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Abstract
In this article, we consider a viscoelastic plate equation with past history, nonlinear
damping, and logarithmic nonlinearity. We prove explicit and general decay rate
results of the solution to the viscoelastic plate equation with past history. Convex
properties, logarithmic inequalities, and generalized Young’s inequality are mainly
used to prove the decay estimate.
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1 Introduction
In this article, we consider the decay rate results of the solution to a viscoelastic plate
equation with past history. Let � be a smooth bounded domain of Rn and u denotes the
transverse displacement of waves. Assume u0, u1 are given initial data, then the partial
differential equation is governed by the plate equation and is given by:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|ut|ρutt + �2u + �2utt + u –
∫ ∞

0 b(s)�2u(t – s) ds + h(ut) = ku ln |u|,
in � × (0,∞),

u(x, t) = ∂u
∂ν

(x, t) = 0, in ∂� × (0,∞),

u(x, –t) = u0(x, t), ut(x, 0) = u1(x), in �, t ≥ 0,

(1)

where ν is the outer unit normal to ∂�, b, h are functions (defined later) and ρ is a positive
constant (ρ > 0 if n ≥ 2 and 0 < ρ ≤ 2

n–2 if n ≥ 3).
Viscoelasticity takes into account time-independent solid behavior (namely, elastic) and

time-dependent fluid behavior (namely, viscosity). Some properties of viscoelastic mate-
rials are similar to those of elastic solids and some with Newtonian viscous fluids. Due
to the significant advancements in the rubber and plastics industries, the importance of
material viscoelastic characteristics has been recognized. This type of problem has many
applications in several branches of physics, such as quantum mechanics, nuclear physics,
supersymmetric field theories, and optics.
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According to classical mechanics, any mathematical model that aims to capture the be-
havior of suspension bridges must have a sufficient number of degrees of freedom and
incorporate some nonlinearity. Nonlinearities enable the observation of some hidden phe-
nomena, as would be predicted (see [1] for more details). Logarithmic expression changes
the shape of the distribution; it makes the sample less skewed, and in some cases, it reduces
the skewness of data. The occurrence of torsional oscillation can be explained by nonlin-
earity since the behavior of a suspension bridge is nonlinear. Moreover, the amplitude of
the oscillation will decrease if we employ logarithmic nonlinearity.

We begin our review with Dafermos’ pioneer paper [2], in which the author presented
the following one-dimensional viscoelastic problem:

⎧
⎨

⎩

ρutt = cuxx –
∫ t

–∞ g(t – τ )uxx dτ , x ∈ [0, 1],

u(0, t) = u(1, t) = 0, t ∈ (–∞,∞).

Dafermos proved that for smooth monotonic decreasing relaxation functions, the solu-
tions go to zero as t tends to infinity, and he also established an existence result. How-
ever, no rate of decay was specified. Since then, many authors have tried to prove the lo-
cal/global existence results and also to calculate the explicit decay result. In [3] the authors
considered the viscoelastic wave equation with infinite memory given by the equation:

utt – �u +
∫ ∞

0
g(s)�u(t – s) ds = 0, in � ×R

+,

and established energy-decay results without making any assumption on the boundedness
of initial data and any growth constraint on the damping term. Piskin and Polat Pata [4]
considered the following nonlinear Petrovsky equation:

utt + �2u – �ut + |ut|m–1ut = |u|p–1u.

They estimated the decay result by using the Nakaos inequality. In [5] the authors consid-
ered the following hyperbolic equation with logarithmic nonlinearity:

utt – M
(‖∇u‖2)�u + |ut|k–2ut = |u|p–2u ln |u|.

They established the blow-up of solutions in finite time for negative initial energy under
a few assumptions on M. For some more recent works in logarithmic nonlinearity, see [6]
and [7]. In [8, 9], the authors considered the problem of the type:

utt + αAu(t) + βut(t) –
∫ +∞

0
μ(s)Au(t – s) ds = 0

and discussed the decay properties of the semigroup, where A is a strictly positive self-
adjoint linear operator, and the memory kernel μ is a decreasing function. They also estab-
lished necessary and sufficient conditions for the exponential stability under some suitable
assumptions on α, β . Giorgi et al. [10] considered the semilinear hyperbolic equation:

utt – k(0)�u –
∫ +∞

0
k′(s)�u(t – s) ds + g(u) = f in � ×R

+,
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where the memory term is bounded and k(0) > 0, k(∞) > 0, k′(s) ≤ 0. The behavior of so-
lutions over time was examined. Particularly in the autonomous situation, the existence of
a global attractor for solutions was achieved. Conti and Pata [11] considered the following
semilinear hyperbolic equation:

utt + αu(t) – k(0)�u –
∫ +∞

0
k′(s)�u(t – s) ds + g(u) = f in � ×R.

The authors considered the memory term as a convex decreasing smooth function and g
represents a nonlinear term of at most cubic growth satisfying some conditions. Under
past history setup, the authors proved the existence of a regular global attractor. Guesmia
[12] considered the following problem:

utt + Au –
∫ +∞

0
h(s)Bu(t – s) ds = 0, for t > 0,

with a class of infinite history kernels satisfying
∫ +∞

0
h(s)

H–1(–h′(s)) ds + sups∈R+
h(s)

H–1(–h′(s)) < +∞,
where H is a strictly increasing convex function with H(0), H ′(0) = 0 and limt→+∞ H ′(t) =
+∞. By using the properties of the convex function and Young’s inequality the authors
proved the more general decay result. Guesmia and Messaoudi [13] considered:

utt – �u +
∫ t

o
g1(t – s) div

(
a1(x)∇u(s)

)
ds +

∫ ∞

0
g2(s) div

(
a2(x)∇u(t – s)

)
ds = 0,

where g1 and g2 are two positive nonincreasing functions defined on R
+, and a1, a2 are

nonnegative bounded function defined on �. The authors in [13] proved the general de-
cay result. Later, Mahdi [14] considered the problem (1) with h = 0 and established an ex-
plicit and general decay rate result. In [15], Al-Mahdi et al. considered the memory-type
Timoshenko system with Dirichlet boundary conditions and the system is given by

⎧
⎨

⎩

ρ1ϕtt – k(ϕx + ψ)x = 0,

ρ2ϕtt – bψxx + k(ϕx + ψ) +
∫ +∞

0 g(s)ψxx(t – s) ds = 0.

They established a few decay rate results on the energy function under the unboundedness
of the initial data. For more work related to past history problems, refer to [12, 16–20] (and
the references therein). Throughout this paper, we consider the following hypothesis:

(H1) Let b : R+ →R
+ be a nonincreasing C1-function that satisfies:

0 < b(0), 1 –
∫ ∞

0
b(τ ) dτ = l > 0.

(H2) Assume that B : (0,∞) → (0,∞) is a C1 function that is linear or a strictly con-
vex C2 function and strictly increasing on (0, r1], where r1 ≤ b(0), B(0) = B′(0) = 0,
lims→∞ B′(s) = +∞, s 
→ sB′(s) and s 
→ s(B′)–1(s) are convex on (0, r1] and B satis-
fies

b′(t) ≤ –ξ (t)B
(
b(t)

)
, ∀t ≥ 0,

where ξ : R+ →R
+ is a C1 nonincreasing positive function with ξ (0) > 0.
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(H3) Let h : R → R be a nondecreasing continuous function that satisfies (for some c1,
c2, ε are positive constants):

h̃
(|t|) ≤ ∣

∣h(t)
∣
∣ ≤ h̃–1(|t|), ∀|t| ≤ ε,

c1|t| ≤
∣
∣h(t)

∣
∣ ≤ c2|t|, ∀|t| ≥ ε,

where h̃ ∈ C1(R+) with h̃(0) = 0, which is a strictly increasing function. When h̃ is
nonlinear, define H to be a strictly convex C2 function in (0, r2], where r2 > 0 such
that H(t) =

√
th̃(

√
t).

Remark 1 Since B is strictly convex on (0, r1] and B(0) = 0, then

B(θ t) ≤ θB(t), 0 ≤ θ ≤ 1 and t ∈ (0, r1].

In this article, we give certain notations and declare existence results in Sect. 2. In ad-
dition, we express a couple of Lemmas in Sect. 2 that will be useful later. We state and
establish the decay rate estimate in Sect. 3, as well as present a few examples to demon-
strate the decay rate.

2 Preliminaries and existence results
In this section, we review Dafermos’ theory (see [2]) and define the energy functional that
is relevant to our problem. We also state a local existence result and a couple of additional
Lemmas that will be useful later. We introduce the function η as follows:

ηt(x, s) = u(x, t) – u(x, t – s), ∀s, t ≥ 0, x ∈ �, (2)

then the initial and boundary conditions are obtained as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ηt(x, 0) = 0, ∀t ≥ 0, x ∈ �,

ηt(x, s) = 0, ∀s, t ≥ 0, x ∈ ∂�,

η0(x, s) = η0(x, s) = u0(x, 0) – u0(x, s), ∀s ≥ 0, x ∈ �.

Observe that, (2) implies

ηt
s(x, s) + ηt

t (x, s) = ut(x, t). (3)

After combining (1) and (2), we obtain the following system

⎧
⎪⎪⎨

⎪⎪⎩

|ut|ρutt + l�2u + �2utt + u +
∫ ∞

0 b(s)�2ηt ds + h(ut) = ku ln |u|,
∀t ≥ 0, x ∈ �,

ηt
s(x, s) + ηt

t(x, s) – ut(x, t) = 0, ∀s, t ≥ 0, x ∈ �,

(4)

with the following initial and boundary data

⎧
⎪⎪⎨

⎪⎪⎩

u(x, –t) = u0(x, t), ut(x, 0) = u1(x), ∀t ≥ 0,∀x ∈ �,

η0(x, s) = η0(x, s) = u0(x, 0) – u0(x, s), ηt(x, 0) = 0, ∀s, t ≥ 0,∀x ∈ �,

u(x, t) = 0, ηt(x, s) = 0 in ∂�,∀s, t ≥ 0.

(5)
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The energy functional associated with the system (4) is given by

E(t) =
1

ρ + 2
‖ut‖ρ+2

ρ+2 +
l
2
‖�u‖2

2 +
1
2
‖�ut‖2

2 –
k
2

∫

�

u2 ln |u|dx

+
k + 2

4
‖u‖2

2 +
1
2
(
b ◦ �ηt),

(6)

where (b ◦ �nt)(t) =
∫ ∞

0
∫

�
b(s)|�ηt|2 ds dx and ‖ · ‖2 = ‖ · ‖L2(�). Differentiating E(t) with

t and making use of system (4), we obtain

E′(t) ≤ 1
2
(
b′ ◦ �ηt) –

∫

�

uth(ut) dx ≤ 0. (7)

Remark 2 For any ε0 ∈ (0, 1), we obtain that

(
b ◦ �ηt) =

(
b ◦ �ηt)

ε0
1+ε0

(
b ◦ �ηt) 1

1+ε0 ≤ c
(
b ◦ �ηt) 1

1+ε0 .

Theorem 1 Let (u0(·, 0), u1) ∈ H2
0 (�) × H2

0 (�), and assume that the hypothesis (H1)–(H3)
holds. Then, the problem (1) has weak solution on [0, T].

The proof of the above theorem can be obtained by following similar lines to those given
in [21].

Lemma 2.1 (Cf. [14], Lemma 3.1) There exists a constant M > 0 such that

∫ ∞

t

∫

�

b(s)
(
�ηt(x, s)

)2 ds dx ≤ Mf1(t),

where f1(t) =
∫ ∞

0 b(s + t)(1 + ‖�u0(s)‖2
2) ds.

Lemma 2.2 (Cf. [21], Lemma 9) Assume that (H1)–(H3) hold, for some ε0 ∈ (0, 1) and
0 < E(0) < d.1 Define the functionals

ψ1(t) :=
1

ρ + 1

∫

�

|ut|ρutu dx +
∫

�

�u�ut dx,

ψ2(t) := –
∫

�

(

�2ut +
1

ρ + 1
|ut|ρut

)(∫ ∞

0
b(s)ηt(s) ds

)

dx,

and L(t) := mE(t) + εψ1(t) + ψ2(t), where m, ε ≥ 0, then L satisfies the following:
(I) L ∼ E (i.e., α1E(t) ≤ L(t) ≤ α2E(t), for some α1,α2 > 0),

(II) L′(t) ≤ –mE(t) + c(b ◦ �ηt)(t) + c(b ◦ �ηt)
1

1+ε0 (t) + c
∫

�
h2(ut) dx.

Lemma 2.3 (Cf. [22], Lemma 4.1) Let h satisfy (H3). Then, the solution of (1) satisfies

∫

�

h2(ut) dx ≤ c
(
H–1(G(t)

)
– E′(t)

)
,

where G(t) := 1
|�1|

∫

�
uth(ut) dx ≤ –cE′(t) and �1 = {x ∈ � : |ut| ≤ ε} for some c, ε > 0.

1where d denotes the depth of the potential well, we refer to [21] for such a construction of d.
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Lemma 2.4 (Cf. [17], Lemma 3.3) Let δ0 > 0 and assume that (H1) and (H2) hold, then we
have ∀t ≥ 0,

∫ t

0
b(s)

∣
∣�ηt∣∣2 ds ≤

(
1 + t
δ0

)

B–1
(

δ0μ(1 + t)
tξ (t)

)

,

where

μ(t) :=
∫ t

0
b′(s)

∣
∣�ηt∣∣2 ds ≤ –cE′(t).

3 Decay result
We state and prove the major result in this section. We also provide an example to demon-
strate the decay rate result. We introduce a few notations and a function for this purpose:

W1(t) :=
∫ 1

t

1
sW ′(s)

ds, W2(t) = tW ′(t), W3(t) = t
(
W ′)–1(t), (8)

where W (t) = ((B–1(t))
1

1+ε0 + H–1)–1. Further, denote S to be the class of functions χ :
(0,∞) → [0,∞) and C1 a function satisfying χ ≤ 1 and χ ′ ≤ 0. Also, for fixed C1, C2 > 0,
assume that χ satisfies the estimate:

C2W ∗
3

[
c
δ1

q(t)f
1

1+ε0
1 (t)

]

≤ C1

(

W2

(
W4(t)
χ (t)

)

–
W2(W4(t))

χ (t)

)

, (9)

where W ∗
3 (defined in (14)) is the convex conjugate of W3. Let δ1, c > 0 be generic constants,

q(t) = (t + 1)– 1
1+ε0 and

W4(t) = W –1
1

(

C1

∫ t

0
ξ (s) ds

)

. (10)

Note: For ε small enough with 0 < ε ≤ 1, εW4(s) ∈ S . Hence, the set S is nonempty.

Theorem 2 Under the hypothesis of Lemma 2.2, there exists a constant C > 0 such that the
solution to problem (1) satisfies,

E(t) ≤ CW4(t)
χ (t)q(t)

, ∀t ≥ 0. (11)

Proof Using Lemmas (2.2)–(2.4), note that

L′(t) ≤ –mE(t) +
[(

t + 1
δ0

)

B–1
(

δ0μ(t)
(t + 1)ξ (t)

)] 1
1+ε0

+
[

c
∫ ∞

0
b(t + s)

(
1 +

∥
∥�u0(s)

∥
∥2

2

)
ds

] 1
1+ε0

+ cH–1(G(t)
)

– cE′(t).

Assume L1(t) := (L + cE)(t) and using Lemma (2.1), the above inequality can be written
as

L′
1(t) ≤ –mE(t) + c

[(
t + 1
δ0

)

B–1
(

δ0μ(t)
(t + 1)ξ (t)

)] 1
1+ε0

+
[
cf1(t)

] 1
1+ε0 + cH–1(G(t)

)
.
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Using Remark 1 with θ = 1
t+1 for all t > 0, we obtain

B–1
(

δ0μ(t)
(t + 1)ξ (t)

)

≤ B–1
(

δ0q(t)μ(t)
ξ (t)

)

.

Hence,

L′
1(t) ≤ –mE(t) + c

(
t + 1
δ0

) 1
1+ε0

B–1
(

δ0q(t)μ(t)
ξ (t)

) 1
1+ε0

+
[
cf1(t)

] 1
1+ε0

+
c

δ0q(t)
H–1(G(t)q(t)

)
.

(12)

Denote β(t) := max( δ0q(t)μ(t)
ξ (t) , G(t)q(t)) and recall W (t) = ((B–1)

1
1+ε0 + H–1)–1(t).

Then (12) becomes, for any t ≥ 0 and ε0 ∈ (0, 1),

L′
1(t) ≤ –mE(t) + c

1
δ0q(t)

W –1(β(t)
)

+ cf
1

1+ε0
1 .

Let 0 < ε1 < r := min{r1, r2}, define the functional L2 as

L2(t) := W ′
(

ε1q(t)
E(t)
E(0)

)

L1(t),

then it is easy to see that L2 ∼ E, also

L′
2(t) ≤ –mE(t)W ′

(

ε1q(t)
E(t)
E(0)

)

+ c
1

δ0q(t)
W ′

(

ε1q(t)
E(t)
E(0)

)

W –1(β(t)
)

+ cf
1

1+ε0
1 W ′

(

ε1q(t)
E(t)
E(0)

)

.
(13)

Let the convex conjugate of W be denoted by W ∗ and be defined as

W ∗(τ ) = τ
(
W ′)–1(τ ) – W

[(
W ′)–1(τ )

]
, τ ∈ (0, W ′(r)]. (14)

Using the Generalized Young’s inequality, W ∗ satisfies the following estimate

ÃB̃ ≤ W ∗(Ã) + W (B̃), Ã ∈ (
0, W ′(r)

]
, and B̃ ∈ (0, r]. (15)

Therefore, with Ã = W ′(ε1q(t) E(t)
E(0) ) and B̃ = W –1(β(t)), (13) leads to

L′
2(t) ≤ –mE(t)W ′

(

ε1q(t)
E(t)
E(0)

)

+
c

δ0q(t)
W ∗

(

W ′
(

ε1q(t)
E(t)
E(0)

))

+ c
β(t)

δ0q(t)
+ cf

1
1+ε0

1 W ′
(

ε1q(t)
E(t)
E(0)

)

.

Multiplying the above equation by ξ (t), we obtain

ξ (t)L′
2(t) ≤ –mξ (t)E(t)W ′

(

ε1q(t)
E(t)
E(0)

)

+
cξ (t)
δ0q(t)

W ∗
(

W ′
(

ε1q(t)
E(t)
E(0)

))

+ cξ (t)
β(t)

δ0q(t)
+ cξ (t)f

1
1+ε0

1 W ′
(

ε1q(t)
E(t)
E(0)

)

.
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Define a functional L3 := ξL2 + cE ∼ E. Since ξ (t)β(t) ≤ –cE′(t) and W ∗(W ′(t)) ≤ tW ′(t),
we obtain

L′
3(t) ≤ –mE(t)ξ (t)W ′

(

ε1q(t)
E(t)
E(0)

)

+
c
δ0

ε1ξ (t)
E(t)
E(0)

W ′
(

ε1q(t)
E(t)
E(0)

)

+ cξ (t)f
1

1+ε0
1 W ′

(

ε1q(t)
E(t)
E(0)

)

≤ –
(

mE(0)
ε1

–
c
δ0

)

ε1ξ (t)
E(t)
E(0)

W ′
(

ε1q(t)
E(t)
E(0)

)

+ cξ (t)f
1

1+ε0
1 W ′

(

ε1q(t)
E(t)
E(0)

)

.

Consequently, from (8) and choosing ε1 such that k := ( mE(0)
ε1

– c) > 0, we obtain

L′
3(t) ≤ –kε1ξ (t)

E(t)
E(0)

W ′
(

ε1q(t)
E(t)
E(0)

)

+ cξ (t)f
1

1+ε0
1 W ′

(

ε1q(t)
E(t)
E(0)

)

≤ –k
ξ (t)
q(t)

W2

(

ε1q(t)
E(t)
E(0)

)

+ cξ (t)f
1

1+ε0
1 W ′

(

ε1q(t)
E(t)
E(0)

)

.
(16)

Since W ′
2(t) = W ′(t) + tW ′′(t), using the property of W , we conclude that W2(t), W ′

2(t) > 0

on (0, r]. Making use of (15) with Ã = W ′(ε1q(t) E(t)
E(0) ) and B̃ = [ c

δ1
f

1
1+ε0

1 ] where δ1 > 0, we
obtain

cf
1

1+ε0
1 W ′

(

ε1q(t)
E(t)
E(0)

)

=
δ1

q(t)

[
c
δ1

q(t)f
1

1+ε0
1

]

W ′
(

ε1q(t)
E(t)
E(0)

)

≤ δ1

q(t)
W3

(

W ′
(

ε1q(t)
E(t)
E(0)

))

+
δ1

q(t)
W ∗

[
c
δ1

q(t)f
1

1+ε0
1

]

≤ δ1

q(t)

(

ε1q(t)
E(t)
E(0)

)

W ′
(

ε1q(t)
E(t)
E(0)

)

+
δ1

q(t)
W ∗

3

[
c
δ1

q(t)f
1

1+ε0
1

]

≤ δ1

q(t)
W2

(

ε1q(t)
E(t)
E(0)

)

+
δ1

q(t)
W ∗

3

[
c
δ1

q(t)f
1

1+ε0
1

]

.

(17)

Now, combining (16) and (17), and choosing δ1 small enough so that k1 = (k – δ1) > 0, we
have

L′
3(t) ≤ –k1

ξ (t)
q(t)

W2

(

ε1q(t)
E(t)
E(0)

)

+
δ1ξ (t)
q(t)

W ∗
3

[
c
δ1

q(t)f
1

1+ε0
1

]

, (18)

using the nonincreasing property of W2 and for some γ1, γ2 > 0 that satisfies γ1L3(t) ≤
E(t) ≤ γ2L3(t). We have, for some α = γ1

E(0) > 0,

W2

(

ε1q(t)
E(t)
E(0)

)

≥ W2αL3(t)q(t).
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Assume L4(t) := αL3(t)q(t), then using (18) we have

L′
4(t) ≤ αq(t)

(

–k1
ξ (t)
q(t)

W2

(

ε1q(t)
E(t)
E(0)

)

+
δ1ξ (t)
q(t)

W ∗
3

[
c
δ1

q(t)f
1

1+ε0
1

])

≤ –C1ξ (t)W2
(
L4(t)

)
+ C2ξ (t)W ∗

3

[
c
δ1

q(t)f
1

1+ε0
1

]

,
(19)

where C1 = αk1 > 0 and C2 = αδ1 > 0. Since, L3 ∼ E, we have L4(t) ≤ α0E(t)q(t) for some
α0 > 0. In order to establish the decay estimate on E(t), we will divide the proof into two
cases (like in [15]). From the definition of χ , we can estimate E(t) by considering two cases:

Case I: If α0E(t)q(t) ≤ 2 W4(t)
χ (t) , then we obtain

E(t) ≤
(

2
α0

)
W4(t)

χ (t)q(t)
. (20)

Case II: If α0E(t)q(t) ≥ 2 W4(t)
χ (t) , then observe that for any 0 ≤ s ≤ t, we have α0q(s)E(s) >

2 W4(s)
χ (s) . Therefore, we obtain

L4(s) > 2
W4(s)
χ (s)

, 0 ≤ s ≤ t. (21)

Using Remark 1, 0 < χ (t) ≤ 1 and the property of W2, we have for any 0 < ε2 ≤ 1, and
0 ≤ s ≤ t,

W2
(
ε2χ (s)L4(s) – ε2W4(s)

)
= W2

(

ε2χ (s)L4(s) –
ε2χ (s)W4(s)

χ (s)

)

≤ ε2χ (s)W2

(

L4(s) –
W4(s)
χ (s)

)

≤ ε2χ (s)
(

L4(s) –
W4(s)
χ (s)

)

W ′
(

L4(s) –
W4(s)
χ (s)

)

.

Using (21), we have for 0 ≤ s ≤ t,

W2
(
ε2χ (t)L4(s) – ε2W4(s)

) ≤ ε2χ (s)L4(s)W ′(L4(s)
)

– ε2χ (s)
W4(s)
χ (s)

W ′
(

W4(s)
χ (s)

)

. (22)

Denote the functional L5 as

L5(t) := ε2χ (t)L4(t) – ε2W4(t), (23)

where ε2 is chosen in such a way that L5(0) ≤ 1. Using (8), inequality (22) can be written
as,

W2
(
L5(s)

) ≤ ε2χ (s)W2
(
L4(s)

)
– ε2χ (s)W2

(
W4(s)
χ (s)

)

, 0 ≤ s ≤ t. (24)

Since, L′
5(t) = ε2χ

′(t)L4(t) + ε2χ (t)L′
4(t) – ε2W ′

4(t), using (19) we obtain

L′
5(t) ≤ –C1ξ (t)ε2χ (t)W2

(
L4(t)

)
+ C2ε2ξ (t)χ (t)W ∗

3

[
c
δ1

q(t)f
1

1+ε0
1

]

– ε2W ′
4(t),
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and applying (22) to the above inequality, we obtain

L′
5(t) ≤ –C1ξ (t)W2

(
L5(t)

)
+ C2ε2ξ (t)χ (t)W ∗

3

[
c
δ1

q(t)f
1

1+ε0
1

]

– C1ε2ξ (t)χ (t)W2

(
W4(t)
χ (t)

)

– ε2W ′
4(t).

(25)

From the definition of W1 and W4 we have W ′
4(t) = –C1ξ (t)W2(W4(t)), and using (9) we

see that

ε2ξ (t)χ (t)
(

C2W ∗
3

[
c
δ1

q(t)f
1

1+ε0
1

]

– C1W2

(
W4(t)
χ (t)

)

+ C1
W2(W4(t))

χ (t)

)

≤ 0,

therefore (25) leads to,

L′
5(t) ≤ C1ξ (t)W2

(
L5(t)

)
. (26)

From (8) and (26) we obtain

C1ξ (t) ≤ (
W1

(
L5(t)

))′.

Integrating the above inequality over [0, t], we observe that

W1
(
L5(t)

) ≥ C1

∫ t

0
ξ (s) – W1

(
L5(0)

)
.

Since W1 is decreasing, L5(0) ≤ 1 and W1(1) = 0, we have

L5(t) ≤ W –1
1

(

C1

∫ t

0
ξ (s) ds

)

= W4(t).

From (23), we obtain

L4(t) ≤
(

1 + ε2

ε2

)
W4(t)
χ (t)

.

Similarly, recalling the definition of the functional L4, we obtain

L3(t) ≤
(

1 + ε2

α0ε2

)
W4(t)

χ (t)q(t)
, (27)

since L3 ∼ E, for some c > 0 we have E(t) ≤ cL3, then (27) becomes

E(t) ≤
(

c(1 + ε2)
α0ε2

)
W4(t)

χ (t)q(t)
, (28)

and from (20) and (28), we conclude that

E(t) ≤ CW4(t)
χ (t)q(t)

, where C = max

(
2
α0

,
c(1 + ε2)

δ0ε2

)

.

Hence, the theorem is proved. �
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Remark 3 Assuming that χ satisfies (9) we have established the stability estimate of
the energy function. In general, inequality (11) does not lead to the asymptotic stability
limt→∞ E(t) = 0 (see [15] for more details). Hence, we have chosen χ in such a way that (9)
and (11) give the best possible decay rate for E.

Example 3.1 Here, we present an example that demonstrates the main theorem of this
paper. Assume that ε0 ∈ (0, 1), c is a positive generic constant and

b(t) = c0(t + 1)– 1
p–1 , ξ (t) =

c1–p
0

p – 1
, B(t) = tp, H(t) = tp(1+ε0),

where 0 < c0 < 2–p
p–1 and p is defined later. Moreover, assume that u0 satisfies

[
1 + ‖�u0‖2

2
] ∼ (1 + t)λ, for λ <

2 – p
p – 1

.

Then, recalling the definitions from (8) and (10), we obtain:

W (t) = ctp(1+ε0), W1(t) = c
(
t1–p(1+ε0) – 1

)
, W2(t) = ctp(1+ε0),

W3(t) = ct
p(1+ε0)

p(1+ε0)–1 , W ∗
3 (t) = ctp(1+ε0), W4(t) = c(t + 1)

1
1–p(1+ε0) .

Note that q(t)f
1

(1+ε0)
1 (t) ∼ (t + 1)( 1

1+ε0
)(λ– 1

p–1 ).
Now, choose χ (t) = (t + 1)γ , where γ < min(0, – 1

p(1+ε0)–1 + 1+λ–λp
(p–1)(1+ε0) ). Then, it is easy to

observe that χ (t) satisfies (9). Therefore (11) implies

E(t) ≤
⎧
⎨

⎩

c(t + 1)– 1
1+ε0

( 2–p
p–1 –λ), if 0 < λ < 2–p

p–1 and 1 < p < 2,

c(t + 1)–( 2–p+ε0(1–p)
(1+ε0)(p–1+pε0) ), if λ ≤ 0 and 1 < p < 3

2 .

Hence, from the above estimate we conclude that limt→∞ E(t) = 0. From the above esti-
mate on E(t), we observe that as ε0 converges to zero we obtain a faster rate of convergence
when compared to ε0 closer to 1.

Example 3.2 In this example, we assume that ε0 ∈ (0, 1) and b, ξ , B, and H are given by

b(t) =
c0

(t + 2)(logκ (t + 2))
, ξ (t) = c1, B(t) = t2, H(t) = t2(1+ε0),

where 0 < c0 < (κ – 1)(logκ–1(2)) and c1 depends on c0 and κ . Moreover, assume that u0

satisfies

[
1 + ‖�u0‖2

2
] ∼ logλ(t + 2), for λ < κ – 1.

From (8) and (10), we obtain:

W (t) = ct2(1+ε0), W1(t) = c
(
t–1–2ε0 – 1

)
, W2(t) = ct2(1+ε0),

W3(t) = ct
2(1+ε0)
1+2ε0 , W ∗

3 (t) = ct2(1+ε0), W4(t) = c(t + 1)
–1

1+2ε0 .

It is easy to see that q(t)f
1

(1+ε0)
1 (t) ∼ [(t + 1)–1 logλ–(κ–1)(t + 2)]( 1

1+ε0
).
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Now, choose χ (t) = (log
(κ–1)–λ
2(1+ε0) (t + 2))((t + 1)

ε0
(1+ε0)(1+2ε0) ), then χ (t) satisfies (9). Therefore,

(11) implies

E(t) ≤ c log
–[ (κ–1)–λ

2(1+ε0) ](t + 2).

Since λ < κ – 1, we conclude that limt→∞ E(t) = 0.
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