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Abstract
We consider a time-dependent Navier–Stokes problem in dimension two and three
provided with mixed boundary conditions. We propose an iterative algorithm and its
implementation for resolving this considered problem. The discretization is based on
a backward Euler scheme with respect to the time variable and the spectral method
with respect to the space variables. We present some numerical experiments which
confirm the interest of the discretization.
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1 Introduction
Due to its physical importance, the Navier–Stokes problem with mixed boundary condi-
tions has been handled in the literature either by finite element discretization [1–8] or by
discretization by the spectral and the spectral element method [9–17]. Such mixed bound-
ary conditions are related to a large number of flows, for instance, in the case of a fluid on
both sides of a membrane or for the well-known Green–Taylor flow; see [18].

We assume that the domain � is a cube where �m is one of its faces. We propose a
discretization of this problem by the spectral method [19, 20]: The discrete problem re-
lies on high degree polynomial approximation and is constructed by the Galerkin method
with numerical integration. Note that the spectral and spectral element discretizations
of this formulation were studied in [14] and [12] in the case of conditions on the normal
component of velocity and the tangential components of vorticity on the whole boundary.
However, different arguments are needed here since the variational formulation is rather
different. In particular, we have chosen to work with exactly divergence-free discrete ve-
locities, which seems necessary for the discrete problem to be well posed. The numerical
analysis of this discretization was performed in [11].

We overview the Newton-type iterative algorithm that is used to solve the nonlinear
discrete problem. Relying once more on the arguments in [8], we check its convergence.
We also outline our algorithm for finding an appropriate initial condition in order to ini-
tiate Newton’s method. Then, we present the matrices of the linear system derived from
the discrete problem.
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In [13], the generalized minimal residual method (GMRES) [21] is used to solve the sta-
tionary Stokes problem. However, this method is not easy to implement since the matrix is
not symmetric and needs a huge number of iterations to converge. In [22], a direct method
was proposed permitting to simplify and to improve the resolution. For the nonstation-
ary case, subject of this paper, we will use the global resolution based on the good results
shown in [22]. The discretization in time by the implicit Euler method permits us to sta-
bilize the discrete problem. The resulting global matrix is now symmetric and positively
defined making the use of the gradient conjugate method possible. As a result, we obtain
high accuracy with an optimized number of iterations.

Finally, we present some numerical experiments, which confirm the good convergence
of our algorithm and the benefit of this formulation. These numerical experiments are
coherent with the theoretical results and the optimality of discretization [11].

An outline of the paper is as follows:
• In Sect. 2, we present the continuous, full discrete problems and the error estimate.
• Sect. 3 is devoted to the description and the convergence of the iterative algorithm

used to solve the nonlinear discrete problem.
• In Sect. 4, a detailed description of the linear matrix system is provided. We conclude

by presenting some numerical experiments.

2 The continuous and the full discrete problems
We assume that the three-dimensional domain � is bounded and simply connected. ∂�

is its Lipschitz continuous connected boundary. Let [0; T] be an interval in R where T is
a positive real. �m and � are the two connected parts of the partition without overlap of
the boundary ∂�. “m” denotes the membrane.

x = (x, y, z) and n stands for the unit outward normal vector. We consider the time-
dependent Navier–Stokes equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂υ
∂t (x, t) – ν�υ(x, t) + (υ · ∇υ)(x, t) + ∇P(x, t) = f(x, t) in � × [0, T],

divυ(x, t) = 0 in � × [0, T],

υ(x, t) = 0 on � × [0, T],

υ(x, t).n(x) = 0 on �m × [0, T],

curlυ(x, t) × n(x) = 0 on �m × [0, T],

υ(x, 0) = υ0 in �,

(1)

f is a density of forces and ν is a positive viscosity. The unknowns are the velocity υ and
the pressure P of the fluid.

We introduce the unknown vorticity τ = curlυ (see [4, 23–26]), and since

υ.∇υ = τ × υ +
1
2

grad |υ|2,
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problem (1) is equivalent to the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂υ
∂t + ν curl τ + τ × υ + ∇p = f in � × [0, T],

divυ = 0 in � × [0, T],

τ = curlυ in � × [0, T],

υ.n = 0 on ∂� × [0, T],

υ × n = 0 on � × [0, T],

τ × n = 0 on �m × [0, T],

υ = υ0 in �,

(2)

such that

p = P +
1
2
|υ|2.

Let B a separable Banach space. We recall that:
• (·, ·) is the L2(�) scalar product,
• L2

0(�) is the space of functions in L2(�) which have a null integral on �,
• H(div,�) = {u ∈ L2(�)3; div u ∈ L2(�)},
• H(curl,�) = {v ∈ L2(�)3; curl v ∈ L2(�)3},
• H∗(curl,�) = {v ∈ H(curl,�); v × n = 0on�},
• Lp(0, T ; B) = {v measurable on ]0, T[ such that

∫ T
0 ‖v(·, t)‖p

Bdt < ∞},
• Hs(0, T ; B) = {v ∈ L2(0, T ; B); ∂mv ∈ L2(0, T ; B); m ≤ s}.
Lp(0, T ; B) is a Banach space equipped with the norm

‖v‖Lp(0,T ;B) =

⎧
⎨

⎩

(
∫ T

0 ‖v(·, t)‖p
Bdt)

1
p , for 1 ≤ p < +∞,

sup0≤t≤T ‖v(·, t)‖B, for p = +∞,

and Hs(0, T ; B) is a Hilbert space equipped with the scalar product

(v, w)Hs(0,T ;B) =

( s∑

i=0

(
∂ iv, ∂ iw

)2
L2(0,T ;B)

) 1
2

.

Finally, we define as well L(B) the Banach space of linear and continuous functions on B
into R provided with the norm

∀L ∈ L(B), ‖L‖L(B) = sup
f ∈B/{0}

|L(f )|
‖f ‖B

.

Then the velocity’s space is defined as

X(�) = H0(div, τ ) ∩ H∗(curl, τ ), (3)

which is provided with the following norm:

(‖div v‖2
L2(�) + ‖curl v‖2

L2(�)3
) 1

2 . (4)
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We denote by X(�)′ the dual space of X(�). Then, if f ∈ L2(0, T ;X(�)′), then problem (2)
is equivalent to the following variational formulation. See [11] for the proof.

Find (τ (t),υ(t), p(t)) ∈ L2(�)3 ×X(�) × L2
0(�) such that

∀v ∈ X(�),
(
∂tυ(t), v

)
+ a

(
τ (t),υ(t); v

)
+ K

(
τ (t),υ(t); v

)
+ b

(
v, p(t)

)
=

〈
f(t), v

〉
,

∀q ∈ L2
0(�), b

(
υ(t), q

)
= 0,

∀ϑ ∈ L2(�)3, a
(
τ (t),υ(t);ϑ

)
= 0,

υ(0) = υ0 in �,

(5)

where 〈., .〉 is the duality product between X(�)′ and X(�), and a(., .; .), b(, ., ) a(., .; .) are
defined as follows:

a
(
τ (t),υ(t); v

)
= ν

∫

τ

curl τ (x, t) · v(x) dx, b
(
υ(t), q

)
= –

∫

τ

divυ(x, t)q(x) dx,

a
(
τ (t),υ(t);ϑ

)
=

∫

τ

τ (x, t) · ϑ(x) dx –
∫

τ

υ(x, t) · curlϑ(x) dx.

While we define the trilinear form K(., .; .) as

K
(
τ (t),υ(t); v

)
=

∫

τ

(τ × υ)(x, t) · v(x) dx. (6)

We have the following inf-sup condition (see [6] or ([27] Chap. I, Cor. 2.4) for its proof ):
There exists α > 0 such that

∀q ∈ L2
0(�), sup

v∈X(�)

b(v, q)
‖v‖X(�)

≥ α‖q‖L2(�). (7)

See ([28], Chap. III, Theo. 1.1) and ([29], Chap. V) for the proof of existence of solution of
problem (5).

Now we make a partition of [0, T] into subintervals [tp–1, tp] for 1 ≤ p ≤ P such that
0 = t0 < t1 < · · · < tP = T . Let hp = tp – tp–1 and h = (h1, h2, . . . , hP) be the time step such that
|h| = max1≤p≤P hp.

Using Euler’s implicit method, for f ∈ L2(0, T ;X(�)′) and up = u(., tp), we define the time
semi-discrete problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

υp–υp–1

hp
+ ν curl τ p + τ p × υp + ∇pp = fp in �,

divυp = 0 in �,

τ p = curlυp in �,

υp · n = 0 on ∂�,

υp × n = 0 on �,

τ p × n = 0 on �m,

υ0 = υ0 in �.

(8)

This system of equations is equivalent to the following variational formulation:

υ0 = υ0 in �, (9)
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find (τ p,υp)1≤p≤P ∈ (L2(�)3 ×X(�))P and pp
1≤p≤P ∈ (L2

0(�))P such that

∀v ∈ X(�), ă
(
τ p,υp; v

)
+ hpK

(
τ p,υp; v

)
+ hpb

(
v, pp) = Fp(v),

∀q ∈ L2
0(�), b

(
υp, q

)
= 0,

∀ϑ ∈ L2(�)3, a
(
τ p,υp;ϑ

)
= 0,

(10)

where

ă
(
τ p,υp; v

)
=

(
υp, v

)
+ hpν

(
curl τ p, v

)

and

Fp(v) =
(
υp–1, v

)
+ hp

〈
fp, v

〉
.

Unlike to the two-dimensional case where the vorticity is a scalar function, in the three-
dimensional case the vorticity is a vector field. Indeed, the variational spaces are rather dif-
ferent. Moreover, the existence of a solution in the three-dimensional case is only proved
when the boundary of the domain � is smooth and the viscosity is sufficiently large
enough. We refer to [11] for the proof details for the existence of a solution of problem
(9)–(10).

Hereinafter, we will focus on the spectral discretization of problem (9)–(10). Thus, we
assume that

� = ]–1, 1[3 and �m = ]–1, 1[2 × {1}.

Let the discrete polynomial spaces

XN = X(�) ∩ PN ,N–1,N–1(�) × PN–1,N ,N–1(�) × PN–1,N–1,N (�) (11)

for the approximation of the velocity and

YN = PN–1,N ,N (�) × PN ,N–1,N (�) × PN ,N ,N–1(�) (12)

for the approximation of the vorticity. We consider for the approximation of pressure in
L2

0(�) the polynomial subspace MN of L2
0(�) ∩PN–1(�), see [11] for the definition of MN .

For a good approximation of the nonlinear term K(., .; .), we will make a more precise
numerical integration (see [30] and [12]). Let M ≥ N . Fixing ε0 = –1 and εM = 1, we make
known that the M – 1 nodes εi, 1 ≤ i ≤ M – 1, and the M + 1 weights ρi, 0 ≤ i ≤ M, of the
Gauss–Lobatto quadrature formula such that

∀φ ∈ P2M–1(–1, 1),
∫ 1

–1
φ(x)dx =

M∑

i=0

φ(εi)ρi. (13)
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Let discrete scalar product be defined on PM(�) as: For continuous functions φ and χ on
�̄,

(φ,ψ)N =
M∑

i=0

M∑

j=0

M∑

k=0

φ(εi, εj, εk)χ (εi, εj, εk)ρiρjρk . (14)

Then, based on the Galerkin method combined with the Gauss–Lobatto quadrature for-
mula, we find the following discrete problem from problem (9)–(10):

If υ0
N = Nג (υ0), (15)

knowing υp–1, find (τ p
N ,υp

N , pp
N ) in XN ×YN ×MN such that, for 1 ≤ p ≤ P,

∀vN ∈XN , ăN
(
τ

p
N ,υp

N ; vN
)

+ hpKN
(
τ

p
N ,υp

N ; vN
)

+ hpbN
(
vN , pp

N
)

= Fp
N (vN ),

∀qN ∈MN , bN
(
υ

p
N , qN

)
= 0,

∀ϑN ∈YN , aN
(
τ

p
N ,υp

N ;ϑN
)

= 0,

(16)

where Nג is the Lagrange interpolating operator. The bilinear forms ăN (·, ·; ·), bN (·, ·) and
aN (·, ·; ·) are defined by

ăN
(
τ

p
N ,υp

N ; vN
)

=
(
υ

p
N , vN

)

N + τkν
(
curlτ p

N , vN
)

N ,

bN (vN , qN ) = –(div vN , qN )N , and

aN
(
τ

p
N ,υp

N ;ϕN
)

=
(
τ

p
N ,ϕN

)

N –
(
υ

p
N , curlϕN

)

N .

(17)

While the discrete nonlinear term KN (., .; ) is defined as follows:

KN
(
τ

p
N ,υp

N ; vN
)

=
(
τ

p
N × υ

p
N , vN

)

N . (18)

The compatibility of the two spaces MN and XN is done by the next inf-sup condition
proved in ([15], lem. a.6):

There exists γ > 0 independent of N such that

∀qN ∈ MN , sup
vN ∈XN

bN (vN , qN )
‖vN‖XN

≥ γ N–1‖qN‖L2(�). (19)

The well-posedness of problem (15)–(16) is due to the inf-sup condition (19). We refer the
reader to the paper [11] for the detailed proof. In the following theorem, we summarize
the existence result of the solution.

Theorem 2.1 Assuming that (f ,υ0) is continuous on ([0, T] × �̄) × �̄ and knowing υ
p–1
N at

each time step p, problem (15)–(16) has at least a solution (τ p
N ,υp

N , pp
N ) in YN ×XN ×MN .

Moreover, the couple (τ p
N ,υp

N ) satisfies the following stability condition:

∥
∥υ

p
N
∥
∥2

L2(�)3 + ν

p∑

i=1

∥
∥τ i

N
∥
∥2

L2(�)3 ≤ ∥
∥υ0

N
∥
∥2

L2(�)3 +
272

2ν

p∑

i=1

hi‖גN
(
f i)‖2

L2(�)3 . (20)

.
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By using the findings in [31], we prove an optimal a priori error estimates for the three
unknowns stated in the following theorem (see [11]).

Theorem 1 Assume that the data f ∈ L2(0, T ; Hμ(τ )); μ > 3
2 . There exist an integer N∗ and

a real number h∗ > 0 such that, for all N ≥ N∗ and |h| ≤ h∗, problem (15)–(16) has a unique
solution. Moreover, this solution satisfies for all 1 ≤ p ≤ P the following error estimate:

∥
∥τ p – τ

p
N
∥
∥

L2(�)3 +
∥
∥υp – υ

p
N
∥
∥
X(�) + N–1∥∥pp – pp

N
∥
∥

L2(�)

≤ C
((|h| + N1–s)(∥∥τ p∥∥

Hs– 3
4 (�)3

+
∥
∥υp∥∥

Hs(�)3 +
∥
∥pp∥∥

Hs(�)

)

+
(|h| + N–μ

)‖f‖L2(0,T ;Hμ(�))
)
,

(21)

where C is a positive constant which depends only on the data f and υ j, 0 ≤ j ≤ p – 1.

3 The iterative algorithm and its convergence
We introduce the kernel VN of the bilinear form bN (·, ·)

VN =
{

vN ∈XN ;∀qN ∈MN , bN (vN , qN ) = 0
}

, (22)

which coincides with the space of divergence-free polynomials in XN (see [15], Lem. 3.2.,
for the proof ).

We also introduce kernel WN of the form aN (·, ·; ·)

WN =
{

(ϑN , vN ) ∈ YN × VN ;∀ϕN ∈YN , aN (ϑN , vN ;ϕN ) = 0
}

. (23)

Then we remark that (τ p
N ,υp

N ) is a solution of the following problem:
Knowing υ

p–1
N , find (τ p

N ,υp
N ) ∈ WN such that, for all 1 ≤ p ≤ P,

∀vN ∈ VN , ăN
(
τ

p
N ,υp

N ; vN
)

+ hpKN
(
τ

p
N ,υp

N ; vN
)

= Fp
N (vN ). (24)

Let χN = YN × VN , and we denote by SN the operator such that SN Fp is the solution
(τ p

N ,υp
N ) of the problem:

υ0
N = Nג (υ0), knowing υ

p–1
N , find (τ p

N ,υp
N ) ∈ WN such that, for any 1 ≤ p ≤ P,

∀vN ∈ VN , ăN
(
τ

p
N ,υp

N ; vN
)

= Fp
N (vN ). (25)

We define GN the mapping from χN into a (XN )′ dual space of XN such that:

∀(
τ

p
N ,υp

N
) ∈ χN , 1 ≤ p ≤ P, ∀vN ∈ XN ,

〈
GN

(
τ

p
N ,υp

N
)
, vN

〉
= hpKN

(
τ

p
N ,υp

N ; vN
)

– Fp
N (vN ).

It is easily verified that problem (24) is equivalent to

(
τ

p
N ,υp

N
)

+ SN GN
(
τ

p
N ,υp

N
)

= 0. (26)



Abdelwahed et al. Boundary Value Problems         (2022) 2022:94 Page 8 of 15

We apply the Newton method to problem (26), which leads us to solving the l-iterative
equation

((
τ

p
N
)

l,
(
υ

p
N
)

l

)

=
((

τ
p
N
)

l–1,
(
υ

p
N
)

l–1

)

–
(
Id + SN DGN

((
τ

p
N
)

l–1,
(
υ

p
N
)

l–1

))–1

× (((
τ

p
N
)

l–1,
(
υ

p
N
)

l–1

)
+ SN GN

((
τ

p
N
)

l–1,
(
υ

p
N
)

l–1

))
,

(27)

where D is the Fréchet derivative. Then, if we multiply equation (27) and use the inf-sup
condition (19), we conclude that this equation is equivalently written as follows:

Given an initial condition ((τ p
N )0, (υp

N )0) ∈ YN ×XN , we solve the following problem:

If
(
υ0

N
)

l = Nג (υ0), (28)

knowing (υp–1)l , find ((τ p
N )l, (υp

N )l, (pp
N )l) in XN ×YN ×MN such that, for 1 ≤ p ≤ P,

∀vN ∈XN ,

ăN
((

τ
p
N
)

l,
(
υ

p
N
)

l; vN
)

+ hpKN
((

τ
p
N
)

l–1,
(
υ

p
N
)

l; vN
)

+ hpKN
((

τ
p
N
)

l,
(
υ

p
N
)

l–1; vN
)

– hpKN
((

τ
p
N
)

l–1,
(
υ

p
N
)

l–1; vN
)

+ hpbN
(
vN ,

(
pp

N
)

l

)
= Fp

N (vN ),

∀qN ∈MN , bN
((

υ
p
N
)

l, qN
)

= 0,

∀ϑN ∈YN , aN
((

τ
p
N
)

l,
(
υ

p
N
)

l;ϑN
)

= 0.

(29)

For each value of l ≥ 1, problem (29) is equivalent to a square linear system. We refer to the
papers [31] and ([27], Chap. IV, Thm. 6.3) for the detailed proof of this iterative scheme.
For any l ≥ 1, problem (29) has a unique solution ((τ p

N )l, (υp
N )l, (pp

N )l). The convergence
of the sequence ((τ p

N )l, (υp
N )l, (pp

N )l)l is quadratic to the solution (τ p
N ,υp

N , pp
N ) of problem

(15)–(16). Moreover, for 1 ≤ p ≤ P, the sequence ((τ p
N )l, (υp

N )l)l satisfies

∥
∥
((

τ
p
N
)

l,
(
υ

p
N
)

l

)
–

(
τ

p
N ,υp

N
)∥
∥

χN
≤ K

∥
∥
((

τ
p
N
)

l–1,
(
υ

p
N
)

l–1

)
–

(
τ

p
N ,υp

N
)∥
∥

χN
(30)

such that the constant K < 1. In general, the key point of Newton’s method is to find an
initial condition ((τ p

N )0, (υp
N )0) very close to the solution (τ p

N ,υp
N ) in such a way that we have

∥
∥τ

p
N –

(
τ

p
N
)

0

∥
∥

L2(�)3 +
∥
∥υ

p
N –

(
υ

p
N
)

0

∥
∥
XN

≤ cN–1. (31)

For this, we use the continuation method. For simplicity, we consider the following mod-
ified bilinear form:

ā
((

τ
p
N
)

l,
(
υ

p
N
)

l; vN
)

=
hp

ν
ăN

((
τ

p
N
)

l,
(
υ

p
N
)

l; vN
)
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and the pseudo-pressure (p̄p
N )l = hp

ν
(pp

N )l . We set ζ p = hp
ν

, then we can equivalently write
the problem as follows:
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(32)

Now, for all 1 ≤ p ≤ P, we fix the parameter (ζ p
m)0≤m≤M such that

ζ
p
0 < ζ

p
1 < · · · < ζ

p
M = ζ p. (33)

If ζ p = ζ
p
m, we consider ((τ p

N )l(ζ
p
m), (υp

N )l(ζ
p
m), (pp

N )l(ζ
p
m)) to be the solution of problem (32).

Then we develop the following algorithm. At each time step, 1 ≤ p ≤ P.
(1) Initialization: If ζ

p
0 = 0, the solution (τ p

N (ζ p
0 ),υp

N (ζ p
0 ), pp

N (ζ p
0 )) of its corresponding

Stokes problem is equal to zero.
(2) Iterations: We suppose that ((τ p

N )L(ζ p
m–1), (υp

N )L(ζ p
m–1)) is known where the integer

L ≥ 1 is fixed. Then the initial condition ((τ p
N )0(ζ p

m), (υp
N )0(ζ p

m)) is ((τ p
N )L(ζ p

m–1), (υp
N )L(ζ p

m–1))
and problem (32) is solved when ζ p = ζ

p
m for 1 ≤ l ≤ L.

The iterations are stopped until m = M – 1, and the initial condition ((τ p
N )0, (υp

N )0) is
taken equal to ((τ p

N )L(ζ p
M–1), (υp

N )L(ζ p
M–1)).

For fixed 1 ≤ p ≤ P, we consider the mapping ϕ

such that ϕ(ζ p) = ((τ p
N )l(ζ p), (υp

N )l(ζ p), (pp
N )l(ζ p)). It is easily shown that ϕ is Lipschitz

and continuous on any bounded interval of R+, and that

lim
L→+∞

(
ζ p

m – ζ
p
m–1

)
= 0.

The previous algorithm provides an initial condition which satisfies (31). However, for the
numerical experiments, we take low values of M and L, and also smaller values of N than
the final one. But, in any case, we have the convergence.

3.1 Resolution algorithm
After the estimation of the initial condition using Newton’s method, we propose the fol-
lowing algorithm for solving problem (15)–(16).

Step 1
Resolution of the linear Stokes problem:

If υ0
N = Nג (υ0),

knowing (υp–1)0, find ((τ p
N )0, (υp

N )0, (pp
N )0) in XN ×YN ×MN such that
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Step 2
If ((τ p

N )l–1, (υp
N )l–1, (pp

N )l–1) is known, we solve the following problem:
υ0

N = Nג (υ0), knowing (υp–1
N )l , find ((τ p

N )l, (υp
N )l, (pp

N )l) in XN ×YN ×MN such that
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We stop the calculus under the following condition:
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) 1
2 ≤ ε,

ε is a small positive real number.

4 Numerical experiments
In this section, we perform several numerical tests. The goal is to highlight the perfor-
mance of the spectral method in two and three dimensions of space. In two dimensions,
the vorticity is a scalar and υ × n means the tangential component of υ , see [15] for the
numerical analysis of the two-dimensional case. For handling some realistic tests, we con-
sider the following nonhomogeneous boundary conditions given by

υ · n = gn on ∂�, υ × n = gt on �, and τ × n = k × n on �m. (34)

Then the first equation of system (10) is modified as follows:

(
∂tυ(t), v

)
+ a

(
τ (t),υ(t); v

)
+ K

(
τ (t),υ(t); v

)
+ b

(
v, p(t)

)

=
〈
f(t), v

〉
– ν(k,υ × n)�m . (35)

The GMRES method can be used for the resolution of a nonsymmetric linear system de-
duced from discrete problem (15)–(16). Nevertheless, this method is complex to imple-
ment and requires a high number of iterations to converge since the condition number of
the matrix is high. Thus, we adopt the method in [22] which proposes the modification
of the matrix linear system by adding the term div – div. We obtain a symmetric system
with a positive defined matrix allowing the use of the preconditioned gradient conjugate
method for its resolution. Accordingly, we obtained a small number of iterations with a
very good accuracy.

4.1 Time convergence
We consider the square � = ]–1, 1[2, �m = ]–1, 1[×{1}. In order to highlight the time and
space convergence, we take the following exact solution τ = curlυ , υ = (υ1,υ2), and p:

υ1(t, x, y) = et sin(πx) sin(πy),

υ2(t, x, y) = et cos(πx) cos(πy), p(t, x, y) = e–t(x + y).
(36)
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Figure 1 Time convergence

Figure 2 Two-dimensional convergence

Let υ0 = υ(x, 0) = (0, 0), T = 1, N = 30, and h ∈ {0.1, 0.001, 0.0001}. We fix the viscosity
ν = 5 · 10–2 and the tolerance ε = 10–10.

Figure 1 deals with time convergence curves for the solution defined in (36). We remark
that the time convergence order is almost equal to 1, which confirms the result in ([11],
Sect. 5, Th. 2).

4.2 Spectral two-dimensional convergence
We fix the time step h = 0.0001 and N varying from 5 to 35.

We present in Fig. 2 the errors between the numerical solutions and the exact solutions
defined in (36). The curves show the convergence of the velocity in H1-norm, and in the
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Figure 3 Two-dimensional discrete solution for the data defined in (37)

L2-norm for the vorticity and pressure. We observe that the errors tend to 0 when N in-
creases, which confirms the result in ([11], Sect. 5, Th.2).

Figure 3 relates from top to bottom and from left to right the discrete vorticity, the two
components of the discrete velocity, and the discrete pressure for the data

f =
(
txy2, 1

)
, υ0 = (0, 0), (gn, gt) =

(
x2y, 0

)
, k = 0, and N = 35. (37)

4.3 Spectral three-dimensional convergence
Herein, we consider the cube � = ]–1, 1[3�m = ]–1, 1[2 × {1}. We fix the viscosity ν = 5 ·
10–2 and the tolerance ε = 10–10. We fix also the time step h = 0.0001 and N varying from
5 to 18.

We consider a given solution constructed thanks to the formulas υ = curlϕ and τ =
curlυ , where the stream function ϕ and the pressure are defined by

ϕx(x, y, z) =
(
1 – y2)3(1 – z2)3.5, ϕy(x, y, z) =

(
1 – z2)3(1 – x2)3.5,

ϕz(x, y, z) =
(
1 – x2)3(1 – y2)3.5, p(x, x, z) =

(
1 + x2)1.5(1 + y2)1.5(1 + z2)1.5.

(38)

Figure 4 shows the convergence curves of the errors on the vorticity, the velocity, and the
pressure in semi-logarithmic scales for N varying from 5 to 18, for a less regular solution
defined in (38).

Figure 5 presents, from left to right and top to bottom, the curves of three-dimensional
isovalues of the three components of the velocity and the vorticity and of the pressure,
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Figure 4 Three-dimensional convergence

Figure 5 The three-dimensional discrete solution for the data defined in (39)

which correspond to the data of the homogeneous boundary conditions

f =
(
txyz2, 1, 1

)
, υ0 = (0, 0, 0), (gn, gt) = (0, 0), k = 0, (39)

obtained with N = 18.
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