νa
d� dt +

∫ T

0

∫

�

yτ0
∂q
∂νa

d� dt.

Since yτ0 is a solution of (15), we have

〈
∂tq(x, 0), ŷ0(x)

〉

H–1(�),H1
0 (�) = –

∫ T

0

∫

�

(h0χO + uχω)
∂yτ0

∂ν
d� dt,

where 〈·, ·〉H–1(�),H1
0 (�) is the duality product between H–1(�) and H1

0 (�).
It follows from (17) that

〈
∂tq(x, 0), ŷ0(x)

〉

H–1(�),H1
0 (�) = 0 for all ‖̂y0‖H1

0 (�) ≤ 1.

Hence we find

∂tq(0) = 0 a.e. in �.
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In the same way, multiplying both sides of the first equation in (19) by the solution yτ1 of
(16), integrating by parts, and applying Green’s formula, we find

∫

�

q(0)̂y1(x) dx =
∫ T

0

∫

�

(h0χO + uχω)
∂yτ1

∂νa
d� dt,

and from (18) we obtain

∫

�

q(0)̂y1(x) dx = 0 for all
∥
∥̂y1(x)

∥
∥

L2(�) ≤ 1.

So

q(x, 0) = 0 in L2(�).

Therefore

q(x, 0) = 0 a.e. in �. �

4 Study of the boundary null-controllability problem with constraint on the
control

In the previous section, we established that the existence of the sentinel functional was
related to solving an optimal control problem. For this reason, we are interested in solving
this problem, and we state our main result as follows.

Theorem 3 Let h0 ∈ L2(O× [0, T]). Then there exists a control function u of minimal norm
in L2(ω × [0, T]) such that the solution q of problem (19) satisfies (20) and ω satisfies the
following geometrical condition:

ω =
{

x ∈ �, H(x).v(x) > 0
}

,

where ν(x) is the unit outward normal vector to � at x, and H(x) is defined in [19].

Problem (19)–(20) is an optimal control problem. We use the method of HUM intro-
duced by Lions [10] to establish this control with minimal norm in L2(ω × [0, T]). It is a
constructive method based on the uniqueness results and on the construction of an iso-
morphism operator.

Note that we can write q(u) = q0 + z, where q0 and z are solutions of the systems

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2
t q0 – div(a0(x)∇q0) = 0 in � × (0, T),

q0(T) = 0 in �,

∂tq0(T) = 0 in �,

q0 = h0χO on � × (0, T),

(21)
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and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2
t z – div(a0(x)∇z) = 0 in � × (0, T),

z(T) = 0 in �,

∂tz(T) = 0 in �,

z = uχw on � × (0, T),

(22)

respectively.
Obviously, (20) can be written as

⎧
⎨

⎩

q(0) = z(u)(x, 0) + q0(0),

∂q(0) = ∂tz(u)(x, 0) + ∂tq0(0),
in �. (23)

Note that the solution z = z(u) of (22) is the state satisfying the conditions

⎧
⎨

⎩

z(u)(x, 0) = –q0(0),

∂tz(u)(x, 0) = –∂tq0(0),
in �. (24)

Introduce the solution � of the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2
t � – div(a0(x)∇�) = 0 in � × (0, T),

�(0) = �0 in �,

∂t�(0) = �1 in �,

� = 0 on � × (0, T),

(25)

where (�0,�1) ∈ H1
0 (�) × L2(�). System (25) admits a unique solution � ∈ C([0, T];

(H1
0 (�) × L2(�))). More precisely, we have the following inequality for all T > 0 and a

constant C > 0 [19]:

∫

�0×(0,T)

∣
∣
∣
∣
∂�

∂νa

∣
∣
∣
∣

2

d� dt ≤ CT
(‖�0‖2

H1
0 (�) + ‖�1‖2

L2(�)
)
. (26)

Moreover, there exists a constant c > 0 such that [19]

∫

�0×(0,T)

∣
∣
∣
∣
∂�

∂νa

∣
∣
∣
∣

2

d� dt ≥ c
(‖�0‖2

H1
0 (�) + ‖�1‖2

L2(�)
)
. (27)

In addition, let � be the solution of the following problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2
t � – div(a0(x)∇�) = 0 in � × (0, T),

�(T) = 0 in �,

∂t�(T) = 0 in �,

� = ∂�
∂νa

χw on � × (0, T).

(28)

Now, we go back to the proof of the previous theorem.
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Proof Define the linear operator

� : H1
0 (�) × L2(�) −→ H–1(�) × L2(�),

�
{
�0,�1} =

{
–∂tz(0), z(0)

}
, (29)

where H–1(�) is the dual space of H1
0 (�).

Multiplying both sides of the first equation of (28) by the solution � of (25), integrating
by parts, and applying Green’s formula, we obtain

〈
�

{
�0,�1},

{
�0,�1}〉 =

∫ T

0

∫

ω

∣
∣
∣
∣
∂�

∂νa

∣
∣
∣
∣

2

d� dt,

where 〈·, ·〉 denotes the duality product between H1
0 (�) × L2(�) and H–1(�) × L2(�).

Moreover, it is clear that � is a positive self-adjoint operator.
This leads to the introduction of the seminorm

∣
∣
{
�0,�1}∣∣

H1
0 (�)×L2(�) =

(∫ T

0

∫

ω

∣
∣
∣
∣
∂�

∂νa

∣
∣
∣
∣

2

d� dt
) 1

2
. (30)

To prove that � is an isomorphism, we have to show that the previous seminorm (30) is
a norm on the set of initial data {�0,�1} and that if

∫ T

0

∫

ω

∣
∣
∣
∣
∂�

∂νa

∣
∣
∣
∣

2

d� dt = 0, then � = 0 in Q.

Take ω = �0. From inequality (27) (observability inequality) it is easy to show that the
previous seminorm is a norm, denoted by

∥
∥
{
�0,�1}∥∥

H1
0 (�)×L2(�) =

(∫ T

0

∫

ω

∣
∣
∣
∣
∂�

∂νa

∣
∣
∣
∣

2

d� dt
) 1

2
. (31)

Furthermore, it is clear from (26) and (27) that the norm is equivalent to the usual norm
of H1

0 (�) × L2(�).
We must show that the operator � is an isomorphism from H1

0 (�) × L2(�) to H–1(�) ×
L2(�). The norm (31) is defined by the scalar product 〈�{�̃0, �̃1}, {�0,�1}〉, which defines
a Hilbert space on the set of initial data, which is equivalent to (the Hilbert space) H1

0 (�)×
L2(�).

By the Riesz representation theorem we conclude that is � an isomorphism from
H1

0 (�) × L2(�) to H–1(�) × L2(�) [14].
So (29) has a unique solution given by

{
�0,�1} = �–1{∂tq0(0), –q0(0)

}
. (32)

Thus the control is given by the restriction

u =
∂�

∂νa
χω, (33)

where � is the solution of (25). �
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So sentinel (6) is given by

S(λ, τ0, τ1) =
∫ T

0

∫

�

(

h0χO +
∂�

∂νa
χω

)
∂y
∂νa

d� dt. (34)
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