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Abstract
This work is devoted to the nonlinear Schrödinger–Kirchhoff-type equation

–
(
a + b

∫

R3
|∇u|2 dx

)
�u + V(x)u = f (x,u), in R

3,

where a > 0, b ≥ 0, the nonlinearity f (x, ·) is 3-superlinear and the potential V is either
periodic or exhibits a finite potential well. By the mountain pass theorem, Lions’
concentration-compactness principle, and the energy comparison argument, we
obtain the existence of positive ground state for this problem without proving the
Palais–Smale compactness condition.
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1 Introduction and main results
In this work, we study the following Schrödinger–Kirchhoff-type equation:

–
(

a + b
∫

R3
|∇u|2 dx

)
�u + V (x)u = f (x, u), in R

3, (1.1)

where a > 0, b ≥ 0 are constants. We assume that the potential V (x) satisfies
(V0) V ∈ C(R3) and α := infx∈R3 V (x) > 0,

and one of the following conditions:
(V1) V (x) and f (x, t) are 1-periodic in x1, x2, x3;
(V2) V (x) < V∞ := lim|x|→∞ V (x) < ∞ for all x ∈R

3.
For the nonlinearity f (x, t), we make the following assumptions:
(f1) f ∈ C(R3 ×R

+) and satisfies

lim
t→0+

f (x, t)
t

= lim
t→+∞

f (x, t)
t5 = 0 uniformly in x ∈R

3;

(f2) F(x, t)/t4 → +∞ as t → +∞ uniformly in x ∈R
3, where F(x, t) :=

∫ t
0 f (x, s) ds;
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(f3) f (x, t)/t3 is nondecreasing in t ∈R
+.

Since we intend to look for positive solutions of (1.1), we may assume without restriction
that f (x, t) = 0 for all (x, t) ∈ R

3 × (–∞, 0] throughout this paper. We shall work on E ≡
H1(R3) with the norm

‖u‖ =
(∫

R3

(
a|∇u|2 + V (x)u2)dx

)1/2

, (1.2)

which, by virtue of the assumptions on V , is equivalent to the standard H1(R3) norm. The
energy functional associated with (1.1) is defined by � : E →R:

�(u) =
a
2

∫

R3
|∇u|2 dx +

1
2

∫

R3
V (x)u2 dx +

b
4

(∫

R3
|∇u|2 dx

)2

–
∫

R3
F(x, u) dx. (1.3)

By (f1), � is of class C1 on E with the derivative given by

〈
�′(u), v

〉
=

(
a + b

∫

R3
|∇u|2 dx

)∫

R3
∇u∇v dx +

∫

R3
V (x)uv dx –

∫

R3
f (x, u)v dx (1.4)

for all u, v ∈ E. It is well known that the critical points of � are weak solutions of prob-
lem (1.1). Furthermore, a ground state solution is the solution corresponding to the least
critical value of �, that is, a nontrivial solution u satisfying �(u) = infK �, where

K :=
{

v ∈ E\{0} : �′(v) = 0
}

. (1.5)

In (1.1), if V (x) ≡ 0 and R
3 is replaced by a bounded domain � ⊂ R

N , it reduces to the
following Dirichlet problem of Kirchhoff type:

⎧⎨
⎩

–(a + b
∫
�

|∇u|2 dx)�u = f (x, u) in�,

u = 0 on ∂�.
(1.6)

Problem (1.6) has a great importance in the study of stationary solutions for the equation

ρ
∂2u
∂t2 –

(
P0

h
+

E
2L

∫ L

0

∣∣∣∣
∂u
∂x

∣∣∣∣
2

dx
)

∂2u
∂x2 = 0

proposed by Kirchhoff [1] as an extension of the classical D’Alembert’s wave equation for
free vibrations of elastic strings, where ρ , h, P0, L are positive constants. For more details
on the physical and mathematical background of this problem, we refer to [1–3] for refer-
ences. Such problems are often called nonlocal since the equation is no longer a pointwise
identity due to the presence of integral over �. This phenomenon gives rise to some math-
ematical difficulties and makes (1.6) different from the classical elliptic problems.

Problems on a bounded domain like (1.6) have been studied extensively; see, e.g., [4–6]
and the references therein. In recent years, growing attention has been paid to equations of
type (1.1) set on the entire space. Some interesting studies by variational methods can be
found in, for example, [3, 6–20] and the references therein. The current work is concerned
with (1.1) of the subcritical and superlinear case. In the following, we shall focus more on
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some related results. On account of the 4-order term (
∫
R3 |∇u|2 dx)2, to ensure that the

functional � is superlinear, one usually assumes that f (x, t) is 4-superlinear at infinity,
namely,

lim|t|→∞
F(x, t)

t4 = +∞ uniformly in x ∈R
3,

or further, satisfies the widely used Ambrosetti–Rabinowitz-type condition in the form of

∃μ > 4 such that 0 < μF(x, t) ≤ tf (x, t) for all t 
= 0. (AR)

It is well known that a main difficulty in studying (1.1) in R
3 is the lack of compactness.

In fact, this difficulty can be avoided when problems are considered restricting to the sub-
space of H1(R3) consisting of radially symmetric functions, usually denoted by H1

r (R3),
since in this case the embedding H1

r (R3) ↪→ Ls(R3) (2 ≤ s < 6) is compact. We refer to
[11, 14, 21] in this direction, where the potential V is radial or a positive constant.

Besides, one can also add some conditions on V to restore the lacked compact imbed-
ding. In [22], Wu obtained nontrivial solutions of (1.1) by assuming that the potential V
satisfies (V0) and

meas
{

x ∈R
3 : V (x) ≤ M

}
< ∞, ∀M > 0, (V3)

where meas (·) denotes the Lebesgue measure in R
3; the nonlinearity f (x, t) is subcritical,

satisfies (f2),

4F(x, t) ≤ tf (x, t) for all t ∈R,

and other conditions. Note that condition (V3) implies that the embedding X into Ls(R3)
is compact (see [23]), where

X :=
{

u ∈ H1(
R

3) :
∫

R3
V (x)u2 dx < ∞

}

is a linear subspace of H1(R3), equipped with the norm

‖u‖X :=
(∫

R3

(|∇u|2 + V (x)u2)dx
)1/2

.

Therefore the Palais–Smale condition can be proved. Then Liu and He [24] proved that
(1.1) has infinitely many solutions by using a variant version of the fountain theorem under
an oddness assumption on f and conditions (V0), (V3), (AR), etc. We also note that if
V (x) → +∞ as |x| → ∞, then (V3) is satisfied.

In [3], for f (x, t) = |u|p–1u (2 < p < 5) and V satisfying (V0), (V2), and
(V4) V is weakly differentiable, (∇V (·), ·) ∈ L∞(R3) ∩ L3/2(R3) and

V (x) –
(∇V (x), x

) ≥ 0 a.e. x ∈R
3.
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Li and Ye proved that (1.1) has a positive ground state solution by using the Pohozaev
identity, a monotonicity trick, and a new version of the global compactness lemma. And
recently, Liu and Guo [17] extended this result to the general nonlinearity f (x, t) with as-
suming (V0), (V2), (V4) and some conditions on f (x, t).

In recent years, there have been intensive studies on semiclassical states of Kirchhoff-
type problems of the form

–
(

ε2a + εb
∫

R3
|∇u|2 dx

)
�u + V (x)u = f (x, u), x ∈R

3,

where ε > 0 is a small parameter. We would like to refer to [8], in which He and Zou proved
the existence of a positive ground state solution by using the Nehari manifold and assum-
ing (V0), (V2), (AR), f is independent of x, and f (t)/t3 is strictly increasing.

To overcome the difficulties of the lack of compactness, in addition to the methods men-
tioned above, another effective way is to make use of the period-translation invariance of
the energy functional �. More specifically, we could assume V and f satisfy (V1) and (f1),
respectively, and then we apply the concentration-compactness principle discovered by
Lions [25] to obtain nontrivial critical points up to certain suitable Z

3 translations. To the
best of our knowledge, there exist few results of this case. Motivated by the above facts,
and [26, 27] besides, we consider two cases of the potentials, that is, the periodic cases and
the bounded potential well case. Our main results read as follows.

Theorem 1.1 Under assumptions (V0), (V1), and (f1)–(f3), problem (1.1) has a positive
ground state solution.

Before stating the theorem of potential well case, we need to assume that the nonlinear-
ity f (x, t) = f (t) does not depend on x. That is, the problem is of the form

–
(

a + b
∫

R3
|∇u|2 dx

)
�u + V (x)u = f (u) in R

3. (1.7)

In Sect. 4, we will prove the following result.

Theorem 1.2 Under assumptions (V0), (V2), and (f1)–(f3) with f independent of x, problem
(1.7) has a positive ground state solution.

Remark 1.3 It is worth to point out that we cannot easily see that �′ is weakly sequentially
continuous in E by direct calculations due to the nonlocal term

∫
R3 |∇u|2 dx. In fact, in gen-

eral, we do not know
∫
R3 |∇un|2 dx → ∫

R3 |∇u|2 dx from un ⇀ u in E. Thanks to condition
(f3), we can prove that the weak limit of a bounded (PS) sequence is a weak solution of this
problem (see Lemma 3.1). Hence we do not have to verify the (PS) compactness condition.
This dramatically simplifies our proof, especially when the embedding E ↪→ L2(R3) is not
compact.

Remark 1.4 As have been mentioned previously, [3, 17] are concerned with (1.1) of the
potential well case, as well. However, Theorem 1.2 is not strictly comparable to them.
Since (V4) is not assumed, our methods become substantially different and more direct.
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Remark 1.5 Theorem 1.2 is different from Theorem 1.1 in the aforementioned [8], which
involved a small parameter since it is concerned with semiclassical states. Whereas our
results do not require the smallness of such a parameter. Moreover, our assumptions on f
are much more general than the ones in [8].

The paper is organized as follows. In Sect. 2, we show that the functional � associated
with (1.1) has a mountain pass geometry. Moreover, we also prove that the correspond-
ing Palais–Smale sequence {un} of � at the mountain pass level c is bounded. In Sect. 3,
we complete the proof of Theorem 1.1 by using the mountain pass lemma and Lions’
concentration-compactness principle. Section 4 is devoted to the proof of Theorem 1.2
by applying a comparison argument.

2 A mountain pass geometry
To begin with, we recall that a sequence {un} ∈ H1(R3) is called a Palais–Smale sequence
of � at the level c, a (PS)c sequence for short, if

�(un) → c and �′(un) → 0.

Throughout this paper, we denote by | · |s the Ls(R3) norm for s ∈ [1,∞] and by ci a certain
positive constant.

Lemma 2.1 Suppose that (V0), (V1) (or (V2)), (f1), and (f2) are satisfied, then there exist
r > 0 and e ∈ E with ‖e‖ > r such that

b := inf‖u‖=r
�(u) > �(0) = 0 ≥ �(e).

Proof From (f1), given ε > 0, there exists Cε > 0 such that

∣∣F(x, t)
∣∣ ≤ εt2 + Cεt6, ∀t ≥ 0.

By the Sobolev inequality, we have that

�(u) ≥ 1
2
‖u‖2 +

b
4
|∇u|42 –

∫

R3

∣∣F(x, u)
∣∣dx

≥ 1
2
‖u‖2 – ε|u|22 – Cε|u|66 ≥

(
1
2

– εc1

)
‖u‖2 – c2Cε‖u‖6

for some constants c1, c2 > 0. Then we can choose ε and r small enough such that

b = inf‖u‖=r
�(u) > �(0) = 0.

For fixed v ∈ E\{0}, it follows from (f2) that

�(tv) =
t2

2
‖v‖2 +

bt4

4
|∇v|42 –

∫

R3
F(x, tv) dx

≤ t4
(‖v‖

2t2 +
b|∇v|42

4
–

∫

v
=0

F(x, tv)
t4v4 v4 dx

)
→ –∞
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as t → +∞. Then there exists e := tv with t sufficiently large such that ‖e‖ > r and
�(e) < 0. �

By Lemma 2.1 we see that � has a mountain pass geometry. Namely, setting

� =
{
γ ∈ C

(
[0, 1], E

)
: γ (0) = 0 and �

(
γ (1)

)
< 0

}
, (2.1)

we have � 
= ∅. By a version of the mountain pass lemma [28], for the mountain pass level

c = inf
γ∈�

max
t∈[0,1]

�
(
γ (t)

)
, (2.2)

there exists a (PS)c sequence {un} for �. Moreover, we see that c > 0.

Lemma 2.2 Suppose that (V0) and (f1)–(f3) are satisfied, then any (PS)c sequence of � is
bounded in E.

Proof Let {un} ∈ E be a (PS)c sequence. Given any t > 0, by (f3) we obtain that f (x, s)/s3 ≤
f (x, t)/t3 for 0 < s < t. Hence

F(x, t) =
∫ t

0
f (x, s) ds ≤

∫ t

0

f (x, t)
t3 s3 dx =

1
4

tf (x, t),

that is,

1
4

tf (x, t) – F(x, t) ≥ 0, ∀(x, t) ∈ (
R

3 ×R
+)

. (2.3)

Then by �′(un) → 0 we have

c + 1 + ‖un‖ ≥ �(un) –
1
4
〈
�′(un), un

〉

=
1
4
‖un‖2 +

∫

R3

(
1
4

unf (x, un) – F(x, un)
)

dx

≥ 1
4
‖un‖2

for n large enough. The above inequality implies that {un} is bounded. �

3 The periodic case
We have proved that the (PS)c sequence {un} is bounded. We may assume that un ⇀ u
in E, up to a subsequence if necessary. We shall show that the weak limit u is a nonzero
critical point of �. Now the main difficulty we face is that �′ is not weakly continuous
in E. We give the following lemma.

Lemma 3.1 Suppose that (f1)–(f3) are satisfied and m ≤ c is a constant, where c is given by
(2.2). If {un} is a (PS)m sequence of � and un ⇀ u in E, then �′(u) = 0. Moreover, if u 
= 0,
then

∫

R3
|∇un|2dx →

∫

R3
|∇u|2 dx as n → +∞.
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Proof Passing to a subsequence if necessary, we assume that

∫

R3
|∇un|2 dx → A2

for some A ∈R
+. If u = 0, the desired conclusion holds obviously. If u 
= 0, we see that

∫

R3
|∇u|2 dx ≤ lim

n→∞

∫

R3
|∇un|2 dx = A2.

Suppose by contradiction that

∫

R3
|∇u|2 dx < A2. (3.1)

For any φ ∈ C∞
0 (R3), by �′(un) → 0 we have

0 = lim
n→∞

〈
�′(un),φ

〉

=
(
a + bA2)

∫

R3
∇u∇φ dx +

∫

R3
V (x)uφ dx –

∫

R3
f (x, u)φ dx. (3.2)

Then from (3.1) and (3.2) we have

〈
�′(u), u

〉
< 0. (3.3)

On the other hand, condition (f1) implies that

〈
�′(tu), tu

〉
= t

∫

R3

(
a|∇u|2 + V (x)u2)dx + bt3

(∫

R3
|∇u|2 dx

)2

–
∫

R3
f (x, tu)u dx

≥ t
∫

R3

(
a|∇u|2 + V (x)u2)dx – εt

∫

R3
u2 dx – cεt5

∫

R3
u6 dx.

Choosing ε small enough, there exists t1 ∈ (0, 1) such that

〈
�′(t1u), u

〉
> 0. (3.4)

Hence there exists t0 ∈ (0, 1) such that

〈
�′(t0u), u

〉
= 0. (3.5)

For any u ∈ E\{0}, t > 0, we consider

ϕ(t) := �(tu) =
t2

2

∫

R3

(
a|∇u|2 + V (x)u2)dx +

bt4

4

(∫

R3
|∇u|2 dx

)2

–
∫

R3
F(x, tu) dx,

ϕ′(t) = t
∫

R3

(
a|∇u|2 + V (x)u2)dx + bt3

(∫

R3
|∇u|2 dx

)2

–
∫

R3
f (x, tu)u dx.
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Let ϕ′(t) = 0, which is equivalent to

∫
R3 (a|∇u|2 + V (x)u2) dx

t2 + b
(∫

R3
|∇u|2 dx

)2

=
∫
R3 f (x, tu)u dx

t3 .

It follows from (f3) that the right-hand side of this equation is nondecreasing in t ∈ (0, +∞),
while the left-hand side is strictly decreasing in t ∈ (0, +∞). Note also that, by (3.5),

ϕ′(t0) =
〈
�′(t0u), u

〉
= 0.

Hence t = t0 is the unique solution of ϕ′(t) = 0 for t ∈ (0, +∞). Therefore, this together
with (3.3) and (3.4) yields that

�(t0u) = max
t∈[0,1]

�(tu).

It can be easily concluded from (f2) and (f3) that

F (x, t) :=
1
4

f (x, t)t – F(x, t) > 0

and F (x, t) is nondecreasing in t > 0. Noting that 0 < t0 < 1 and ‖u‖ 
= 0, we obtain

m ≤ c ≤ �(t0u) –
1
4
〈
�′(t0u), t0u

〉

=
t2
0
4

‖u‖2 +
∫

R3

(
1
4

f (x, t0u)t0u – F(x, t0u)
)

dx

<
1
4
‖u‖2 +

∫

R3

(
1
4

f (x, u)u – F(x, u)
)

dx

≤ lim
n→∞

[
1
4
‖un‖2 +

∫

R3

(
1
4

f (x, un)un – F(x, un)
)

dx
]

= lim
n→∞

(
�(un) –

1
4
〈
�′(un), un

〉)
= m.

This is impossible. Hence
∫
R3 |∇u|2 dx = A2 and then �′(u) = 0. �

Proof of Theorem 1.1 Step 1. In view of Lemmas 2.1–2.2, � has a bounded (PS)c sequence
{un} in E. Let

δ = lim
n→∞ sup

y∈R3

∫

B2(y)
|un|2 dx. (3.6)

If δ = 0, by Lions’ lemma (see [25, Lemma I.1]), we obtain that un → 0 in Ls(R3) for any
s ∈ (2, 6). We claim that

lim
n→∞

∫

R3
unf (x, un) dx = 0. (3.7)

Indeed, by (f1), for any ε > 0, there exist cε > 0 and q ∈ (2, 6) such that

∣∣f (x, t)
∣∣ ≤ ε

(
t + t5) + cεtq–1, ∀t ≥ 0. (3.8)
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Since {un} is bounded in E, there exists a constant M > 0 such that

|un|22 + |un|66 ≤ M,

and consequently,

lim
n→∞

∣∣∣∣
∫

R3
unf (x, un) dx

∣∣∣∣ ≤ lim
n→∞

(
ε
(|un|22 + |un|66

)
+ cε|un|qq

) ≤ εM.

By the arbitrariness of ε, we deduce (3.7).
Noting that 〈�′(un), un〉 = o(1), by (1.4) and (3.7) we have

‖un‖2 ≤ ‖un‖2 + b
(∫

R3
|∇un|2 dx

)2

=
〈
�′(un), un

〉
+

∫

R3
unf (x, un) dx → 0, (3.9)

that is, un → 0 in E. Then �(un) → 0, contrary to c > 0. Therefore δ > 0.
Going if necessary to a subsequence, we may assume that there exists a sequence {zn} ⊂

R
3 such that

∫

B2(zn)
|un|2 dx ≥ δ

2
.

Since the number of points in Z
3 ∩ B2(zn) is less than 43, there exists yn ∈ Z

3 ∩ B2(zn) such
that

∫

B2(0)
|ũn|2 dx =

∫

B2(yn)
|un|2 dx ≥ δ

2 × 43 > 0, (3.10)

where ũn is defined as ũn(x) = un(x + yn). By (V1) and (1.2), ‖ · ‖ is invariant under Z
3

translation, that is, ‖ũn‖ = ‖un‖. Therefore {ũn} is also bounded in E. Up to a subsequence
if necessary, we may assume that

ũn ⇀ ũ in E, ũn → ũ in L2
loc

(
R

3).

It follows from (3.10) that ũ 
= 0. Moreover, by the Z
3 invariance of the problem, {ũn} is

also a (PS)c sequence of �. Thus, for any φ ∈ C∞
0 (R3), by Lemma 2.2 and 3.1 we have

〈
�′(ũ),φ

〉
= lim

n→∞
〈
�′(ũn),φ

〉
= 0.

Then �′(ũ) = 0 and ũ is a nontrivial solution of (1.1).
Step 2. Denote by K as in (1.5) the set of nontrivial critical points of � and let

m = inf
K

�. (3.11)

For any u ∈K, it follows from (3.8) and Sobolev’s inequality that

‖u‖2 =
〈
�′(u), u

〉
– b

(∫

R3
|∇u|2 dx

)2

+
∫

R3
uf (x, u) dx
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≤ ε
(
c3‖u‖2 + c4‖u‖6) + cεc5‖u‖q,

where c3, c4, c5 are related to the Sobolev constants. Choosing ε small enough and multi-
plying both sides of the above inequality by ‖u‖–2, we deduce that there exists ρ > 0 such
that

‖u‖ ≥ ρ > 0, ∀u ∈K. (3.12)

Therefore, for any nontrivial critical point u of �, by (2.3) and (3.12) we have

�(u) = �(u) –
1
4
〈
�′(u), u

〉

=
1
4
‖u‖2 +

∫

R3

(
1
4

f (x, u)u – F(x, u)
)

dx ≥ ρ > 0. (3.13)

Hence 0 < m ≤ �(ũ) < +∞. Let {un} ∈K such that �(un) → m. Noting that 〈�′(un), un〉 =
0, then {un} is a (PS)m sequence. By Lemma 2.2, {un} is bounded in E. For this sequence
{un}, denote δ as in (3.6). If δ = 0, similar to (3.9) we obtain that ‖un‖ → 0, which contra-
dicts (3.12). Therefore δ > 0. Now, by the Z

3 translation invariance of the problem, using
the same argument in step 1, we can obtain a suitable Z

3 translation of {un}, denoted by
{vn}, such that

�′(vn) = 0, �(vn) = �(un) → m,

and {vn} converges weakly to some v 
= 0. By Lemma 3.1, v is a nonzero critical point of �.
Moreover, it follows from (2.3) and Fatou’s lemma that

m ≤ �(v) = �(v) –
1
4
〈
�′(v), v

〉

=
1
4
‖v‖2 +

∫

R3

(
1
4

f (x, v)v – F(x, v)
)

dx

≤ lim
n→∞

[
1
4
‖vn‖2 +

∫

R3

(
1
4

f (x, vn)vn – F(x, vn)
)

dx
]

= lim
n→∞

(
�(vn) –

1
4
〈
�′(vn), vn

〉)
= m. (3.14)

Therefore, �(v) = m, and so v is a ground state solution of problem (1.1). Finally, using the
strong maximum principle, we can conclude that v is positive. Theorem 1.1 is proved. �

4 The potential well case
In this section, we shall prove Theorem 1.2. Since the nonlinearity f does not depend on
x, the functional � is now written as

�(u) =
a
2

∫

R3
|∇u|2 dx +

1
2

∫

R3
V (x)u2 dx +

b
4

(∫

R3
|∇u|2 dx

)2

–
∫

R3
F(u) dx.

By Lemmas 2.1 and 2.2, for the mountain pass level c, � has a bounded (PS)c sequence
{un}. Up to a subsequence, we get that un ⇀ u in E. To show that u is a nonzero critical
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point of �, we need to consider the limiting functional �∞ : E →R,

�∞(u) =
a
2

∫

R3
|∇u|2 dx +

1
2

∫

R3
V∞u2 dx +

b
4

(∫

R3
|∇u|2 dx

)2

–
∫

R3
F(u) dx.

For any nontrivial critical point v of �∞, it is standard to prove the following Pohozaev
identity corresponding to �∞:

a
6

∫

R3
|∇v|2 dx +

b
6

(∫

R3
|∇v|2 dx

)2

+
1
2

∫

R3
V∞v2 dx –

∫

R3
F(v) dx = 0. (4.1)

One can refer to [11, 29] for details.
We assume by contradiction that u = 0. Then the above sequence {un}, as we shall see,

is also a (PS)c sequence of �∞.

Lemma 4.1 If u = 0, then {un} is also a bounded (PS)c sequence of �∞.

Proof Since un ⇀ 0 in E, we have that un → 0 in L2
loc(R3). Because of

lim|x|→∞ V (x) = V∞,

for any ε > 0, there exists R > 0 such that

∣∣V (x) – V∞
∣∣ < ε, ∀|x| > R.

Consequently,

∣∣�∞(un) – �(un)
∣∣ =

1
2

(∫

|x|≥R
+

∫

|x|<R

)(
V∞ – V (x)

)
u2

n dx

≤ ε

2
|un|22 +

V∞
2

∫

|x|<R
u2

n dx.

Noting that un → 0 in L2
loc(R3) and supn |un|22 < ∞, letting n → ∞, the above inequality

yields

lim
n→∞

∣∣�∞(un) – �(un)
∣∣ ≤ c6ε

for some constant c6 > 0. By the arbitrariness of ε, we obtain

∣∣�∞(un) – �(un)
∣∣ → 0 as n → ∞.

Similarly, we get

∥∥�′
∞(un) – �′(un)

∥∥
H–1(R3) = sup

φ∈E,‖φ‖=1

∣∣∣∣
∫

R3

(
V∞ – V (x)

)
unφ dx

∣∣∣∣ → 0,

as n → ∞. Therefore, �∞(un) → c and �′∞(un) → 0, that is, {un} is a (PS)c sequence of
�∞. �



Chen et al. Boundary Value Problems         (2022) 2022:97 Page 12 of 16

Lemma 4.2 If v ∈ E is a nontrivial critical point of �∞, then there exists γ ∈ C([0, 1], E)
such that γ (0) = 0, �∞(γ (1)) < 0, v ∈ γ ([0, 1]), and

max
t∈[0,1]

�∞
(
γ (t)

)
= �∞(v) > 0.

Proof For τ > 0, set vτ (x) := v(τ–1x). A direct computation shows

∫

R3
|∇vτ |2 dx = τ

∫

R3
|∇v|2 dx,

∫

R3
v2
τ dx = τ 3

∫

R3
v2 dx

and
∫

R3
F(vτ ) dx = τ 3

∫

R3
F(v) dx.

Then by (4.1) we have

�∞(vτ ) =
a
2

∫

R3
|∇vτ |2 dx +

b
4

(∫

R3
|∇vτ |2 dx

)2

+
1
2

∫

R3
V∞v2

τ dx –
∫

R3
F(vτ ) dx

=
aτ

2

∫

R3
|∇v|2 dx +

bτ 2

4

(∫

R3
|∇v|2 dx

)2

– τ 3
∫

R3

(
F(v) –

1
2

V∞v2
)

dx (4.2)

=
aτ

2
|∇v|22 +

bτ 2

4
|∇v|42 – τ 3

(
a
6
|∇v|22 +

b
6
|∇v|42

)

→ –∞ as τ → +∞.

Thus, there exists τ > 1 such that �∞(vτ ) < 0. Define

γ (t) =

⎧⎨
⎩

vτ t , 0 < t ≤ 1,

0, t = 0.

Noting that

‖vt‖2 ≤ a|∇vt|22 + V∞|vt|22 = at|∇v|22 + V∞t2|v|22 → 0, as t → 0,

we see that γ ∈ C([0, 1], E). Moreover, it follows from (4.2) that

d
dt

�∞
(
γ (t)

)
=

aτ

2
|∇v|22 +

bτ 2

2
|∇v|42 · t –

(
a
2
|∇v|22 +

b
2
|∇v|42

)
τ 3t2.

Observing the relationship between the roots and coefficients, we conclude that t = 1/τ is
the unique solution of

d
dt

�∞
(
γ (t)

)
= 0 for t ∈ (0,∞).

Remind that �∞(γ (1/τ )) = �∞(v) > 0 (by (4.2)), �∞(γ (0)) = �∞(0) = 0, and

lim
t→+∞�∞

(
γ (t)

)
= –∞.
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Therefore, we obtain that

max
t∈[0,1]

�∞
(
γ (t)

)
= �∞

(
γ (1/τ )

)
= �∞(v) > 0.

The lemma has been proved. �

Lemma 4.3 Suppose that (V2) and (f1)–(f3) are satisfied. c is a constant given by (2.2). If
{un} is a (PS)c sequence of �∞ and un ⇀ u0 in E, then u0 is a critical point of �∞.

Proof If u0 = 0, the desired conclusion holds obviously. Otherwise, define

c∞ := max
t>0

�∞(tu0).

By (V2), we have

�(u) ≤ �∞(u), ∀u ∈ E.

In view of (f2), we obtain

�∞(tu0) =
t2

2

∫

R3

(
a|∇u0|2 + V∞u2

0
)

dx +
bt4

4

(∫

R3
|∇u0|2 dx

)2

–
∫

R3
F(tu0) dx

≤ t4
[

1
2t2

∫

R3

(
a|∇u0|2 + V∞u2

0
)

dx +
b
4

(∫

R3
|∇u0|2 dx

)2

–
∫

R3

F(tu0)
t4 dx

]

→ –∞,

as t → ∞. Hence

c ≤ max
t>0

�(tu0) ≤ max
t>0

�∞(tu0) = c∞ < +∞.

Then using the argument similar to that of the proof of Lemma 3.1, the lemma can be
proved. �

Now, we are ready to prove Theorem 1.2 by comparing the energy between � and �∞.

Proof of Theorem 1.2 Step 1. We first show that � has a nonzero critical point.
Recall that u is the weak limit obtained from the bounded (PS)c sequence {un} of �,

which is discussed at the beginning of this section. If u = 0, by Lemma 4.1 we see that {un}
is also a bounded (PS)c sequence of �∞. As in Step 1 of the proof of Theorem 1.1, since
�∞ is invariant under Z3 translation, by Lions’ lemma we know that there exists {yn} ∈ Z

3

such that let

vn(x) := un(x + yn),

then {vn} is also a bounded (PS)c sequence of �∞, and vn ⇀ v 
= 0 in E. By Lemma 4.3
we know v is a nonzero critical point of �∞. Moreover, it follows from (2.3) and Fatou’s
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lemma that

�∞(v) = �∞(v) –
1
4
〈
�′

∞(v), v
〉

=
1
4

∫

R3

(
a|∇v|2 + V∞v2)dx +

∫

R3

(
1
4

vf (v) – F(v)
)

dx

≤ lim
n→∞

[
1
4

∫

R3

(
a|∇vn|2 + V∞v2

n
)

dx +
∫

R3

(
1
4

vnf (vn) – F(vn)
)

dx
]

= lim
n→∞

(
�∞(vn) –

1
4
〈
�′

∞(vn), vn
〉)

= c.

Now, by Lemma 4.2, there exists γ ∈ C([0, 1], E) such that γ (0) = 0, �∞(γ (1)) < 0, v ∈
γ ([0, 1]), and

0 < max
t∈[0,1]

�∞
(
γ (t)

)
= �∞(v) ≤ c. (4.3)

Furthermore, by the construction of γ , we also know that 0 /∈γ ((0, 1]). Therefore, accord-
ing to (V2), we obtain

�
(
γ (t)

)
< �∞

(
γ (t)

)
, ∀t ∈ (0, 1]. (4.4)

In particular, �(γ (1)) < �∞(γ (1)) < 0, and hence γ ∈ �, where � is defined in (2.1). Note
that �(0) = �∞(0) = 0 and c > 0. Combining (2.2), (4.3), and (4.4), we deduce that

c ≤ max
t∈[0,1]

�
(
γ (t)

)
< max

t∈[0,1]
�∞

(
γ (t)

)
= �∞(v) ≤ c.

This is a contradiction. Therefore, u 
= 0. By Lemma 3.1, u is a nonzero critical point of �.
Step 2. We now show that (1.7) has a ground state.
Denote K and m as in (1.5) and (3.11), respectively. Using the argument similar to (3.13)

and (3.14), it is easy to see that

0 < m ≤ �(w) ≤ c, ∀w ∈K. (4.5)

Let {wn} ∈ K such that �(wn) → m. Then {wn} is a (PS)m sequence of �, and hence {wn}
is bounded by Lemma 2.2. Passing to a subsequence, we may assume wn ⇀ w in E.

If w = 0, repeating the previous argument of Step 1, we can get a nonzero critical point
w̃ of �∞ such that �∞(w̃) ≤ m, and we can construct a path γ ∈ � such that

c ≤ max
t∈[0,1]

�
(
γ (t)

)
< max

t∈[0,1]
�∞

(
γ (t)

)
= �∞(w̃) ≤ m,

contradicting (4.5). Therefore w 
= 0, and then, by Lemma 3.1, w is a nontrivial critical point
of �. Furthermore, similar to (3.14), we deduce that �(w) = m. Hence w is a ground state
solution of (1.7). It is then easy to see that w is positive by the strong maximum principle
again. The proof of Theorem 1.2 is completed. �
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