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the separation of variables method, to reduce the not self-adjoint BVP to an integral
equation. The existence and uniqueness of the integral equation are established by
the contraction mappings principle and it is concluded that this solution is unique for
a not-adjoint BVP. The existence and uniqueness of a nonlocal BVP with integral
condition is proved. In addition, the fourth-order hyperbolic PDE is discretized using a
collocation technique based on the quintic B-spline (QnB-spline) functions and
reformed by the Tikhonov regularization function. The noise and analytical data are
considered. The numerical outcome for a standard numerical example is discussed.
Furthermore, the stability of the discretized system is also analyzed. The rate of
convergence (ROC) of the method is also obtained.
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1 Introduction

In modern technology;, it is necessary to regulate vibration processes in one-dimensional
distributed systems, and the relevance of these problems is increasing. In aircraft, such el-
ements are formed simultaneously by bending and torsional vibrations. One of the objec-
tives of the project is to prevent the use of shaft vibrations with an adjustable speed [4, 15].
For such problems, mathematical models of transverse vibrations of rods are built on the
basis of a refined theory and such problems are called inverse problems of mathematical
physics. Inverse problems for hyperbolic equations of fourth order receive great attention
due to the necessity of the generalization for the classical problems [1]. Inverse problems
for PDEs in numerous settings have been examined by various authors, e.g., Tikhonov [26],
Lavrentiev [18], and Ivanov [16]. This type of problem has various applications such as in
biology, medicine, mineral investigation, geophysics, computer tomography;, filtration the-
ory, etc. [8, 21, 25]. During computational modeling of specific processes, a condition may
occur when the region’s boundary of the real process is challenging for measurements, but
it is probable to obtain some further knowledge regarding the phenomena under inves-
tigation at the region’s interior points. From the mathematics viewpoint, this condition
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leads to a new nonlocal problem with integral conditions. In [1-3, 5, 7], the authors stud-
ied third-order PDE with integral conditions for unique solvability.

Very few investigations were found in the literature for the numerical computations of
the time and/or spacewise coefficients for the IP of the fourth-order equations. For exam-
ple, Huntul et al. [12, 13] reconstructed the potential coefficient in pseudoparabolic and
pseudohyperbolic equations of order four, respectively, from additional measurements.
The authors of [11, 20] identified the unknown potential coefficient in Boussinesq and
Boussinesq-type equations of order four.

Recently, Huntul et al. [14, 22] obtained results about the numerical solutions of the
inverse problem for a higher-order pseudoparabolic equation. The existence and unique-
ness of the solution of an inverse boundary value problem for a third order in time pseu-
doparabolic equation were proved by using analytical and operatortheoretic means, the
Fourier method, and the contraction principle. In [10], the authors numerically identify
the time-dependent potential coefficient in a fourth-order pseudoparabolic equation with
nonlocal initial and boundary conditions supplemented by nonlocal integral observations
by applying the quintic B-spline collocation, finite-difference method and the Tikhonov
regularization method.

In the domain Dy = {(x,¢) : 0 <x < 1,0 < ¢ < T}, we consider an IP of the hyperbolic
equation in fourth order

Ut (%, 8) + @ U, 1) = p(O)ul, 1) + q()g(x, 8) + f (x,8),  (x,2) € Dr, (1.1)
with ICs

u(x,0) = (x),  w(%0)+dulxT)=y(), xel01], (1.2)
the BCs

u1,0)=0, 10,0 =uy(L,8),  u(1,£)=0, te[0,T], (1.3)

the nonlocal integral condition
1
f ulx,t)dx=0, tel[0,T], (1.4)
0
and the additional conditions
1
u(0, 1) = h1 (), u(i,t> =hy(t), tel0,T], (1.5)

where a4, § are given numbers, functions ¢(x), ¥ (x), h;(¢), i = 1,2, f(x,£), g(x,t) are given,
while u(x, t), p(£), and g(¢) are the desired functions.

The paper is divided into two parts. Part I discusses theory and proofs that contains
Sects. 1, 2, and 3, while Part Il investigates numerical experiments that contains Sects. 4, 5,
6, and 7. In Sect. 2, the IP reduces to an equivalent auxiliary IP. Section 3 proves the ex-
istence and uniqueness. In Sect. 4, the discretization of the forward problem is solved
by using the QnB-spline collocation method. The stability has been analyzed in Sect. 5.
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Section 6 describes the numerical process of the nonlinear Tikhonov regularization func-
tional. The outcomes for an example are discussed in Sect. 7. Finally, Sect. 8 reveals some

concluding remarks.

2 Preliminary results and reduction of problem to an auxiliary IP

We propose the following definition and lemma:

Definition 2.1 We call the triplet {u(x, £), p(¢), q(¢)} the classic solution of IP, if the subse-
quent conditions are met:
1) the functions u(x, t), U (X, 1), tyy (X, 1), U (X, £)y Upsnrc (%, £), (%, F), s (x, £) are
continuous in Dr;
2) the functions p(t), g(¢) are continuous on [0, T'];
3) the problem (1.1)—(1.5) is assured in the ordinary sense.

Alongside (1.1)—(1.5), consider the subsequent ODEs:

y,/(t) =P(t)y(t)» te [01 T]r (21)

y0)=0,  y(0)+8y(T)=0, (2.2)

where § is a given number, function p(t) € C[0, T] is given, y = y(¢) is a desired function,
if y(¢) is the solution of (2.1) and (2.2), then y(£) and all its derivatives are continuous in
[0, T7].

It is not difficult to determine that the problem

y'(®)=0,  y&)=0, Y (0)+y(T)=0 (2.3)

has a trivial solution, if § > 0. Then, it is known [24] that (2.3) has only one Green function

G(t, ), given as

_(T-1)t
Gt,7)= 1 T telozl,
TisT T, te [T, T]

The subsequent Lemma is proved.
Lemma 2.2 Let a(t) € C[0,T], and
||a(t) H cor] = R = const,

Sfurther § > 0 and

11 5T )
Rl -+ + T <1. (2.4)
2 1+8T 2(1+487)

Then, BVP (2.1) and (2.2) has only a trivial solution.

Page 3 of 36
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Proof It is evident from [24] that the BVP (2.1) and (2.2) is equivalent to the integral equa-

tion
T
¥(#) = / Glt, T)p(o)y(r) dr. 25)
0
Having denoted
T
Ay = /0 G(t,t)p(r)y(7) dr, (2.6)

we can write equation (2.5) as:
y=Ay. (2.7)

We will examine equation (2.7) in C[0, T]. It can be easily seen that the operator A is
continuous in C[0, T']. Let us prove that A is a contraction mapping in C[0, T]. Surely, for
any y1(£), y2(t) from C[0, T

||A(y1) _A(yZ) ” Clo,T]

1 1 8T
<l|=+ +
(2 1+86T 2(1+8T)

) T a(®) | cpo. 11191 = 22Nl clo11- (2.8)

Then, using (2.4) in (2.8), we find A is a contraction mapping in C[0,T]. Thus, in CI[0, T],
A has a single fixed point y = {y1, y»}, which is a solution of (2.7). Thus, (2.6) has a unique
solution in C[0, T'], and so, the boundary value problem (2.1) and (2.2) also has a unique
solution in CI[0, T']. As y(£) = 0 the boundary value problem (2.1) and (2.2) has only a trivial
solution. The lemma is proved. Along with (1.1)—(1.5), we choose the subsequent auxiliary
IP. It is needed to find the triple {u(x, t), p(t), q(£)} of u(x, t), p(t), and g(t) with properties
1) and 2) of the definition of the classical solution of BVP (1.1)—(1.5), from (1.1)—(1.3)

u(0,1) = uy(1,¢), te€l0,T], (2.9)
hy + @10, 8) = p(£)a (£) + q(Dg(0,2) + £(0,0), £€[0,T], (2.10)
h/2/+ﬂ2uxxxx<%vt> =p(t)h2(t)+q(t)g<%,t> +f(%,t), te [O, T], (211)

and
h(t) = hl(t)g(%, t) —hy(t)g(0,£) #0, t€[0,T]. (2.12)
|

The following theorem is valid.

Theorem 2.3 Let ¢(x), ¥ (x) € C[0,1], hi(t) € C?[0,T], i = 1,2, h(t) = hl(t)g(%,t) -
hy()g(0,8) #0,£ € [0, T1,f(x,t), g%, £) € C(Dr), folf(x, t)dx =0, folg(x, t)dx=0,t€[0,T],
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and the consistency conditions

1 1

jawmm=a /’wmm=a 2.13)
0 0
0(0) = I 0), ¢(§)=hxm, (2.1
W(0) = I, (0) + Iy (T), w(§>:44+ath> 2.15

be satisfied. Then, we have
1. Every classical solution {u(x,t), p(t),q(t)} of (1.1)—(1.5) is the solution of (1.1)—(1.3)
and (2.9)-(2.11);
2. Every solution {u(x,t), p(t),q(¢)} of (1.1)=(1.3) and (2.9)—(2.11) is a classical solution
of (1.1)-(1.5), if

lo@]| LN L PR (2.16)
COTIN2 " 1+8T 2(1+87T)

Proof Let {u(x,t),p(t),q(t)} be a solution of (1.1)—(1.5). Now, integrating (1.1) over x from
0 to 1, we obtain

1
d—; \ u(x, £) dx + s (Uaax(1, ) — (0, 2))

1 1 1
:p(t)/o u(x, t) alx+q(t)/0 glx, 1) dx+/o flx,t)dx, tel0,T]. (2.17)

Assuming that

1 1
/ fx,t)dx =0, / glx,t)dx=0, tel0,T],
0 0

in view of (1.4), we arrive at the fulfillment of (2.9).

Usingx =0and x = % in (1.1), respectively, we obtain

utt(o, t) + azuxxxx(o: t) :P(t)u(o, t) + Q(t)g(O, t) +f(0’ t), te [0: T]r (218)
M:t(%, t) + a2uxxxx<%,t) :p(t)u(%, t) + ag(t)g(%,t) +f(%, t),
telo,T]. (2.19)

Under the assumption /,(¢) € C2[0, T], i = 1,2 and differentiating (1.5) twice, we obtain

u(0,6) = Hy(8),  ua(0,t)=H{(t), te[0,T], (220)
u<ggz%m, m<gﬁz%m,tdaﬂ~ (221)

Considering these relations, from (2.18) and (2.19), taking into account (1.5), the fulfill-
ment of (2.10) and (2.11) follows, respectively.
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Now, let {u(x, £), p(¢), q(¢)} be a solution to (1.1)—(1.3) and (2.9)—(2.11), and (2.16) is ful-
filled. Then from (2.17), in view of (2.9), we obtain

2 1

1
e | u(x, t) dx =p(t)/0 u(x, t)dx, tel[0,T]. (2.22)

From (1.2) and (2.13), we have
1 1
f u(x,0)dx = / ox)dx =0, (2.23)
0 0
1 1 1
/ uy(x,0)dx + 8 / ulx, T)dx = / Y(x)dx = 0. (2.24)
0 0 0

Since, by Theorem 2.3, problem (2.22) and (2.24) has only a trivial solution, fol u(x, t)dx =
0,t € [0, T, i.e., conditions (1.4) are satisfied. Further, from (2.10), (2.18), (2.11), and (2.19),
we obtain

2
% ((0,£) = I (£)) = p(£)(u(0,£) = I (8)), £ €[0,T], (2.25)
d2

E(u(%,t) —hg(t)) =p(t)(u<%,t> —hz(t)), tel0,T]. (2.26)

From (1.2) and (2.15), we have

u(0,0) - 11(0) = (0) - 11(0) = 0, (2.27)
1(0,0) — 1y (0) + 8(u(0, T) — hy(T)) = ¥ (0) — hy(0) — 8h1(T) = 0, (2.28)
u<%,0> —h2(0)=<p<%) - hy(0) =0, (2.29)

u(%O) _H(0)+ 8<u(§ T> —hz(T)) . w(%) B0 -sha(T)=0.  (230)

From (2.25), (2.30), and Lemma 2.2 the condition (1.5) is obtained. The theorem is
proved. d

2.1 Auxiliary facts
It is understood that the sequence of the functions

Xox) =2(1 —x),...,Xox1(x) = 4(1 — x) cos A, Xox(x) = 4sinAgx, ..., (2.31)
Yox) = 1,..., Yo 1(x) = cos Agx, Yor(x) = xsin Mg, ... (2.32)
form in L,(0,1) a biorthogonal system and system (2.31) forms a basis in L;(0, 1), where

Ak =2km, k=1,2,..., [17, 23]. They are also Riesz bases in L;(0, 1), see [24]. Then, any
function g(x) € L,(0, 1) can be expanded as a biorthogonal series

g(x) = goXo(x) + Zgzk—lxzk—l(x) + Zgszzk(x), (2.33)
k=1 k=1
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where the coefficients gy, gak-1, 21, are calculated by the following formulas

1
& = / &Yowdx,  gu-1= /
0 0

From (2.32), we have

1 1
& Yor-1(x) dx, Dok =/ & Yor () dx.
0

Yj(x) =0, Y5, 1 (%) = —Agsin Agx,

(2.34)

Yy (®) = Mexcos A + sinhgx,  k=1,2,...,

Yy@) =0, Yy i) =(DAYua), k=1,2,..., (2.35)

Y () = (DA Yor () + 2i(- D)0 Yo (), i=0,k=1,2,..., (2.36)
and from above equation, we obtain

YZH(0) = Y (1), YH0)=0, k=1,2,.... (2.37)
Under assumptions

g eC®01], gk eLy0,1),

g®) =0,  g%»V0)=g*>V1), s=0,i-1, (2.38)

and using integration by parts and taking into account (2.37) and (2.38), we obtain

1 1 .
/ g ()i dx = / (@Y @ds, k=12,.... (2.39)
0 0

Equation (2.36) implies

(1) .
Yo 1(x) = F1/22kl_1(x), i>0,k=12,..., (2.40)
k
(_1)i 2i : iq2i-1
Yor(x) = F{sz(x) +2i(-1)'A¢ " (%)}
k
-1, 1) .
! 22 Y3 (x) +2i§L2T)1Y22,§_1(x), i>0k=12,.... (2.41)
k k

Then, from (2.39) and (2.41), we find

(_l)i ! (2i)
Sk-1= ~; g (x) cos Axx dx, (2.42)
A Jo
GV Y L 21y
Sk = SV g2 (x)x + 2ig” ™ (x) sin Agx dx. (2.43)
k 0

Thus, we have

© 1 Lo 21
Z()‘%gﬂ(—l)z =5 Z(/O g(2z)(x)ﬁcos Akxdx) < 5 ||g(21)(x) ”Lz(o,l)’ (2.44)
k=1 k=1
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1

(¥e)” = 5 g™ Gehe + 2087 @] 1 0 (2.45)

M2

T
)

Under the assumptions g(x) € C¥[0,1], g%*!(x) € L,(0,1), g*(1) = 0, g% 1(0) = g>1(1),
i>1,5=0,i the following are valid

1 -1 i 1 )
Skl = / gx) Yo 1(x) dx = ;214)1 / 2% (x) cos Ax dx, (2.46)
0 k 0

(_1)i+1

1
Svoe / (g(z”l)(x)x +(2i + l)g(zi) (x)) sin Agx dx. (2.47)
k 0

1
&k = /(; g(ow) Yo (x) dox =

From the above equations, we find

> 1< T .

Z(Ai“lgzk,l)z =3 Z(/O 24 (x)v/2 cos )wcdx) < ||g2”1(x)“iz(o,1), (2.48)
k=1 k=1

o 2 1 ; 2

D 03w = 5 = € @+ Qi e W0, 121 (2.49)

>~
1l

1

Now, consider the subsequent spaces.
1. B} ;- [21] can be illustrated as consisting of all functions of the form

@, t) = Y w()Xi(), (2.50)

k=0

on D7, where u;(T) € C[0,T], k=0,1,...,and

oo

Jr(u) = H”O(t) HC[O,T] + (Z()‘i ”“2k—1(t) ”C[O,T])Z)

k=1

+ (Z(Ai”qu(t) I C[O’T])2> < 0. (2.51)

k=1

The norm is given by the formula
|, )| 5, Jr(w). (2.52)
2. E5 can be illustrated as consisting of a vector by the formula
B3, x C[0,T] x C[0, T].
The norm of z = {u, p, q} is obtained
Izllgs = lleellgs .+ 2@ cio.1y + O] 0,1y (2.53)

It is obvious that B -, E7. are Banach spaces.

Page 8 of 36
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3 Existence and uniqueness of a classical solution of the IP
Since the system (2.31) forms the Riesz basis in L,(0, 1), then each solution of (1.1)—(1.3)
and (2.9)—(2.11) can be written as

ux,t) = Y w(O)Xi(®), (3.1)
k=0
where
1
uk(t)zf u(x, t)Ye(x)dx, k=0,1,..., (3.2)
0

where X (x) and Yy (x) are described by (2.31) and (2.32), respectively.
Using the variable-separation method to find the desired functions u(t), k = 0,1,...,
from (1.1), (1.2), we obtain

ug(t) = p(t)uo(t) + q(£)go(t) + fo(t), (3.3)
Wy 1 () + @A g1 (£) = p)usk1 (&) + qE)gok1 (1) + fxr (), k=1,2,..., (3.4)
1 (8) + ap () = p(Ouni(£) + q(0)gor(£) + barh3une1(£) + frr (8),

k=12,..., (3.5)

ui(0) = @, up(0) + duk(T) =, k=0,1,2,..., (3.6)

where

1 1
i) = /0 Fe0Y@de - fo 0 (0) Ve () dx,

1
1/fk=/0 V() Ye(x)dx, k=0,1,....

Solving (3.3)—(3.6), we obtain

u(t)—l'”s(T_t) Lt v
=TT T s
st [T ,
_ / (T—t)Fo(r;u,P,q)dr+/ (t—1)Fo(t;u,p,q) d, (3.7)
1+8T Jyo A
u-1(t) = Piccos it + 8 sin fi(T - 1) . sin Bit "
2%-1\L) = B+ 8 sin B T P2xk-1 B+ bsin BT 2k-1
3Sinﬂkt T .
~ o e | Demwp T-17)d
ﬂk(ﬂk+8$inﬂkT)/0 2u-1(T5 1, p, @) sin Br(T — 7) dt
1 [t .
0
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) = Br cos Bt + 8 sin Br(T — £) sin Bt ’
e Bk +8sin B T ¢2k+ﬁk+3sin,3kT 2%
(SSil’lﬁkt T )
T BB, 4 S<in BT Fy(t;u,p, T-1)d
ﬁk(ﬂk+8sinﬁkT)/0 2% (T34, p,q) sin Br(T - 1) dt
L[ 2Bk
e F U, P, i t— d - _
' ﬂk‘/o w(stprd)sin filt oy + )»k(ﬂk+6sinﬁkT)(p2k !
8si in2B T
[ 2SBE (g i g 4 8 T - S0P
Bi +8sin B T 26
in 2Bt T
+ﬁktSinﬁkt+5(Tcos,Bk(T—t)_W)}
13
2Bk Ssinfrt (2 .
T T sa g V| T o\ 2 T-T T
) Ak(ﬂk+5SinﬁkT)w2k 1|: ﬁk+8sinﬁkT<ﬁk sin B cos Bi >

2
+ — sin Bt — tcos ,Bkt]
ﬁk

+ 2—‘3ft5k (53,0, 42) sin Bt — ) dt
(B +8sin B T) Jo - T
8 sin Bt 2 .
X I:—ﬂk+58in,3kT(E sin B T — TcosﬂkT)

- (Esin,B t—fcosﬂ t>]
B =5 k

4 8 sin Byt Trrr ) .
g | ([ P asinie-oa)

x sin Bi(t — t)dt

o ( [ Excrtwsupgrsinute —sms) sin Bt - r)dr], (39)
o \Jo
where
B = ak,%, Fi(t;u,p,q) = p(@ur(t) + q(0)gi(t) + fi(), k=0,1,2,....

After substituting expressions u(t), uok-1(t), u2x(£), respectively, from (3.7), (3.8), and (3.9)
into (3.1), to find u(x, t) of the solution of (1.1)—(1.3) and (2.9)—(2.11), we obtain

1+68(T-¢) t
Yo +
1+6T 1+6T

St T
u(x, t) = { Yo — 1+8T/0 (T - 1)Fy(t;5u,p,q)dt

+/ (t—r)Fo(r;u,p,q)dr}Xo(x)
0

>\ [ B cos Bt + 8 sin B (T — t) sin Bit
+ Z : Y1+ Va1
P B +6sin B T Bi + 8sin B T
8 sin Bt

T
e Fy_ T,u,p, sin T-1)dt
Bi(Br + 8sin B T) Jo 2k-1(T; 1, p> q) sin B ( )

1

t
+—/ sz_l(r;u,p,q)sinﬂk(t—T)dr}sz_1
Bk Jo
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ad Bicos Bit + & sin B (T — t) sin Byt
+ Z : Paxk + : Yok
P Bk +dsin B T Bk +8sin B T
8 sin Bit T

 BelBr + 8sin e T) Jo For(t;u,p,q)sin Be(T — 1) dt

1 (! 2Bk
- F ; ol ) i t_ d —.
* B /0 ulTs 6, q) sin filt = T) v + (B + 6sin B T)

dsin il . Sin 2 T

T ——)

+ Brt sin Bt + 8<Tcos Br(T —t) — szﬂk;ﬂ)}
k

Ssinfit [ 2
_Osinfd (2 BT - Toos BT
ﬂk + 4 sin ,BkT ﬂk
26

)\.k(ﬂk + § sin ,Bk T)

P2k-1

2Bk

B s o5 D) VL [_

2
+ — sin Bxt — tcos ﬂkt] +
Br

t
X/ For_1(t;u, p,q2) sin Bi(t — 1) dr
0

8 si 2 5
X [%(E sin B T — TcosﬂkT> - (a sin Bt — %cosﬁktﬂ

4 8 sin Byt Trrr ) .
| [ ([ P -oa)

x sin Bi(t — t)dt

+/ (/ sz1(T;u,p,q)sinﬂk(f—$)dé) Sinﬁk(t—f)df]}sz(x)' (3.10)
o \Jo

Now, to obtain an equation for p(t), g(t) of the solution {u(x, £), p(¢), q(¢)} of (1.1)—(1.3)
and (2.9)—(2.11), from (2.10) and (2.11), taking into account (3.1), we have

W)+ 4 Adun(t) = pt)n () + q(6)g(0,) +£(0,8), t€[0,T], (3.11)

k=1

M) +4 Y W21 unca(t) = pO)hs(0) + q(t)g(%,t) " f@ t), te[0,T). (3.12)

Assume that

h(t) =

h(2) g(0,1)
() g(5t)

k=1

#0 iftel[0,T]. (3.13)

Then, from (3.11) and (3.12), we obtain

()= [h(t)]*{(h;m -r00)e(5ot) - (w0 -1 (3.t) Je0.0

+ 4Z<g<%rt) - (—1)kg(0, t)))tguﬂ(—l(t)}r (314)
k=1
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) = [h®]" { (hg(t) _ f(% t, t))hl(t) — (Hy() - £(0,6)) a(0)

+ 42((—1)kh1(t) _h2(t)))¢u2k—l(t)}' (3.15)

k=1

Further, after substituting the expression uy;_1(£) from (3.8) into (3.14) and (3.15), respec-

tively, we have

20 =[] (0 - r.0)g( 5) - ()£ ( . 6) )e0,0
2 2

. 4Z<g<%rt) 100, t)))\ﬁ['Bk cos Bt + 8 sin B (T — t) s
k=1

Br+6sin B T
sin Byt
+ _—
Br +8sin B T
& sin Bt T
Br(Bi + 8sin B T) Jo

+ i /tFQk_l(T;M,p,q) sin Br(t — t)dt }, (3.16)

Yak-1

Fopa(t5u,p,q) sin (T — T) dr

Bx Jo
a0) = (o] { (1400-1(50¢) Jmt01- 1300 -0t

> X 4 Brcos Bt + & sin Bi(T — ¢)
+4 ) (1) I (8) - o) g ATy R

k=1
sin Byt
" B+ bsin BT
& sin Bt
BB+ 8sin B T) Jo
1 t

.=
Bk Jo

P2k-1

Yor-1

T
Foa(tsu,p,q)sin (T - 1) dt
Fo1(t;u,p,9) sinﬂk(t—r)dr}. (3.17)

Thus, the solution of (1.1)—(1.3) and (2.9)—(2.11) was reduced to the solution of (3.10),
(3.16), and (3.17) with respect to the unknowns u(x, £), p(¢), and g(¢).
To study the question of the uniqueness of the solution of (1.1)—(1.3) and (2.9)-(2.11),

the following plays an essential role.

Lemma 3.1 If {u(x,t),p(t),q(t)} is any solution of (1.1)—(1.3) and (2.9)—(2.11), then u;(t),
k=0,1,..., defined by (3.2), satisfy the system (3.7), (3.8), and (3.9) on [0, T.

Proof Let {u(x, ), p(£),q(t)} be any solution of (1.1)—(1.3) and (2.9)—(2.11). Then, multi-
plying in equation (1.1) by Yx(x), k=0,1,2,..., and then integrating from O to 1 using:

2

1
/ U (%, £) Yi(x) dx = &
0

1
dt2_/0 u(ex, £) Yi(x) dxe = u(2),
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1 1
| et 0¥sw ds = [ utox s o
0 0
1
/ U (% ) Yopo1 (6) dc = Muy 1 (8),  k=1,2,...,
0
1
f Mxxxx(x’ t) Y2k(x) dx = Ai”Zk(t) - 4')"2u2k—1(t)) k= 1L2,...,
0

we obtain that (3.3)—(3.5) are satisfied.

Similarly, from (1.2), we find that condition (3.6) is satisfied. Thus, ux(¢), k=0,1,2,...,
is a solution of (3.3)—(3.6). Hence, it immediately follows that ux(¢), k =0,1,2,..., satisfy
the system (3.7)—(3.9) on [0, T']. The lemma is proved. O

Obviously, if
1
u () :/ ulx, t)Yi(x)dx, k=0,1,2,...
0

is a solution to (3.7)—(3.9), then the triple {u(x,t), p(¢), q(t)} of u(x,t) = Y rop uk ()X (x),
p(t) and ¢g(¢) is a solution to (3.7)—(3.9). From Lemma 2.2 it follows that.

Corollary 3.1 Let systems (3.10), (3.16), and (3.17) have a unique solution. Then (1.1)—
(1.3) and (2.9)—(2.11) have at most one solution, i.e., if (1.1)—(1.3) and (2.9)-(2.11) has a

solution, then it is unique.

Consider the operator

q)(M:P» Q) = {¢1(u:l9’ Q)’ @2(14,]7, Q), @3(14,[7, q)}r (318)

in E5,, where

Dy(up,q) =T, t) =Y Xe(x),  Polwp,q)=p(t),  P3(w,p.q) =G(2),
k=0

and #o(2), Uk (t), ox-1(t), p(t), and g(t) are equal, respectively, to the right sides of
(3.7)-(3.9), (3.16), and (3.17). Let 0 < § < 27 a. It is not difficult to see that

Br+8~MT>pBr—06>2ma—-§>0.

Considering these relations, we have

: :
[0 g5 < 0l + Tlol + (1 +5T)Tﬁ( | [fo(t)!zdt>

+(1+8T)T° ||p(t) H clo,T] ” uo(£) ” clo,T]

r !
+ 1+ 8T)TVT | q®)] o1y < /0 |g0(r)dt|2> : (3.19)
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o0
(Z (45 s O )’

k=1

1+8>sup S(Z 23 1¢-1]) )

k=1

+—sup ﬁkﬂkS (; A ar-al) )

(/ S 0lfw(o])*a )

+ T”P(t) ”C[O,T] (Z()‘k””%1(t)||c[o,T])2)

k=1

1

1

T ©© 2
+ VT 4@ oy ( fo > (*lgw-r(0)])*d ) } (3.20)
k=1

[T

(Z Iy |”2k t)”c[o T])Z)

k=1

<«/—(1+8 sup(ﬁk 8)(2 Ak|<p2k| )

k=1

I (B N (S . L\ VIO [ B
+752p(ﬂk—5)(z(kk|%k0) +782p(ﬁk—5>

k=1

1

y [ﬁ( /0 kalj(xgygk(f)y)zdf) 7

o0

O] (Z@iuumn ||q<m>2)

k=1

1

T oo 3
WOl gon [ D02l ar) |
k=1

1

+2ay/10(T + 8T + 8) S?(%) (1 + s1;p ﬁfi 8) (Z(Azlgozkﬂ)z)

k=1

4naJ—0 Bi 1 @ ) 1
" ma-s kp(ﬂk—B)(EJrT)(kX:l:()‘kW’zk1|))

ol sl )
[ )

ST
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o0

1
3
+ T”p(t) HC[O,T] (Z(}‘iH”%—l(t) ”C[O,T])2>

k=1

1

+ ﬁ”q(t) ”C[O,T] (/ Z }“4|g2k l(f)i ) :|, (3.21)
k=1

15 o7y

:||[h<t>]-l||q0,ﬂ{||(h;<t>—f<o,t>)g( t) - (01 51) )0
+4(Zxk ) g(%,t)

X |:(1 +38) sip ,Bkﬂf 5 (Z(kilfﬂzkﬂ)z)

k=1

1 B . 23 2 : 1 Bk
s (ﬁ,(—(S)(Z( P War1l) ) +_Sup</3k 8>

1

x [ﬁ(/OTg;(Amk_l(r)\)sz>z

(o]

1
2
+ T”p(t) ” clo,1] (Z ()‘/i H uok-1(t) ”C[O,T])2>

k=1

+VT[a®)] o ( / > (A lesalr r) H } (3.22)
k=1

17 o1y

= 1] o { H (hZ(t) —f(%, t))hlu) (0 - F0,0) (0

clo,T]

C[0,T]

C[0,T]

1

o0 00 7

+4(sz2) 1] t>|||cm[1+s>sup (z lowa) )
k=1 k=1

1 0 1 . (
t 2 Sl;p<ﬁk/3f 5) <k2_1:()‘l?:|1/f2k—1|)2> i o Sup(ﬂkﬁ/ 5)

1

x [ﬁ( /fi(xzvamfn)%)Z

o]

1
2
+ T”l’(t) ”C[O,T] (Z()‘i””Ml(t) ||C[0,T])2>

k=1

Tl [ Ztteo'ar) | [} o
k=1
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Let the data of (1.1)—(1.3) and (2.9)—(2.11) fulfill the subsequent conditions:
(Q1) ¢() € C°[0,1], 9°(x) € L5(0,1), p(1) = ¢"(1) = ¢ (1) = 0, ¢'(0) = ¢(1), ¢"'(0) =
¢"(1), 9®(0) = 9P (1);
(Q2) ¥(x) € C*[0,1], p*(x) € L»(0,1), (1) = ¥"(1) = 0, %' (0) = ¥'(1), ¥ (0) = %" (1);
(Q3) [, 0), 15 (%, 8), fua (%, 1), fraa(,8) € C(DT), frann(,8) € Lo(Dr), f(1,8) == fra(1,8) = O,
£:(0,8) = £2(1,8), fixx(0,8) = fuxx(1,8), £ € [0, TT;
(Qa) g(x,£), & (%, £), Gun (%, £), Guaa (%, 8) € C(D7), Gua(x, 1) € Lo(Dr), g(1,8) == gux(1,£) = 0,
2:(0,2) = gx(1,2), Zuax(0,8) = gex(1,8), £ € [0, T';
(Qs) h; € C?[0,T),i=1,2,h(t)= hl(t)(%,t) — hy(£)g(0,¢) #0,t€[0,T],0 <8 <27.
Then, from (3.19)—(3.23), taking into account (2.44)—(2.49), we obtain

”ZZO(’:) ”C[O,T] < AlT) +B(T) ”p(t)“C[O,T] ||u(x, t)”BgI + Cl(T)”q(t) ”c[o,T]’ (3.24)

(Z (A% [ @] C[O,T])2> < Ax(T) + Bo(T) | p(2) c[o,1] (e, )

k=1

|55
BZ,T

+ C(D)]a®) | o7y (3.25)

(Z ()‘15< H%k(t) “ C[O,T])Z) < A3(T) + B3(T) Hp(t) ” clo,1] ” u(x,t) |Bg’T

k=1
+ (D) a®) | cio7y (3.26)

”ﬁ(t)HC[O,T] <A(T) + B4(T)H“(t) ”C[O,T] ||u(x, t)”Bg,T + Cy(T) ||q(t) HC[O,T]’ (3.27)
”5( H clor = As(T) + Bs( T)||p ||C[0,T] ||u(x, t) ”ng +C5(T) ||q(t) ”c[o,T]’ (3.28)

where

A(T) = ||<po(x) ||L2(0,1) + T||¢(x)”L on ™t 1+ ST)TﬁHf(x’ t)

o)

Bi(T)=(1+8T)T%  Ci(T)=Q+8T)TVT|gx,1)

AT) =25 (1+8T)sup<ﬁ'3 )Hw 100

2,5 k " 2,5T ﬂk
Ll T it

2,5 Br V2,5T P
By(T) = T; C(T) = XXX t
2( ) Sl]':p(ﬂk — 8) 2( ) a Sl]ip(,Bk ||g x ||L2 (Dr)’

|L (D)’

As(T) = f(1+aT)sup<ﬂﬂ )H(p 2)x+ 5000 o

\/g ﬂ /// //
+751;p<’8kk )Hlﬁ (®)x + 3y (x HL201

5T ( Bk
sup
a ; \Bk-

+2av/5(T + 8T +6) sup(ﬂkﬁk 8> (1 + s1;p ,Bff 8) Hﬁl)(é)(x)||L2(o'1)

+ ) “f;cxx(x: t)x + Bﬁfxx(x’ t)

|L2 (DT)
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4 a/5 Br 1

e sup(( 525 ) (2 T ) Iy

+4«/5_T(T+ ) (T+i)>sup(i>|lf (%, 2)
2wra -6 Ta r \Br—96 R

Bg(T)Z\/E(lS+4‘<T+ 5 (T+ i)))sup( P )T,
a 2ma -4 wa Bk—34

C(T) = VBT guae 9% + Bgese

|L2(DT)’

|L2(DT)

S 1 Br
+ 4(T o <T ¥ E)) |gees@ O, 5, Sip(ﬁk - 5)’
(H{(®) - f(0, t))g(%,t) - (h’z’(t) -f (%f> )g(o’ )
+ 2ﬁ<2k;2> + g(%,t>
k=1
x [(1+ S)Sup ﬁ H‘P D 1,00

1 k " 1 'Bk
ta S‘P(ﬂk—a) o * Es‘ip(ﬁk —8) VoDl oy

o o\ .
BuT) = —|[HO] oy (Zkk2> tle (5”) S“"(ﬁf fa)

(57)
g ]
2 clo,7)

Ay(T) = | [h(t)]_l I clom!

C[0,T]

C[0,T]

I3

|g0t

Cy(T) :—” O] HC[OT] (Z)‘k>

B
X Sl],:p <m> ”gxxx(xr t)

| Ly(Dr)’

As(T) = | [h(t)]_l I cio,nt

(hé'(t) _f<%rt)>hl(t) = (h3(®) = £(0,)) 2(0)

C[0,T]

+ 2x/§<2 )‘1:2> I[P2®] + | (6)] HC[O nl1+3) sup /3 ”(p HL2(0,1)
k=1

1 ﬁ n ﬁ ﬁ(
+= sup(ﬂ f >||1ﬂ @400 *+ - sup(ﬂk : >|[j§m(x, t)

a

|L2 (D)’

Bk
AT ucm(m) e+ o] sup( 525 )

1

4ﬁ ~ 00 B 2
CS(T) = a || [h(t)] ' || Clo,T) (Z }"k2) || |h2(t)| + |h1(t)| || C[0,T]
k=1

X Sl;p (%) ||gxxx(x1 t)

|L2(DT)

Page 17 of 36



Mehraliyev et al. Boundary Value Problems (2022) 2022:96

From (3.24)—(3.28), we conclude that

[pies t)”ng + ”Zj(t)”C[O,T] + @) ”C[O,T]

1
[o¢]

= 7] o (2(%2u%k_mucm,nf)

k=1

+ (Z(/\illﬂzk(t) ”C[O,T])2> + [P HC[O,T] + Hzi(t)HC[o,T]
k=1
< A(T) + B(D)|[p0)] o 4 )] 5+ CD @) 0

where

A(T) =A(T) + Ax(T) + As(T) + A3(T) + As(T),
B(T) = By(T) + Bo(T) + B3(T) + B3(T) + Bs(T),
C(T) = Ci(T) + Co(T) + C3(T) + G3(T) + Cs(T).

Hence, we can prove the subsequent theorem:
Theorem 3.2 Let conditions (Q1)—(Qs) be fulfilled, and

(A(T) +2)((A(T) + 2)B(T) + C(T)) < 1.

(3.29)

(3.30)

Then, (1.1)—(1.3) and (2.9)—(2.11) has a unique solution in the sphere K = I(R(||z||Er% <R-=

A(T) +2) of E5.
Proof In E5., we consider

z =z,

(3.31)

where z = {u, p, q} the components ®;(u, p,q), i = 1,2,3, of the operator ®(u,p,q) are de-
termined by the RHS of equations (3.10), (3.16), and (3.17). Consider ®(u,p,q) in Kg = K
from E3. Similiar to (3.17), we obtain that for any z,z;,z; € K the following estimates are

valid.

||¢Z||55T <A(T) + B(T)||p(t) ”C[O,T] ||u(x, t)”B;T + C(T)||q(t) ”C[O,T]
< A(T) + B(T)R> + C(T)R < A(T) + B(T)(A(T) + 2)’

+ C(T)(A(T) +2),

[[Pz1 — ¢Z2||E§ < (A(T) +B(T))(”p1(t) _pZ(t)”C[O,T] + ||q1(t) —q2(2) ”C[O,T]

+ || uy(x,t) — us(x, t) HBg T)

< (B(T)(A(T) + 2) + C(T))||z1 —z2||EsT.

(3.32)

(3.33)

Page 18 of 36
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Then, using (3.31) and (3.33), it follows from (3.30) that ® acts in Kz = K and it is a con-
traction mapping. Therefore, in K = K, the operator has a unique fixed point {u, p, g} that
is a solution of equation (3.31).

The u(x, t), as the element of Bg,T, has continuous derivatives 14, (x, t), thy (X, £), Usxx (X, £),
Uypxx (%, £) in D7. Now, from (3.33)—(3.35), we obtain

””g(t) ”C[O,T] = H“l(t) HC[O,T] ”"‘O(t) ||C[0,T]

+ ”ﬂz(t)“c[o,T] |6 llcro,r + If G )l o115 01)5 (3.34)
<Z()»k |y @) c[o,T])Z)
k=1
<24 (Z(Ai |u2er @ C[o,T1)2>
k=1
+ Hlp@)uxx, 1) + (g (%, ) + fe(x, )l cro,1 5 0,0)5 39
(Z(kk (ol C[O,T])2)
k=1
< 3080 )
k=1
i~ : 6
© afi (Z(k,‘EHMZk—I(t) Hc[O,T])2> N § 11p(2) (s (6, )k + 1a(, 2))
k=1
+q(t) (g (%, )% + g(x, 1)) + fu(x, )% + £ (%, D)l co,71 1 250,1)- (3:36)

Hence, it follows that u(x, £) is continuous in D7.

It is easy to validate that (1.1)—(1.3) and (2.9)—(2.11) are fulfilled in the ordinary sense.
Therefore, {u(x,t),p(t),q(¢)} is a solution of (1.1)—(1.3) and (2.9)—(2.11), and by Lemma
3.1, it is unique in the ball Kz = K. The theorem is proved. O

The subsequent theorem is proved by Lemma 2.2.

Theorem 3.3 Let all the conditions of Theorem 3.2 be fulfilled:

1 1
/g(x,t)dx:O, /f(x,t)dx:O, tel0,T],
0 0
1 1
fw(x)dx=0, /z/r(x)dxzo,
0 0
0(0) = 1y (0), w(%) - 1n(0),

¥ (0) = H,(0) + 8/ (T), W(%) = hy + 8hy(T),

11 58T )
A +2)( 5+ ——= - | T2 < 1.
2 1+6T2(1+06T)
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Then, in K = KR(||z||55T <R=A(T) +2) of E5, (1.1)—(1.5) has a unique classical solution.

4 Discretization of the direct problem

We consider the IBVP (1.1)—(1.4), when a, ¢(¢), p(£), g(x,t), and f(x,t) are given. First,
we divide [0, /] into a mesh of equal size & = x;,1 —x;, i =0,1,..., M. The discrete form of
the direct problem is as follows. We denote u(x;,t;) = uﬁ, pt) =0, qt) =q, gxi,t) = g{
and f(x;,8)) = f/, where x; = ih, t; = jk, h = Ax = L and k = At = I fori=0,1,...,M and
j=0,1,...,N. The QnB-spline QB;(x), i = -2,-1,...,M + 1,M + 2 are given by [6, 9]:

(x — xi3)°, x € [xi3,%i2),
(x - xi3)° — 6(x — x,5)°, x € [xi2,%i1),
. (6 —x;3)° — 6(x —x;9)° + 15(x —x;1)°, % € i1, %),
QBi(x) = 75 | (6ir3 =%)° = 6(xis2 = %) + 15(xis1 = #)°, & € [xi,x001), (4.1)
(%13 —%)° = 6(xi02 — X)°, x € [xis1,%i12),
(i3 — %)%, x € [%is2,%i13),
o, otherwise.

The values of QB;(x), QB/(x), QB/(x), QB/"(x), and QBY(x) are given in Table 1, where
51:%152:%)53: Z—S»and%‘z&:lh—%ﬁ'

We suppose that u(x, t) at the point (x, ) is expressed as:
M+2
() = Y Celt;) QBx(%). (4.2)
k=—2
The variation of the U(x, £) is expressed as
i+2
wx,5) = Y Ci(t)QB(). (4.3)

k=i-2

Using (4.3), we obtain u, uy, Uy, Usxy) Ugxxx aS:

W, =Cl,+26C,, +66C, +26C,_, +C.,, (4.4)
()] = El(C{+2 +10C],, - 10C]_, - C{:—z)’ (4-5)
()] = £2(Clp +2CL,, —6CL +2C., + CL,), (4.6)
(32 = §3(Cli = 2Cy +2C1y = CLy), (4.7)
(enne), = £4(Cl,, —4C),, +6C, —4C) + CL,), (4.8)

Table 1 The QBi(x), OB;(x), QB (x), and QB (x)

Xi-3 Xi-2 Xi-1 Xi Xit1 Xi+2 Xi+3
QB;(x) 1 26 66 26 1
QB;(x) & 10& 0 -10& -&

QB (x) & 28 0 283 -&

0
0

QB'(x) O & 2% 65 25 &
0

QBY(x) 0 & -2&, 68 -2&4 &,

O O O O o
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where C{ = C;(t}). Now, we discretize equation (1.1) as:

u;l:+1 - 2"‘? + Mé_l + a2<(uxxxxyl:+l i (uxx"x)ll>

R o 0
_ p’”u? +PI”11 N q/”gfr +q1gl{ +fi1+ +fl./
2 2 2

, i=0,1,...,M,j=0,1,..
which implies

(1 —A’*l)ui+l + B(umm)’l:Jr1 =(2 +A’)L/; —B(uxxxx)é — iR,

l 14

i=0,1,...,M,j=0,1,...,N,

where

@ pa o 1'g vag S
2 b - - .

A , .
2 ! 2 2

Now, using (4.4)—(4.8) and simplifying the terms, we obtain

(1- A + £,B)CI") + (26 - 264" — 4,B)C)')
+ (66 — 66471 +6£,B)C)" + (26 — 264" — 4€,B)CI!
+ (1= A"+ £,B)CIy = (2+ A —£,B)CL, + (52 + 264 + 45,B)C,
+ (132 + 6647 — 664B)C, + (52 + 264/ + 464B)C),,
+(2+ A ~£B)C,, - C/,, ~26C}; ~66C] ~26C/, ~C/, +R,

i=23,...,.M-2,j=1,2,...,N.
The above equation can be written as

2+l i+l 2+l i+l 2+l i+l 2+l i+l 2+l i+l
Ay G+ Ay Cy+A; G +A, G+ A7 Gy
_ D »
= Bllci—Z +B,Ci,

+BiC+ B,Cl, + B Cl,, - €l ~26C), ~

i+1

i=2,3,..,M-2j=12,..,N,
where

A =1-A v gB, AL =26- 2641 — 4B,
ALl =66 - 664" + 65,8, B, =2+ A -£,B,

B, =52+264' + 46,B, and B} =132+ 664 - 6£,B.
Now, we discretize the initial conditions (1.2) as

ux0)=p1(x) = w=¢i(x), i=0,1,.... M,
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LN, (49

(4.10)

(4.11)

66C " —26C 1 - Cl) + R,

(4.12)

(4.13)
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us(x,0) = po(x) = ui_l = ull —2Atpy(x), i=0,1,...,M. (4.14)

For j = 0, using the IC (4.14) in (4.10), we obtain

(2-AY)u} + Blttraa)} = (2 + A ) — B(thanns)} + RY, i=0,1,..., M, (4.15)
where

RY=RY+2Atp(x;), i=0,1,...,N.
Using the approximated values of # and #,y, in (4.15) and simplifying the terms, we obtain

(2-A' +£&B)Cl, + (52— 26A" —4£,B)C} | + (132 - 66A" + 6£,B)C}
+(52-26A" - 4&B)C,, + (2-A' + &B)C},,
= (2+A° - £B)C), + (52 +26A° + 4&,B)C?
+ (132 + 66A° — 6£,B) CY + (52 + 26A° + 4£,B) CY,
+(2+A°-&B)C, + R, i=2,3,...,M-2, (4.16)

which can be written as

A“{C}fz +A§Cilf1 +A§Ci1 +A;‘C1

i+

1 +A’1‘C1

i+2

=B{C), +B;C), +B;C) + ByC), + B{C), +RY, i=2,3,...,M-2, (4.17)

L L

where

At =2-A'+£,B,  A;=52-26A'—4£,B, A5 =132-66A" + 68,8,

Bi=2+A"—£B, B} =52+26A"+4¢,B, Bj =132 + 66A° — 6£4B.

The system (4.17) has unknowns (C%,, C°}, C3, ..., C%.,, CY;.,), where C%, C%, C%,.,, and
CY,., are outside the domain. For a unique solution, we need to remove these quan-
tities. For this purpose, we use the BCs u(1,£) = 0, u,(0,£) = u,(1,£), u.(1,£) = 0, and
fol u(x,t) dx = 0, which give us following equations:

Chyy +26C),_ +66C,; +26C),,, +Chyrp =0, (4.18)
-C,-10C | +10C] + Cy = -C,_, - 10C},_, +10C);,, + Chy,os (4.19)
Clhyy +2C,  —6C, +2C, ., +Chyy =0, (4.20)
and

. . . . . M_3 . .

Cl, +28C), +120C) +212C} +239C) +240 Y C, +238C),,
k=3
+186C),_, +54C,, +2C),,, =0, (4.21)

where, j=0,1,...,N.
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Solving the above equations, we obtain

. 11 .
c{lz—?c’——cf——Zc’ c’M1 3C’M,
;200 ; 400 ; 403 ; 400>
Ch="-Cr 5 C+—5C+ — > .G
406 _; 400 ; 164
*7g i 5 Co * 5 G
Chtrr = =Chr1 ~3Che
Clyry = —Chyy +12C,,.
For i = 0, using (4.22) and (4.23) in (4.17), we obtain
- - - - M_S - - -
A5G+ AJCH+ ASCY + ALY CL+ ALCy, + AiChyy + ASCYy
k=3
M-3
=BjC) +ByC) + B3CY + By > C +BLCly_, + ByCly_y + B3CYy + RY,
k=3
where
- 200 20 - 400 37
403 40 - 400 40 - 406 40
; = TAT — EA; +AT, AZ = ?AT — ?A;’ A;k = ?AT — ?A;,
- 400 34 - 164 11 - 200 20
Az = ?AT — ?Az, A; = TA* 3 A;, BT = TBT — ?B; +B§,
- 400 37 - 403 40 - 400 40
Bi=—B-""Bi+B, Bi=—B'—-—Bi+B, Bi=—B——
3 3 3 3 3 3
406, 40 400 . 34 - 164 11
BS ?B* - ?B;, BZ = ?B* - ?Bz; B; = ?BT - ?B;
For i = 1, using (4.22) in (4.17), we obtain
M-2
AT Cy+ASCL+ AT CL+ AT CY+ AT Y L+ AL Clyy + A Cly
k=4
M=2
= B’{*Cg + B;*C? + B;*Cg + BZ*Cg +B:* Z C,((’ + B’g*Cg,[_l + B;*Cg/[ + I_Q(l’,
k=4
where
20 37 40
AT = —?AT + A3, Ay = _?AT +A3, Ay = —?A’lk +A43,
40 40 34 11
Ay = —?AT + A7, AY = —?AT, AYF = —?A’{, AY = —?A’{,
7

20 3 40
By'=-TBi+B;, B =-TBi+B, B'=-TBi+E

(4.22)

(4.23)

(4.24)
(4.25)

(4.26)

(4.27)
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By --BIBL B --UBL  BU--LB, BN --LBL

For i = M — 1, using (4.24) in (4.17), we obtain

AiChy 5 +ASCY 5 + (A5 - A7) Chyy + (45 - 3AT)CYy
=B;Chy_s +ByCyy_, + (B — B})Cyy_y + (By = 3B})Cyy + Ry

For i = M, using (4.25) in (4.17), we obtain
(A% - 3A3 + 124%)C,, = (B — 3B5 + 12B})Cy; + RS,

At time ¢ = 0, the equations (4.26), (4.27), (4.17), (4.28), and (4.29) form a system:

AT Ay Ay Ap AL - A A A A3
Ar AL AL AL AT 0 - 0 0 0
0 AY AF AL AL AT 0 .. 0 0
0 0 0 0 0 A* A A A A’
0 0 0 0 0 0 A% A} Al-AY A;-3A
ay (B
al | &
G R)
X = ,
Ca| | Birs
G| | B
Cu R},
where
M-3
RO =B;C)+B3C) +ByCS + By Y CP + BiChy, + BiCyyy + B3CYy + RS,
k=3
M-2
R)=By"C{ +By*C) + B*CY + By CY + BY Y " Cp + By Cy_y + B3*Cy + RY,
k=4

RO=BiC’, +BiCY +BiC + B5CY  + BECO, + R, i=2,3,..., M -2,
Ry, =B{Cy_3+ByCy_y + (Bs = Bf)Cyy_y + (Bs — 3B;)Coy + Ry,

R, = (B; —3B; + 12B})Cy; + RY.
Finally, for i = 0, using (4.22) and (4.23) in (4.12), we obtain
. . . . . . . M_B . . .
APt L AT T L AT O AT Z v AT,
k=3

Axj+l ~j+l Zxj+l i+l
+A; T Cy +A; Cy

(4.28)

(4.29)

(4.30)
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M-3
BYC)+BYC+ B+ BY S )
k=3
+BYC, ,+BIC),  +BIC, —udy +R), j=1,2,...,N, (4.31)
where
A;k/#l _ ?Aj;l 20A1+1 A}3+1, A;/arl _ ?A};l 3?71%1;1 A/’;l,
A;jﬂ _ @Aj;l 40A;+1 A’fl AZ;‘H _ 400 Aj1+1 B @A’;l
3 ' 3 3°%7
A;,n _ 4?06;1/;1 4:;0 A,2+1’ Az,u 43&2‘;;1 _ %A}‘;l,
A;/u @A};l 1 ‘/‘2+1 "Tj+1 200 A1+1 B @ A/+1 B’;l
3 3 ’ ’
agivl 400~ 37 A 1 agivl 403 i1 40 A 1
B;]+:_ 1+__ j+ B]2+, B§]+:T 1+ v + le+,
B*]+l 400 - j+1 40 j+1 B*]+1 406 j+1 40 j+1
4 3 1 - ? 20 5 3 1 - ? 2
sijer 400051 34450 ciier 16400 114
Bzﬂ- B]+ 3 2+ , ;}+ 3 B/1+ . B/2+ )
For i = 1, using (4.22) in (4.12), we obtain
AT*]#IC{;I +A;*/+IC/1'+1 +A;*j+lcj;1 +A:¢;*j+1C/3’+1
M-2
+A**/+1 Z C}+1 **}+1C1+1 A;*chx;l _ Bﬂlok]c{) +E;*1C11
k=4
+ B CL+ B CL+ By Y G+ By Chyy + BYCl - + R,
k=4
j=1,2,...,N, (4.32)
where
A41<*]+1 20A]+1 A];l, A;F*/‘fl 337A]+1 A];l,
A;*]Jrl 40A]+1 A]2+1’ Az*ﬁl 4'0A]+1 A]1+1, A;*ﬂl _ _@ "]'1+1,
3 3 3
Az*ﬂl _ _%Aj;l’ A;*}'H _ _EA};I’ Bﬂ{*/ _ _2_3031';1 + B]’;l’
P 37 i A A gxi 40 .; A A ki 40A
B;*] _ __B]1+1 +B]3+1, B;*} _ __B/1+1 +sz+l, BZ*] +1 B]1+1,
s 40 5 s 34 i SRR §
B’é*’- 3 s BE*’ T3 i B =——B".



Page 26 of 36

Mehraliyev et al. Boundary Value Problems (2022) 2022:96

For i = M — 1, using (4.24) in (4.11), we obtain
A+ A, + (A - AN Ol + (A =34 O
= B’1C§W3 + Blzcj\/pz + (Bjs _BII)C;VI—I + (Blz - 3311)C5\4 + RIva
j=1,2,...,N. (4.33)

For i = M, using (4.25) in (4.12), we obtain
(AL =34 + 124 Oy = (B - 3B, + 12B,)C — ) + R, (4.34)
At the time ¢, j = 1,2,..., N, the equations (4.31), (4.32), (4.12), (4.33), and (4.34) form a

system:

7w+l 2+l 2+l A w1 2+l 2+l 2 xj+l 2 xj+l
fl1‘1 f\42‘1 f‘4'1 "A4 1 ’\”1 A4 f\4‘1 146'1 f\47'1
AR A A A EH S
At YAl VAl A At
atoAn A A AT o 0 0
J+ J+ J+ ]+ ]+
o AY At A At A 0 0
il il il 1 AL
0 0 0 0 A AR A Al Al
2j+l 2j+l j+1 j+1 2j+1 j+1
0 0 0 0 o AN AN AT -A A3
Jj+1 =
Co Ry
Jj+1 =5
Cl Rll
J+1 o
CZ R12
X = . ,
al R,
M-2 M-2
J+1 =5
CM—I RIM—I
J+1 o
CM R/M
where
M-3
R P L P B PR R %] 4 -1 o
Rg =B/Cy+ByC, +B;Cy+ B, E Ci+B; Cyy + B Cypy + B CM—uJO +R6,
k=3
M-2
o D Axk] ~f Fk] ~f AN¥kk] ~f kK] J kK] ~f kK] ~f j—1 j
R, =B]"Cy+B,’C, +B,"C,+ B,” C, + B, E C,+B’C\y,+B7C\ - + R,
k=4

R-BC .+ B B BC. + B, i 4R, 1223, M2
Rjyy =B\ Cyps + ByClyy + (By = BY) Chpy + (By = 3B1) Cy + Ry
R, = (B, - 3B, +12B,)C) -y +R,,.
In order to solve the systems (4.30) and (4.31), we need to determine the initial vector
(C3,CY,...,CY) from the ICs. To remove the C%, C%, CY,.,, and CY,,,, we use
MX(O’ 0) =K1, le(l, 0) =K, (4"35)
1,x(0,0) = k3, Uy (1,0) = 0. (4.36)
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Using (4.5) and (4.6) in (4.35) and (4.36) and eliminating the unknowns C°%,, C°, C%,.,,
and CY,,,, we obtain the (M + 1) x (M + 1) system:

54 60 6 0 0 O 0 cy
101 135 105 0
B 1L 3 o0 o0 0 C?
1 2 66 26 1 0 0 C9
0 1 26 66 26 1 0 C9
0 0 1 2 66 26 1 []|C,
0 0 0 1 Bowom)ic
0o -~ 0 0 0 6 60 54 Y,
26 5 26
00 - T ~ K1~ 1 ~ ek
Q1) + g1 + gk
P(x2)
@(x3)
P(xpm-2)
</’(xM-1)—§K2

@(%nm) — %Kz

5 Stability analysis

The von Neumann stability [13, 27] is analyzed in this section. For stability, we choose
fx,t) =0, g(x,t) = 0 and assume p(£) = p is a local constant. We discretize the problem as
follows:

(1- A)u’+1 +B uxxxx)j =(2 +A)u’ B(uxxxx) u’;_l,

i=0,1,...,M,j=0,1,...,N, (5.1)
where
~ (AP? - At)?
A:u‘, B:azu.
2 2

Using equations (4.5) and (4.6) in the above equation, we obtain

ACIY + A O + AT + AT + A C,
—Blcl 2 +BzC 1 +BgC}
+B,C +B,Cl,, - C—26C ] —66C, " —26C ] - CI),

i+2 i+2 i+1

i=2,3,...,M-2,j=1,2,...,N, (5.2)
where

Al =1-A+&B,  Ay=26-26A—-4&B,  As=66—66A + 66,8,

Bi=2+A-&B,  By=52+26A+4&B,  B;=132+66A — 6£,B.
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Now, we consider the trial solution Cf = §/¢X© at a given point x;, where ® = 6/, where
k = +/~1. Substituting C, in (5.2), we obtain

(212&1 c0s(20) + 24, cos(®) + 1213)82

- (231 cos(20) + 2B, cos(®) + 33)8 + (2¢0s(20) + 52cos(0) + 66) =0, (5.3)
which can be written as
A18% — Ayd + A3 =0, (5.4)
where

Ay =24, cos(20) + 21212 cos(®) +A3, Ay = 2B c0s(20) + 2B, cos(®) + Bs,

A3 =2c08(20) + 52 cos(O) + 66.

Now, employing the Routh—Hurwitz criterion under § = }i—g in the above equation, we
obtain

(A1 + Ag+ A3)6? +2(A1 — A3)8 + (A — Ay + A3). (5.5)
The necessary and sufficient conditions for |§| <1 are
A1+ Ay +A3>0, A1-—A3>0, and A;—-Ay+A3>0. (56)

Substituting the values of Aj, Ay, and A3 into equation (5.6), we have

S} S}
A1+ Ay + As = 16cos2(5> + 416cos2<3> + 64, (5.7)
120
Ap—Asz= 8(At)2<(Ax)4 —[7) (2cos*© +6)
240 S}
_ 4(At)2<(Ax)4 + 13p) cos2<§>, (5.8)

120 ®
A1 — Ay + Az = (aAt)? L (8 cos?® — 16c052<5> + 10)

®

—(A)?p (8 cos? ® + 104cos2< 5 ) + 10). (5.9)

It is obvious from equations (5.7)—(5.9) that A; + Ay + A3 >0, Ay — A3 >0,and A; — Ay +
A3 > 0. Hence, the technique is unconditionally stable for the discretized problem.

6 Numerical algorithm for IP
We intend to obtain stable and accurate solutions of p(t), g(t) and u(x,t) that assure
(1.1)-(1.5). The considered problem is solved approximately by minimizing the subse-

u<%,t) —hy(t)

quent regularized cost function

2

F(p,q) = |u(0,) = () |* + +v(|p®|* + |a®|), (6.1)




Mehraliyev et al. Boundary Value Problems (2022) 2022:96

where u fulfills (1.1)—(1.4) with known p(¢), g(¢), and y > 0 is a regularization parameter

initiated for stabilizing the approximate solutions. The discretized form of (6.1) is

N ) N 1 2
= S (u0.)- )+ 3 ({315 -1t

J=1 J=1

+y (i:(ﬂf + i((/)z). (6.2)

Jj=1

Equation (6.2) is minimized by the MATLAB Isgnonlin tool [19].

7 Results and discussion
An example is considered in this section to examine the accuracy and stability. To validate

the efficiency, we use the RMSE as:

N 1/2
T numencal exact 2
RMSE(p) = [ﬁ ,Zl (&) - p™* (1) ] : (7.1)
N 1/2
RMSE |: Z numerlcal qexact (tn )) 2:| . (7'2)
j=1

We take T = 1. The lower and upper bounds for p(t) and g(t) are considered to be —10?
and 102, respectively.
The BVP (1.1)—(1.5) is solved for both exact and perturbed data. The perturbed data is

managed as
B (G) = hi(g) + €1y, j=1N, (7.3)
héz(tj) =hy(t) +€2;, j=1N, (7.4)

where €1; and €2; indicate the r.v.s and the subsequent S.D.s
ol= max | (8)| x p%, 02 = max |y (t)| x p%. (7.5)
0<t<T 0<t<T

For the perturbed data (7.3), (7.4), h1(t;), and h,(¢;) are replaced by hil(tj) and h;z(t,') in
(6.2).
Let us examine the BVP (1.1)—(1.5) with unknowns p(¢) and ¢(¢), from

Upp + A Uy =p(u+glxt)qt) + f(x,t), (x¢t) €[0,1] x [0,1], (7.6)
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the ICs
¢ (x) = u(x, 0)
= %(5 —16x — 99x* + 1764° + 330x* — 528x°
- 462x° + 1056x7 — 495x° + 33x'0),
¥ (x) = uy(x, 0) + Su(x, 1) (7.7)
= %(—5 +16x + 99x% — 176x% — 330x* + 528x° + 4624°
—1056x" +495x° — 33x'7),
8=0,
the BCs

—t

16
u(1,t) =0, 1y (0,8) = —

= u,(1,1), un(1,£)=0, te[0,1],
1
f ulx,t)dx=0, tel0,1], (7.8)
0

with

511e™*

_ ot _
h(t)=e™, hy(t) = 1024

te[0,1], (7.9)
and
at=1, gl t) = (1 - 9x — 2147 + 1224° — 120x* + 65° + 21x°),

1
flx,t) = ge-f(7920 - 63,331x — 166,314%” + 886,606x” — 830,670x" — 558x°

(7.10)
+165,753x° + 1056x7 — 495x° + 33x™* + £(~10 + 61x + 204x”
— 786" + 270x" + 498x” + 357x° — 1056x” + 495x° — 33x™)).
We consider the exact p(t), q(¢) and u(x, t) as:
p(t) =t te [0’ 1]) (7.11)
qt)=1+¢, te[0,1], (7.12)
1
u(x, t) = ge-f(s — 16x — 994 + 176x> + 330x"* — 528x° — 46245
+1056x" — 495x° +33x'%),  (x,£) €[0,1] x [0,1]. (7.13)

Theorem 3.3 is fulfilled, which indicates that a unique solution is assured. First, when p(t)
and ¢(¢) are given by (7.11) and (7.12), the accuracy of (1.1)—(1.5) is validated using (7.7),

(7.8), and (7.10). Figure 1 shows the exact (7.13) and numerical u(x, £), as well as absolute
11
40’ 80
hy(t) in (1.5) are compared to the exact solution (7.9) derived using the QnB-spline method

errors, for Ax = At € {%, }. The approximate additional measurements /;(f) and
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(a)

Exact Numerical

u(x,t)

Absolute error

%107
4
=
g 3
— [
z g2
S ©
31
< RETIRR
IR
Lo
1 \\\\\\\{\“\ e
\Nshgatinne
[ 1
TN
0.5 ¢\\} T 05
X 0o t
Exact Numerical
%107

Absolute error

Figure 1 The exact (7.13) and approximate u(x, t) with abs. errors for (@) Ax = At = 55, (b) Ax= At = g,

(c) Ax= At= 2, for the direct problem

and

80

Table 2 Rate of convergence with At =0.025

Ax Loo ROC  RMS ROC
0.2 6.145e-02 - 1.297e-02 -
0.1 148%-02 204  2423e-03 242

0.05 2604e-03 252  3.14%-04 294
0025  5.020e-04 237  4272e-05 288

with M = N € {20,40,80} in Fig. 2. The rate of convergence of the method is checked
with At = 0.025, which shows that the method is second-order convergent in space, see

Table 2.
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(a) (b)
1 -0.15
x M=N=20
0.9 o M=N=40 0.2
5 M=N=80
0.8 —exact | | 0.25f
o7 1 o3}
= =
0.6 1 0.35f
i | x M=N=20
0.5 04 » Monoto
o M=N=80
04 b -045¢ —exact
0.3 : : : : 05
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
t t
Figure 2 The exact (7.9) and approximate (@) h; (1) and (b) h;(t), for the direct problem with
M= N € {20,40,80}

(a) (b)
10° 1
—exact solution
w o approximate solution
5 1000 —o—initi
2 0.8 initial guess
2
2 s
o 10
2 0.6
& 100| g
o a
ks 04
=105t
>
g 0.2
£ 107 '
1028 . . . . . . 0
0 1 2 3 4 5 6 7 0 0.2 0.4 0.6 0.8 1
Number of iterations t
(c)
22
—exact solution
o approximate solution
25 | s-initial guess
181
=16
141
121
1
0 0.2 0.4 0.6 0.8 1

t

Figure 3 (a) The IF (6.2), and the approximate and exact ((7.11) and (7.12)) for: (b) p(t) and (c) g(t), with p% =0
andy =0

In the IP (1.1)—(1.5), the initial guesses for p and q are taken as:

p°(5) =p(0)=0, j=1LN, (7.14)
) =q0)=1, j=1,N. (7.15)
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—exact solution .
1F [ p%=0.1%, =107 W
o p%=0.1%, 1=10"°

p(t)
p(t)

0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1

X
—exact solution rﬁl
27 |- p%=0.1%, y=107
o p%=0.1%, 4=10"°

o 0.2 04 06 0.8 1 0 0.2 0.4 0.6 0.8 1
t t

Figure 4 The approximate and exact ((7.11) and (7.12)) p(t), and g(t), for p% = 0.1%, with y € {0, 107,107}

When p% =0 in (7.5), we use Ax = At = 41—0 to start analyzing to recover p(¢), g(¢£) and
u(x,t). The F in (6.2) is shown in Fig. 3(a), where a monotonic decrease in convergence
is realized in 7 itrs for a given tolerance of O(107%°). Figures 3(b) and 3(c) depict the ex-
act ((7.11) and (7.12)) and approximate p(z), g(t) without regularization. An accepted and
stable accurate p(¢) and ¢(¢), producing RMSE(p) = 1.0827E-3 and RMSE(g) = 6.6000E-3
can be seen.

Now, as in equation (7.5), we add p% € {0.1%, 1%} to h;(t) and hy(¢) through (1.5). In
Figs. 4 and 5, p(t) and ¢(¢) are depicted. As p% increases, the solutions begin oscilla-
tions with RMSE(p) € {9.1265,59.5488}, as seen in Figs. 4(a) and 5(a), and RMSE(g) €
{9.0045,56.7323}, as seen in Figs. 4(c) and 5(c). Figures 4(b), 4(d), 5(b), and 5(d) show
the recovered p(t) and ¢(¢) for various y, and the most accurate solution is attained for
y € {107,107}, producing RMSE(p) € {0.0692,0.0519}, and RMSE(q) € {0.1403,0.1051}
for p% = 0.1%, and for y € {1075,107*}, producing RMSE(p) € {0.1297,0.0865}, and
RMSE(g) € {0.2633,0.1754} for p% = 1%, see Table 3. The abs. errors between the exact
(7.13) and approximate u(x, t) are shown in Fig. 6, where the impact of y > 0 in minimizing

the unstable behavior of the recovered u can be observed.
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Figure 5 The approximate and exact ((7.11) and (7.12)) p(t), and q(t), for p% = 1%, with y € (0,107,107}

Table 3 RMSE values ((7.1) and (7.2)) with p% € {0.1%, 1%} and various values of y

p% RMSE(p)  RMSE(q) lter
0.1% =0 9.1265 9.0045 20
=108 0.1039 0.2106 10

=107 00692 0.1403 10

=100 0.0519 0.1051 10

10° 00932 0.1895 10

1% = 595488 567323 400

0
=107 02595 0.5271 20
=100 0.1557 03161 20
=10"° 01297 0.2633 20
=10* 0.0865 0.1754 20
=102 01329 0.2145 20

A S T T A T T S Y S Y S Y
Il

8 Conclusions

This article discusses the existence and uniqueness of an IP for a fourth-order PDE with
nonlocal integral conditions. The spectral analysis technique is used to reduce the prob-
lem to an operator equation in a certain Banach space. Then, the principle of contraction
maps is used to prove the existence and uniqueness. This work is novel and has never
been investigated theoretically and/or numerically before. A collocation method based on
QnB-splines is applied for the direct problem. The stability analysis is also discussed for
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Figure 6 The abs. errors in the exact (7.13) and approximate u(x, t) with: @) y =0, (b) y = 107>, and ()
y =107, with p% = 1%

the discretized system. The MATLAB subroutine Isqnonlin is used to solve the resulting
nonlinear optimization problem. To deal with stability and accuracy, Tikhonov regular-
ization is employed. The numerical analysis revealed that accurate solutions are attained
for y € {1077,107°} when p% = 0.1% and for y € {107°,10~*} when p% = 1%.
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