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Abstract
A competing anisotropic (p,q)-Laplacian
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as a nonstandard Dirichlet problem with convolutions on a bounded smooth domain
in R

N , N ≥ 3 is considered. Assume f :� ×R×R
N → R is a Carathéodory function

and φ ∈ L1(RN). If μ > 0, the existence of a generalized solution is proved. By the
Galerkin basis for the space, a sequence that converges strongly to the solution is
constructed. Ifμ ≤ 0, it is proved that any generalized solution is a weak solution.
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1 Introduction
The (p, q)-Laplacian comes from a general reaction-diffusion system that has a wide spec-
trum of applications in physics and related sciences such as biophysics, plasma physics,
solid-state physics, fractional quantum mechanics in the study of particles on stochastic
fields, fractional superdiffusion and fractional white-noise limit, etc. (see [1, 5–7, 23–25,
31, 32] and the references therein).

Recently, Motreanu [20] proved the existence of solutions (generalized and weak) for

⎧
⎨

⎩
– div(|∇u|p–2∇u – μ|∇u|q–2∇u) = f (x,ρ � u,∇(ρ � u)) in �,

u = 0 on ∂�,

under suitable condition of f and ρ , where he overcame the lack of ellipticity.
Here, with the inspiration of [20], the multiplicity of nontrivial solutions for the non-

standard Dirichlet problem with an anisotropic competing (p, q)-Laplacian
⎧
⎪⎨

⎪⎩
–

N∑
i=1

∂
∂xi

(| ∂u
∂xi

|pi–2 – μ| ∂u
∂xi

|qi–2) ∂u
∂xi

= f (x,φ � u,∇(φ � u)) in �,

u = 0 on ∂�,
(1.1)
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is proved, where � is a bounded smooth domain in R
N , N ≥ 3, with a Lipschitz boundary

∂�, f : � × R × R
N → R is a Carathéodory function, φ ∈ L1(RN ), u ∈ W 1,−→p

0 (�), and the
convolution φ � u(x) is defined by

φ � u(x) :=
∫

RN
φ(x – y)u(y) dy for a.e. x ∈ R

N .

We set −→p := (p1, . . . , pN ) and −→q := (q1, . . . , qN ) where

1 < p1, p2, . . . , pN ,
N∑

i=1

1
pi

> 1,

1 < q1, q2, . . . , qN ,
N∑

i=1

1
qi

> 1.

Let p and q denote the harmonic means p = N/(
∑N

i=1
1
pi

) and q = N/(
∑N

i=1
1
qi

), respectively,
and define

p� :=
N

(
∑N

i=1
1
pi

) – 1
=

Np
N – p

, q� :=
N

(
∑N

i=1
1
qi

) – 1
=

Nq
N – q

,

p∞ := max
{

p+, p�
}

and p+ := max{pi : i = 1, . . . , N}.

We define an order as follows:

−→q ≤ −→p if and only if qi ≤ pi for all i = 1, . . . , N . (1.2)

Throughout the paper, we assume that

−→q ≤ −→p , qN < q�, pN < p� and q� < p�. (1.3)

Also, we assume

(H1) |f (x, t, ξ )| ≤ σ (x) + c1|t|p+–1 + c2
N∑

i=1
|ξi|pi–1 for a.e. x ∈ � and for all (t, ξ ) ∈ R × R

N ,

where ξ = (ξ1, . . . , ξN ), σ ∈ Lγ ′ (�) for γ ∈ (1, p+), γ ′ = γ

γ –1 and constants c1 ≥ 0,
c2 ≥ 0, satisfying

‖φ‖p+–1
L1(RN )c1Sp+ + c2
 < 1, (1.4)

where 
 = max1≤i≤N {S′
pi
‖φ‖pi–1

L1(RN )} and S′
pi

is the Sobolev constant for the embed-
ding W 1,pi

0 (�) ⊂ Lpi (�) for i = 1, . . . , N .
The differential operator in (1.1), i.e.,

u →
N∑

i=1

∂

∂xi

(∣∣∣∣
∂u
∂xi

∣∣∣∣
pi–2

– μ

∣∣∣∣
∂u
∂xi

∣∣∣∣
qi–2)

∂u
∂xi



Razani Boundary Value Problems         (2022) 2022:87 Page 3 of 10

is the difference of the anisotropic degenerated p-Laplacian and q-Laplacian. In fact, the
negative anisotropic �-Laplacian (for � = p, q)

–�−→
�

: W 1,−→�
0 (�) → W –1,−→� ′(�)

is expressed as

〈–�−→
�

u, v〉 =
N∑

i=1

∫

�

∂

∂xi

∣∣∣∣
∂u
∂xi

∣∣∣∣
�i–2

∂u
∂xi

· ∂v
∂xi

dx

for all u, v ∈ W 1,−→�
0 (�), where −→

� := (�1, . . . ,�N ) and −→
� ′ := ( �1

�1–1 , . . . , �N
�N –1 ).

Since 1 < q1, −→q < −→p , pN < ∞, the continuous embedding W 1,−→p
0 (�) ↪→ W 1,−→q

0 (�) holds

and the operator –�−→p + μ�−→q is well defined on W 1,−→p
0 (�).

The sign of –�−→p + μ�−→q for μ > 0 and sufficiently large is different from μ > 0 and
sufficiently small. This makes it difficult to study (1.1). We owe essential ideas to [20] to
overcome the lack of ellipticity, monotonicity, and variational structure in problem (1.1)
(see [18–20, 22]). Therefore, for problem (1.1), the existence of a solution is proved by
Theorem 1.1.

Theorem 1.1 Suppose that (H1) holds. Then, there exists a generalized solution to problem
(1.1). In particular, if μ ≤ 0, there exists a weak solution to problem (1.1).

The rest of the paper is organized as follows: In Sect. 2, the suitable function spaces and
some lemmas are recalled. In Sect. 3, the associated Nemytskij operator is introduced and
then we show the anisotropic competing (p, q)-Laplacian (1.1) has a solution, i.e., the proof
of Theorem 1.1 is presented.

2 Function space
Consider the anisotropic Sobolev spaces W 1,−→p (�), with the norm

‖u‖
W 1,−→p (�)

:=
∫

�

∣∣u(x)
∣∣dx +

N∑

i=1

(∫

�

∣∣∣∣
∂u
∂xi

∣∣∣∣
pi

dx
) 1

pi
,

and W 1,−→p
0 (�) with the norm

‖u‖
W 1,−→p

0 (�)
:=

N∑

i=1

(∫

�

∣∣∣∣
∂u
∂xi

∣∣∣∣
pi

dx
) 1

pi

=
N∑

i=1

‖u‖W 1,pi
0 (�).

Note that W 1,−→p
0 (�) is a reflexive and uniformly convex Banach space (see [26–28] and

references therein for more details or more literature in [2, 4, 8–14, 30]). Here, is an em-
bedding theorem [15, Theorem 1].
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Theorem 2.1 Let � ⊂R
N be an open bounded domain with Lipschitz boundary. If

pi > 1, for all i = 1, . . . , N ,
N∑

i=1

1
pi

> 1,

then for all r ∈ [1, p∞], there is a continuous embedding W 1,−→p
0 (�) ⊂ Lr(�). For r < p∞, the

embedding is compact.

Note that the Sobolev space W 1,−→p
0 (�) is embedded in W 1,−→p (RN ) by identifying every

u ∈ W 1,−→p
0 (�) with its extension equal to zero outside �. Thus, one can define the convo-

lution φ � u of φ ∈ L1(RN ) with u ∈ W 1,−→p
0 (�) (see [3, Sect. 4.4 and Sect. 9.1]) by

φ � u(x) =
∫

RN
φ(x – y)u(y) dy for a.e. x ∈R

N .

Also,

∂

∂xi
(φ � u) = φ �

∂u
∂xi

∈ Lpi
(
R

N)
, for alli = 1, 2, . . . , N .

Remark 2.2 Assume φ ∈ L1(RN ) with u ∈ W 1,−→p
0 (�), then

(i)

‖φ � u‖Lr (RN ) ≤ ‖φ‖L1(RN )‖u‖Lr (�) (2.1)

whenever r ∈ [1, p�];
(ii)

∥∥∥∥φ �
∂u
∂xi

∥∥∥∥
Lpi (RN )

≤ ‖φ‖L1(RN )

∥∥∥∥
∂u
∂xi

∥∥∥∥
Lpi (�)

(2.2)

for all i = 1, . . . , N ;
(iii) By (2.2), we have

‖φ � u‖
W 1−→p

0 (RN )
=

N∑

i=1

(∫

RN

∣∣∣∣
∂(φ � u)

∂xi

∣∣∣∣
pi

dx
) 1

pi

=
N∑

i=1

∥∥∥∥
∂(φ � u)

∂xi

∥∥∥∥
Lpi (RN )

≤
N∑

i=1

‖φ‖L1(RN )

∥∥∥∥
∂u
∂xi

∥∥∥∥
Lpi (RN )

= ‖φ‖L1(RN )

N∑

i=1

∥∥∥∥
∂u
∂xi

∥∥∥∥
Lpi (RN )

= ‖φ‖L1(RN )‖u‖
W 1−→p

0 (RN )
.

(2.3)
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Before ending this section we require a generalized solution for (1.1).

Definition 2.3 A function u ∈ W 1,−→p
0 (�) is called a generalized solution to problem (1.1)

if there exists a sequence {un}n≥1 in W 1,−→p
0 (�) such that

(I) un ⇀ u in W 1,−→p
0 (�) as n → ∞;

(II) –�−→p un + μ�−→q un – f (·,φ � un(·),∇(φ � ∇u)(·)) ⇀ 0 in W –1,−→p ′ (�) as n → ∞;
(III) limn→∞〈–�−→p un + μ�−→q un, un – u〉 = 0.

Remark 2.4 Assume u is a weak solution of (1.1), i.e., u satisfies

〈
(–�−→p + μ�−→q )(u), v

〉
W 1,−→p

0 (�)
=

∫

�

f
(
x,φ � u(x),∇(

φ � u(x)
))

v(x) dx

for all v ∈ W 1,−→p
0 (�). Set un = u for all n, then any weak solution is a generalized solution

to problem (1.1).

3 Weak and generalized solutions
Here, we study the behavior of the Nemytskij operator and construct a sequence (by the
Galerkin basis of the space) that converges strongly to the generalized (weak) solution of
(1.1) when μ ≥ 0 (μ < 0). First, we recall an embedding result.

Since −→q < −→p and � is bounded then

W 1−→p
0 (�) is continuously embedded in W 1−→q

0 (�) and

W –1,−→q ′
(�) is continuously embedded in W –1,−→p ′

(�).
(3.1)

Assume the operator A : W 1,−→p
0 (�) → W –1,−→p ′ (�) (see (1.1)) is defined by

〈
A(u), v

〉
= 〈–�−→p u + μ�−→q u, v〉 –

∫

�

f
(
x,φ � u(x),∇(φ � u)(x)

)
v(x) dx. (3.2)

Lemma 3.1 The operator A defined by (3.2) is continuous, when (H1) holds.

Proof Define the operator

T : W 1,−→p
0 (�) → Lp+

(�) × Lp1 (�) × · · · × LpN (�)

by T(u) = (φ � u|�,∇(φ � u)|�). Relations (2.1) and (2.3) imply that T is linear and contin-
uous. By (H1) and Krasnoselskii’s theorem [16], the Nemytskii operator

N : Lp+
(�) × (

Lp1 (�) × · · · × LpN (�)
) → Lp+ ′

(�)

(v, , w1, . . . , wN ) 
→ f
(·, v(·), w1(·), . . . , wN (·))

is well defined and continuous and so the composition operator

W 1,−→p
0 (�) → Lp+ ′

(�), u 
→ f
(·,φ � u(·),∇(φ � u)(·)) (3.3)

is continuous. Note that Lp+ ′ (�) is continuously embedded in W –1,p+ ′ (�).
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The operator –�−→
�

: W 1,−→�
0 (�) → W –1,−→� ′ (�) (for � = p, q) is continuous. Therefore, em-

bedding (3.1) implies –�−→p + μ�−→q : W 1−→p
0 (�) → W –1,−→p ′ (�) is continuous and finally the

operator A is continuous. �

Assume {Xn} (vector subspaces of W 1,−→p
0 (�)) is a Galerkin basis for the separable Banach

space W 1,−→p
0 (�), i.e.,

(i) dim(Xn) < ∞, for all n;
(ii) Xn ⊂ Xn+1, for all n;

(iii) ∪
n

Xn = W 1,−→p
0 (�).

A consequence of Brouwer’s fixed-point theorem will resolve each approximate problem
on Xn. Due to this, we construct a sequence {un} by the next Proposition.

Proposition 3.2 Assume (H1) holds. Then, for each n ≥ 1 there exists un ∈ Xn such that

〈
(–�−→p + μ�−→q )(un), v

〉
W 1,−→p

0 (�)
=

∫

�

f
(
x,φ � un(x),∇(

φ � un(x)
))

v(x) dx (3.4)

for all v ∈ Xn. In addition, {un}n≥1 is bounded in W 1,−→p
0 (�).

Proof We define An : Xn → X�
n by

〈
An(u), v

〉
Xn

=
〈
(–�−→p + μ�−→q )(u), v

〉
W 1,−→p

0 (�)
–

∫

�

f
(
x,φ � u(x),∇(

φ � u(x)
))

v(x) dx

for all u, v ∈ Xn and all n ∈N. The operator An is continuous (by Lemma 3.1) and

〈
An(v), v

〉
Xn

=
N∑

i=1

∫

�

(∣∣∣∣
∂v
∂xi

∣∣∣∣
pi

– μ

∣∣∣∣
∂v
∂xi

∣∣∣∣
qi)

dx –
∫

�

f
(
x,φ � v(x),∇(

φ � v(x)
))

v(x) dx

≥
N∑

i=1

‖v‖pi

W 1,pi
0 (�)

– μ

N∑

i=1

|�|
pi–qi

pi ‖v‖qi

W 1,pi
0 (�)

– ‖σ‖Lγ ′ (�)‖v‖Lγ (�)

– c1‖φ � v‖p+–1
Lp+ (�)

‖v‖Lp+ (�) – c2

N∑

i=1

‖φ � v‖pi–1
W 1,pi

0 (�)
‖v‖Lpi (�)

for all v ∈ Xn, by (H1) and the Hölder inequality. Now (2.1), (2.3), and Sobolev embedding
show that

〈
An(v), v

〉
Xn

=
N∑

i=1

∫

�

(∣∣∣∣
∂v
∂xi

∣∣∣∣
pi

– μ

∣∣∣∣
∂v
∂xi

∣∣∣∣
qi)

dx

–
∫

�

f
(
x,φ � v(x),∇(

φ � v(x)
))

v(x) dx
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≥
N∑

i=1

‖v‖pi

W 1,pi
0 (�)

– μ

N∑

i=1

|�|
pi–qi

pi ‖v‖qi

W 1,pi
0 (�)

– ‖σ‖Lγ ′ (�)‖v‖Lγ (�)

– c1‖φ‖p+–1
L1(RN )‖v‖p+

Lp+ (�)
– c2

N∑

i=1

‖φ‖pi–1
L1(RN )‖v‖pi–1

W 1,pi
0 (�)

‖v‖Lpi (�) (3.5)

≥
N∑

i=1

‖v‖pi

W 1,pi
0 (�)

– μ

N∑

i=1

|�|
pi–qi

pi ‖v‖qi

W 1,pi
0 (�)

– Sγ ‖σ‖Lγ ′ (�)‖v‖
W 1,−→p

0 (�)

– c1Sp+‖φ‖p+–1
L1(RN )

N∑

i=1

‖v‖pi

W 1,pi
0 (�)

– c2

N∑

i=1

S′
pi
‖φ‖pi–1

L1(RN )‖v‖pi

W 1,pi
0 (�)

≥
N∑

i=1

‖v‖pi

W 1,pi
0 (�)

– μ

N∑

i=1

|�|
pi–qi

pi ‖v‖qi

W 1,pi
0 (�)

– Sγ ‖σ‖Lγ ′ (�)‖v‖
W 1,−→p

0 (�)

–
(‖φ‖p+–1

L1(RN )c1Sp+ + c2

) N∑

i=1

‖v‖pi

W 1,pi
0 (�)

,

for all x ∈ Xn, where |�| is the Lebesgue measure of �.
Assume λ1,−→p > 0 denotes the first eigenvalue of the negative anisotropic p-Laplacian on

W 1,−→p
0 (�) that is given by

λ1,−→p = min

{
N∑

i=1

∫
�

| ∂u
∂xi

|pi dx

‖u‖p+

Lp+ (�)

: u ∈ W 1,−→p
0 (�)\{0}

}
. (3.6)

See [15, Theorem 3] or [17, Theorem 2] for more details. By (1.4) (recall that Sp+ = λ
– 1

p+

1,−→p )
and pi > qi > 1 and p+ > q+ > 1, for i = 1, . . . , N , for R = R(n) > 0 sufficiently large we obtain

〈
An(v), v

〉
Xn

≥ 0 whenever v ∈ Xn with ‖v‖
W 1,−→p

0 (�)
= R.

As a consequence of Brouwer’s fixed-point theorem (see, e.g., [29, p. 37]) (since Xn is a
finite-dimensional space) there exists un ∈ Xn solving the equation An(un) = 0 and this
shows that un ∈ Xn is a solution for problem (3.4).

{un}n≥1 is bounded in W 1,−→p
0 (�). To show this, let v = un ∈ Xn in (3.5), then

N∑

i=1

‖v‖pi

W 1,pi
0 (�)

– c1Sp+‖φ‖p+–1
L1(RN )

N∑

i=1

‖v‖pi

W 1,pi
0 (�)

– c2

N∑

i=1

S′
pi
‖φ‖pi–1

L1(RN )‖v‖pi

W 1,pi
0 (�)

≤ μ

N∑

i=1

|�|
pi–qi

pi ‖v‖qi

W 1,pi
0 (�)

+ Sγ ‖σ‖Lγ ′ (�)‖v‖
W 1,−→p

0 (�)
.

Since pi > qi > 1 and p+ > q+ > 1, for i = 1, . . . , N , then (1.4) shows that {un}n≥1 is bounded
in W 1,−→p

0 (�). �
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Now, we can prove the existence of the solution of problem (1.1), i.e., we present the
proof of Theorem 1.1.

Proof Assume {un}n≥1 ⊂ W 1,−→p
0 (�) is given by Proposition 3.2 that is bounded in W 1,−→p

0 (�)
and the reflexively, there exists a subsequence still denoted by {un}n≥1 that is bounded and

un ⇀ u in W 1,−→p
0 (�) (3.7)

with some u ∈ W 1,−→p
0 (�). The continuity of the operator in (3.3), shows that the sequence

{f (·,φ � un,∇(φ � un))}n≥1 is bounded in L
−→p ′ . Suppose

–�−→p un + μ�−→q un – f
(·,φ � un,∇(φ � un)

)
⇀ η in W –1,−→p ′ (�) (3.8)

with some η ∈ W –1,−→p ′ (�), by the reflexivity of W –1,−→p ′ (�).
Assume v ∈ ⋃

n≥1 Xn. Fix an integer m ≥ 1 such that v ∈ Xm. Proposition 3.2 provides
that (3.4) holds for all n ≥ m. Letting n → ∞ in (3.4), by means of (3.8) we obtain

〈η, v〉 ≥ 0 for allv ∈
⋃

n≥1

Xn.

By the density of
⋃

n≥1 Xn in W 1,−→p
0 (�) (see (iii) in the definition of the Galerkin basis), it

turns out that η = 0 and so in W –1,−→p ′ (�) we have

–�−→p un + μ�−→q un – f
(·,φ � un,∇(φ � un)

)
⇀ 0. (3.9)

Letting v = un in (3.4), we obtain

〈–�−→p un + μ�−→q un, un〉 –
∫

�

f
(·,φ � un,∇(φ � un)

)
dx = 0 (3.10)

for all n ≥ 1, while (3.9) gives

〈–�−→p un + μ�−→q un, un〉 –
∫

�

f
(·,φ � un,∇(φ � un)

)
dx → 0 (3.11)

as n → ∞. Together, (3.10) and (3.11) yield

〈–�−→p un + μ�−→q un, un – u〉 –
∫

�

f
(·,φ � un,∇(φ � un)

)
(un – u) dx → 0 (3.12)

as n → ∞. Theorem 2.1 and (3.7) imply that un → u strongly in Lp(�), and since {f (·,φ �

un,∇(φ � un))} is bounded, then

lim
n→∞

∫

�

f
(·,φ � un,∇(φ � un)

)
(un – u) dx = 0. (3.13)

By inserting (3.13) into (3.12) we obtain

lim
n→∞〈–�−→p un + μ�−→q un, un – u〉 = 0. (3.14)
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Thus, the conditions of Definition 2.3 are satisfied and this implies that u ∈ W 1,−→p
0 (�) is a

generalized solution to problem (1.1).
Now, we prove the existence of a weak solution in the case μ ≤ 0. Assume u is a gener-

alized solution to problem (1.1) and {un}n≥1 satisfy the conditions of Definition 2.3 with
respect to u. We obtain

〈–�−→p un, un – u〉
W 1,−→p

0 (�)

≤ 〈–�−→p un, un – u〉
W 1,−→p

0 (�)
– μ〈–�−→q un + �−→q u, un – u〉

W 1,−→p
0 (�)

= 〈–�−→p un + μ�−→q un, un – u〉
W 1,−→p

0 (�)
– μ〈�−→q u, un – u〉

W 1,−→p
0 (�)

by the monotonicity of –�−→q and hence,

lim sup
n→∞

〈�−→p un, un – u〉
W 1,−→p

0 (�)
≤ 0.

Then, un → u strongly in W 1,−→p (�) (see, e.g., [21, Proposition 2.72]). The continuity of
A (Lemma 3.1), shows A(un) → A(u) in W –1,−→p ′ (�) and condition (II) of Definition 2.3,
shows A(u) = 0. This shows that

〈
(–�−→p + μ�−→q )(u), v

〉
W 1,−→p

0 (�)
=

∫

�

f
(
x,φ � u(x),∇(

φ � u(x)
))

v(x) dx

for all v ∈ W 1,−→p
0 (�), which means u is a weak solution to problem (1.1). �
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