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1 Introduction
In this paper, we consider the following biharmonic system:

⎧
⎨

⎩

�(ai(x,�ui)) + bi(x) |ui|si–2ui
|x|2si = λHui (x, u1, . . . , un) in �,

ui = �ui = 0 on ∂�,
(1.1)

where � is a bounded domain in R
N (N ≥ 2) with smooth boundary, i = 1, . . . , n, and the

potentials

ai : � ×R →R

for i = 1, . . . , n are Carathéodory functions satisfying the following conditions:
(A1) ai(x, 0) = 0, for a.e. x ∈ �.
(A2) There exists Ci > 0 such that

∣
∣ai(x, t)

∣
∣ ≤ Ci

(
1 + |t|pi(x)–1)

for a.e. x ∈ � and all t ∈ R, where pi ∈ C(�) with

max

{

2,
N
2

}

< inf
x∈�

pi(x) ≤ pi(x) ≤ sup
x∈�

pi(x) < ∞.
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(A3) For all s, t ∈ R,

(
ai(x, t) – ai(x, s)

)
(t – s) ≥ 0

for a.e. x ∈ �.
(A4) There exists ci ≥ 1 such that

ci|t|pi(x) ≤ min
{

ai(x, t)t, pi(x)Ai(x, t)
}

for a.e. x ∈ � and all s, t ∈R, where

Ai : � ×R →R

is the antiderivative of ai, that is,

Ai(x, t) :=
∫ t

0
ai(x, s) ds.

We assume that 1 < si < N
2 , the nonnegative functions bi belong to L∞(�) for i = 1, . . . , n, λ

is a positive parameter, and

H : � ×R
n →R

is a measurable function with respect to x ∈ � for each (t1, . . . , tn) ∈ R
n and is C1 with

respect to (t1, . . . , tn) ∈R
n for a.e. x ∈ �. By Hui we denote the partial derivative of H with

respect to ui.
Biharmonic-type problems are used to describe a large class of physical phenomena such

as micro-electro-mechanical systems, phase field models of multiphase systems, thin film
theory, thin plate theory, surface diffusion on solids, interface dynamics, and also flow in
Hele–Shaw cells. That is why many authors have looked for solutions of elliptic equations
involving such operators.

The fourth order Leray–Lions problem with Navier boundary conditions

⎧
⎨

⎩

�(a(x,�u)) = λV (x)|u|q(x)–2u in �,

u = �u = 0 on ∂�,

is studied in [9], where � is a bounded domain in R
N (N ≥ 2) with smooth boundary ∂�,

�(a(x,�u)) is the fourth-order Leray–Lions operator, a satisfies a growth condition de-
pending on p and some completion conditions, λ > 0 is a parameter, and V is a function in
a generalized Lebesgue space Ls(x)(�). The functions p, q, s ∈ C(�) satisfy the inequalities

1 < min
x∈�

q(x) ≤ max
x∈�

q(x) < min
x∈�

p(x) ≤ max
x∈�

p(x) ≤ N
2

< s(x)
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for all x ∈ �. In a particular case where a(x, t) = |t|p(x)–2t, Boureanu et al. [2] studied the
problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�(|�u|p(x)–2�u) + a(x)|u|p(x)–2u = λf (x, u) in �,

u ≡ constant on ∂�,

�u = 0 on ∂�,
∫

∂�
∂
∂ν

(|�u|p(x)–2�u) dS = 0,

where � is a bounded domain in R
N with sufficiently smooth boundary ∂�, f : �×R →R

is a Carathéodory function, λ is a positive parameter, and a ∈ L∞(�).
Recently, the study of the biharmonic problems in various spaces is an interesting prob-

lem. For example, the existence of at least one positive radial solution of the weighted
p-biharmonic problem

�Hn
(
w(ξ )|�Hn u|p–2�Hn u

)
+ R(ξ )w(ξ )|u|p–2u

=
m∑

i=1

ai
(|ξ |Hn

)|u|qi–2u –
k∑

j=1

bj
(|ξ |Hn

)|u|rj–2u

with Navier boundary conditions on a Korányi ball has been proved [21], where w ∈ As is
a Muckenhoupt weight function, and �2

Hn ,p is the Heisenberg p-biharmonic operator.
Motivated by the works mentioned, we study the existence of multiple weak solutions for

problem (1.1) consisting of fourth order Leray–Lions type operators and singular terms.
Before ending this section, we state the definition of a weak solution for problem (1.1)

and recall the critical point theorem of [1].

Definition 1.1 We say that

u = (u1, . . . , un) ∈
n∏

i=1

(
W 2,pi(x)(�) ∩ W 1,pi(x)

0 (�)
) \ {0}

is a weak solution of problem (1.1) if ui = 0 on ∂� for each 1 ≤ i ≤ n and the following
integral equality is true:

n∑

i=1

∫

�

ai(x,�ui)�vi dx +
n∑

i=1

∫

�

bi(x)
|ui|si–2uivi

|x|2si
dx

– λ

n∑

i=1

∫

�

Hui (x, u1, . . . , un)vi dx = 0

for every

v = (v1, . . . , vn) ∈
n∏

i=1

(
W 2,pi(x)(�) ∩ W 1,pi(x)

0 (�)
)
.

Theorem 1.1 Let X be a reflexive real Banach space, and let � : X → R be a coercive,
continuously Gâteaux-differentiable, and sequentially weakly lower semicontinuous func-
tional whose Gâteaux derivative admits a continuous inverse on X∗. Let 	 : X → R be a
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continuously Gâteaux-differentiable functional whose Gâteaux derivative is compact and
such that

inf
x∈X

� = �(0) = 	(0) = 0.

Assume that there exist r > 0 and x̄ ∈ X, with r < �(x̄) such that
(i) sup�(x)<r 	(x)

r < 	(x̄)
�(x̄) ;

(ii) For each

λ ∈ 
r :=
]

�(x̄)
	(x̄)

,
r

sup�(x)<r 	(x)

[

,

the functional Iλ = � – λ	 is coercive.
Then for each λ ∈ 
r , the functional Iλ = � – λ	 has at least three distinct critical points
in X.

The rest of the paper is organized as follows. in Sect. 2, we present a brief survey of
notions and results related to our problem. In Sect. 3, we state the main result of the paper
and prove it by variational techniques and applying Theorem 1.1 on three critical points.

2 Variational framework
Let � be a bounded domain in R

N (N ≥ 2) with smooth boundary. We suppose that 1 <
si < N

2 and pi ∈ C(�), i = 1, . . . , n, satisfy the following condition:

max

{

2,
N
2

}

< p–
i := inf

x∈�
pi(x) ≤ p(x) ≤ p+

i := sup
x∈�

pi(x) < +∞. (2.1)

The variable exponent Lebesgue space Lpi(x)(�), i = 1, . . . , n, is defined as

Lpi(x)(�) :=
{

u : � −→R : u is measurable and
∫

�

∣
∣u(x)

∣
∣pi(x) dx < ∞

}

,

with the Luxemburg norm

|u|pi(x) := inf

{

λ > 0 :
∫

�

∣
∣
∣
∣
u(x)
λ

∣
∣
∣
∣

pi(x)

dx ≤ 1
}

.

Notice that if q(·) ≡ q, q ∈ {si : i = 1, . . . , n} ∪ {1}, then this norm is equal to the standard
norm on Lq(�),

|u|q =
(∫

�

|u|q dx
) 1

q
.

It is well known that for any u ∈ Lpi(x)(�) and v ∈ Lp′
i(x)(�), where Lp′

i(x)(�) is the conjugate
space of Lpi(x)(�), we have the Hölder-type inequality

∣
∣
∣
∣

∫

�

uv dx
∣
∣
∣
∣ ≤

(
1

p–
i

+
1

p′–
i

)

|u|pi(x)|v|p′
i(x).

The following theorem is [11, Theorem 2.8].
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Theorem 2.1 Assume that � is a bounded and smooth set in R
N and that p, q ∈ C+(�).

Then

Lp(x)(�) ↪→ Lq(x)(�)

if and only if q(x) ≤ p(x) a.e. x ∈ �; moreover, there exists a constant Mq such that

|u|q(x) ≤ Mq|u|p(x). (2.2)

Following [13], for any κ > 0, we set

κ ř :=

⎧
⎨

⎩

κr+ , κ < 1,

κr– , κ ≥ 1,

and

κ r̂ :=

⎧
⎨

⎩

κr– , κ < 1,

κr+ , κ ≥ 1,

for r ∈ {pi : i = 1, . . . , n}. We rewrite the well-known [8, Proposition 2.7] as follows.

Proposition 2.1 For each u ∈ Lp(x)(�), we have

|u|p̌p(x) ≤
∫

�

∣
∣u(x)

∣
∣p(x) dx ≤ |u|p̂p(x).

For m = 1, 2 and p ∈ {pi : i = 1, . . . , n}, by W m,p(x)(�) we denote the variable exponent
Sobolev space, that is,

W m,p(x)(�) :=
{

u ∈ Lp(x)(�) : Dαu ∈ Lp(x)(�), |α| ≤ m
}

endowed with the norm

‖u‖m,p(x) :=
∑

|α|≤m

∣
∣Dαu

∣
∣
p(x).

Let us point out that the spaces Lp(x)(�) and W m,p(x)(�) are separable, reflexive, and uni-
form convex Banach spaces [4]. Let W 1,p(x)

0 (�) be the closure of C∞
0 (�) in W 1,p(x)(�). We

set

Y := W 2,p(x)(�) ∩ W 1,p(x)
0 (�)

for p ∈ {pi : i = 1, . . . , n}. It is a reflexive Banach space respect to the norm

‖u‖Y := ‖u‖W 2,p(x)(�) + ‖u‖W 1,p(x)
0 (�)

=
∣
∣u|p(x) + ||∇u|∣∣p(x) + |�u|p(x),
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where

∇u =
(

∂u
∂x1

(x), . . . ,
∂u
∂xN

(x)
)

is the gradient of u at x = (x1, . . . , xn), �u =
∑N

i=1
∂2u
∂x2

i
is the Laplace operator, and |∇u| =

(
∑N

i=1 | ∂u
∂xi

|2) 1
2 ,.

Using the Poincaré inequality and [22], the norms ‖ · ‖Y and |�(·)|p(x) are equivalent on
Y , where

|�u|p(x) := inf

{

μ > 0 :
∫

�

∣
∣
∣
∣
�u
μ

∣
∣
∣
∣

p(x)

dx ≤ 1
}

.

We have the following lemma by Theorem 2.1.

Lemma 2.1 If p(x) ≤ q(x) a.e. x ∈ �, then

W m,q(x)(�) ↪→ W m,p(x)(�). (2.3)

In a particular case, for pi, i = 1, . . . , n, with condition (2.1),

W 2,pi(x)(�) ∩ W 1,pi(x)
0 (�) ↪→ W 2,p–

i (�) ∩ W 1,p–
i

0 (�)

is embedded continuously, and since p–
i > N

2 , we have the following compact embedding

W 2,p–
i (�) ∩ W 1,p–

i
0 (�) ↪→↪→ C0(�).

Then

W 2,pi(x)(�) ∩ W 1,pi(x)
0 (�) ↪→↪→ C0(�).

So, in particular, there exist positive constants ki > 0, i = 1, . . . , n, such that

|u|∞ ≤ ki|�u|pi(x) (2.4)

for each u ∈ W 2,pi(x)(�) ∩ W 1,pi(x)
0 (�), where |u|∞ := supx∈� |u(x)|.

Proposition 2.1 implies the following lemma.

Lemma 2.2 For each u ∈ Y , we have

|�u|p̌p(x) ≤ ρ(u) :=
∫

�

∣
∣�u(x)

∣
∣p(x) dx ≤ |�u|p̂p(x).

Now we recall the classical Hardy–Rellich inequality mentioned in [3].
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Lemma 2.3 Let 1 < s < N
2 . Then for u ∈ W 1,s

0 (�) ∩ W 2,s(�), we have

∫

�

|u(x)|s
|x|2s dx ≤ 1

H

∫

�

|�u(x)|s dx,

where H := ( N(s–1)(N–2p)
s2 )s.

Lemma 2.4 Let 1 < si < N
2 , and let pi ∈ C(�) be as in relation (2.1) for i = 1, . . . , n. Then

there exists κ such that
∫

�

|u(x)|si

|x|2si
dx ≤ κ

H |�u|si
pi(x)

for u ∈ W 1,pi(x)
0 (�) ∩ W 2,pi(x)(�), where H is as in Lemma 2.3.

Proof Since si < pi(x) a.e. in � for each i = 1, . . . , n, according to relation (2.3), we have

W 1,pi(x)
0 (�) ∩ W 2,pi(x)(�) ↪→ W 1,si

0 (�) ∩ W 2,si (�).

Moreover, there exist constants κsi such that

|�u|si ≤ κsi |�u|pi(x).

From Lemma 2.3 we get

∫

�

|u(x)|si

|x|2si
dx ≤ 1

H

∫

�

∣
∣�u(x)

∣
∣si dx

for u ∈ W 1,si
0 (�) ∩ W 2,si (�). Then we deduce that

∫

�

|u(x)|si

|x|2si
dx ≤ κ

si
si

H |�u|si
pi(x).

It suffices to set κ = max1≤i≤n κ
si
si . �

Lemma 2.5 Assume that conditions (A1)–(A4) hold. Then for i = 1, . . . , n, we have
(I) Ai(x, t) is a C1-Carathéodory function, i.e., for every t ∈ R,

Ai(·, t) : � →R

is measurable, and for a.e. x ∈ �, Ai(x, ·) is of class C1.
(II) There exist constants C′

i , i = 1, . . . , n, such that

ci

pi(x)
|t|pi(x) ≤ ∣

∣Ai(x, t)
∣
∣ ≤ C′

i
(|t| + |t|pi(x))

for a.e. x ∈ � and all t ∈R, where the constants ci, i = 1, . . . , n, are as in condition
(A4).
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In what follows, we set

X :=
n∏

i=1

(
W 2,pi(x)(�) ∩ W 1,pi(x)

0 (�)
)

endowed with the norm

‖u‖ =
∥
∥(u1, . . . , un)

∥
∥ =

n∑

i=1

|�ui|pi(x)

for u = (u1, . . . , un) ∈ X. From Remark 2.1 we conclude that the embedding

X ↪→ C0(�) × · · · × C0(�)

is compact, and if we put

K := max
1≤i≤n

ki,

where ki, 1 ≤ i ≤ n, are as in relation (2.4), then it is clear that K > 0 and

|ui|∞ ≤ K |�ui|pi(x), i = 1, . . . , n. (2.5)

We define the functional � : X −→R by

�(u1, . . . , un) :=
n∑

i=1

∫

�

Ai(x,�ui) dx +
n∑

i=1

∫

�

bi(x)
|ui(x)|si

si|x|2si
dx.

Lemma 2.6 There exists a positive constant Ĉ such that

ci

p+
i
|�ui|p̌i

pi(x) ≤ �(u1, . . . , un) ≤ Ĉ
n∑

i=1

(|�ui|p̂i
pi(x) + |�ui|si

pi(x)
)

for all 1 ≤ i ≤ n and u = (u1, . . . , un) ∈ X.

Proof By (2.2) and Lemma 2.5, for every 1 ≤ i ≤ n, we have the estimate

ci

p+
i
|�ui|p̌i

pi(x) dx ≤ ci

p+
i

∫

�

|�ui|pi(x) dx

≤
n∑

i=1

ci

p+
i

∫

�

|�ui|pi(x) dx

≤ �(u1, . . . , un)

=
n∑

i=1

∫

�

Ai(x,�ui) dx +
n∑

i=1

∫

�

bi(x)
|ui|si

si|x|2si
dx

≤
n∑

i=1

C′
i

∫

�

(|�ui| + |�ui|pi(x))dx +
κ

H

n∑

i=1

|bi|∞
si

|�ui|si
pi(x)
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≤
n∑

i=1

C′
i(M1 + 1)|�ui|p̂i

pi(x) +
κ

H

n∑

i=1

|bi|∞|�ui|si
pi(x).

It suffices to set Ĉ = (M1 + 1) max1≤i≤n C′
i + κ

H max1≤i≤n |bi|∞. �

Remark 2.1 Lemma 2.6 ensures that � is coercive.

Proof Let u = (u1, . . . , un) ∈ X and ‖u‖ → ∞. By the definition of ‖·‖ there exists 1 ≤ i0 ≤ n
such that |�ui0 |pi0 (x) → ∞. Then Lemma 2.6 implies that �(u) → ∞. �

Furthermore, � is sequentially weakly lower semicontinuous, and it is known that � is
continuously Gâteaux-differentiable functional. Moreover,

�′(u1, . . . , un)(v1, . . . , vn) =
n∑

i=1

∫

�

(

ai(x,�ui)�vi + bi(x)
|ui|si–2uivi

|x|2si

)

dx

for each (v1, . . . , vn) ∈ X.
Now suppose that the function

H : � ×R
n →R

is a measurable function with respect to x ∈ � for each (t1, . . . , tn) ∈ R
n and is C1 with

respect to (t1, . . . , tn) ∈R
n for a.e. x ∈ �. By Hui we denote the partial derivative of H with

respect to ui. We define 	 : Rn →R by

	(u1, . . . , un) :=
∫

�

H(x, u1, . . . , un) dx.

The functional 	 is well defined, continuously Gâteaux-differentiable with compact
derivative, whose Gâteaux derivative at a point u = (u1, . . . , un) ∈ X is

	 ′(u1, . . . , un)(v1, . . . , vn) =
n∑

i=1

∫

�

Hui

(
x, u1(x), . . . , un(x)

)
vi(x) dx

for every (v1, . . . , vn) ∈ X. Notice that the energy functional corresponding to the problem
is

Iλ(u) = �(u) – λ	(u)

for each u = (u1, . . . , un), or, equivalently, weak solutions of (1.1) are exactly the critical
points of Iλ. We set

δ(x) := sup
{
δ > 0 : B(x, δ) ⊆ �

}

and define

R := sup
x∈�

δ(x). (2.6)
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Obviously, there exists x0 = (x0
1, . . . , x0

N ) ∈ � such that

B
(
x0, R

) ⊆ �.

In the next section, we prove the main result of the paper.

3 Three distinct weak solutions
Here we prove the existence of at least three distinct weak solutions to problem (1.1) by
Theorem 3.1. The main result of the paper is the following:.

Theorem 3.1 Assume that conditions (A1)–(A4) hold and H : � × R
n → R satisfies the

following conditions:
(H1) H(x, 0, . . . , 0) = 0 for a.e. x ∈ �;
(H2) There exist η ∈ L1(�) and n positive continuous functions γi, 1 ≤ i ≤ n, with γi(x) <

pi(x) a.e. in � such that

0 ≤ H(x, u1, . . . , un) ≤ η(x)

(

1 +
n∑

i=1

|ui|γi(x)

)

;

(H3) There exist r > 0, δ > 0, and 1 ≤ i∗ ≤ n such that

ci∗
p+

i∗

(
2δN

R2 – ( R
2 )2

) ˇpi∗
m

(

RN –
(

R
2

)N)

> r,

where m := π
N
2

N
2 �( N

2 )
is the measure of unit ball of RN , and � is the gamma function.

Suppose that

Ar < Bδ , (3.1)

where

Ar :=
|η|1

r

(

1 +
n∑

i=1

K γ̂i

(
p+

i
ci

r
) γ̂i

p̌i

)

,

and

Bδ :=
∑n

i=1 infx∈� F(x, δ, . . . , δ)
Ĉ

∑n
i=1(( 2δN

R2–( R
2 )2 )p̂i + ( 2δN

R2–( R
2 )2 )si )(2N – 1)

.

Then for each

λ ∈ 
r,δ :=
(

1
Bδ

,
1

Ar

)

,

problem (1.1) possesses at least three distinct weak solutions in X .
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Proof We apply Theorem 1.1. According to the previous section, the space

X =
n∏

i=1

(
W 2,pi(x)(�) ∩ W 1,pi(x)

0 (�)
)

and the functionals �,	 : X → R defined as above satisfy the regularity assumptions of
Theorem 1.1. From the definition of � and 	 and condition (H1) it is clear that

inf
x∈X

� = �(0) = 	(0) = 0.

Fix δ > 0 and R defined as in (2.6). We denote by w the function on the space W 2,pi(x)(�) ∩
W 1,pi(x)

0 (�), 1 ≤ i ≤ n, defined by

w(x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, x ∈ � \ B(x0, R),

δ, x ∈ B(x0, R
2 ),

δ

R2–( R
2 )2 (R2 –

∑N
i=1(xi – x0

i )2), x ∈ B(x0, R) \ B(x0, R
2 ),

where x = (x1, . . . , xN ) ∈ �. Then

N∑

i=1

∂2w
∂x2

i
(x) =

⎧
⎨

⎩

0 x ∈ (� \ B(x0, R)) ∪ B(x0, R
2 ),

– 2δN
R2–( R

2 )2 x ∈ B(x0, R) \ B(x0, R
2 ).

By Lemma 2.6, for 1 ≤ i∗ ≤ n, we have

ci∗
p+

i∗

(
2δN

R2 – ( R
2 )2

) ˇpi∗
m

(

RN –
(

R
2

)N)

< �(w, . . . , w)

≤ Ĉ
n∑

i=1

((
2δN

R2 – ( R
2 )2

)p̂i

+
(

2δN
R2 – ( R

2 )2

)si)

m
(

RN –
(

R
2

)N)

.

Then by assumption (H3) we have �(w, . . . , w) > r. On the other hand, we have

	(w, . . . , w) ≥
n∑

i=1

∫

B(x0, R
2 )

H(x, w, . . . , w) dx

≥
n∑

i=1

inf
x∈�

H(x, δ, . . . , δ)m
(

R
2

)N

,

where m is the measure of the unit ball of RN , and so

	(w, . . . , w)
�(w, . . . , w)

≥
∑n

i=1 infx∈� H(x, δ, . . . , δ)m( R
2 )N

Ĉ
∑n

i=1(( 2δN
R2–( R

2 )2 )p̂i + ( 2δN
R2–( R

2 )2 )si )m(RN – ( R
2 )N )

=
∑n

i=1 infx∈� H(x, δ, . . . , δ)
Ĉ

∑n
i=1(( 2δN

R2–( R
2 )2 )p̂i + ( 2δN

R2–( R
2 )2 )si )(2N – 1)

= Bδ . (3.2)
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Now let u = (u1, . . . , un) ∈ �–1(–∞, r). From Lemma 2.6 we get

|�u|pi(x) ≤
(

p+
i

ci
�(u1, . . . , un)

) 1
p̌i ≤

(
p+

i
ci

r
) 1

p̌i
(3.3)

for each i = 1, . . . , n. Then for every u = (u1, . . . , un) ∈ �–1(–∞, r), using condition (H2),
the Hölder inequality, and (2.2), we have

∫

�

H(x, u1, . . . , un) dx ≤
∫

�

sup
u∈�–1(–∞,r)

H(x, u1, . . . , un) dx

≤
∫

�

η(x)

(

1 +
n∑

i=1

|ui|γi(x)

)

dx

≤ |η|1
(

1 +
n∑

i=1

|ui|γ̂i∞

)

≤ |η|1
(

1 +
n∑

i=1

K γ̂i |�ui|γ̂i
pi(x)

)

.

Therefore

1
r

sup
u∈�–1(–∞,r)

	(u) =
1
r

sup
u∈�–1(–∞,r)

∫

�

H(x, u1, . . . , un) dx

≤ |η|1
r

(

1 +
n∑

i=1

K γ̂i

(
p+

i
ci

r
) γ̂i

p̌i

)

= Ar . (3.4)

From assumption (3.1) and relations (3.2) and (3.4) we have

1
r

sup
u∈�–1(–∞,r)

	(ui) <
	(w, . . . , w)
�(w, . . . , w)

,

and so condition (i) of Theorem 1.1 is verified. Now we prove that for each λ > 0, Iλ is
coercive.

With the same arguments as used before, we have

	(u) =
∫

�

H(x, u1, . . . , un) dx ≤ |η|1
(

1 +
n∑

i=1

K γ̂i |�ui|γ̂i
pi(x)

)

.

The last inequality and Lemma 2.6 lead to

Iλ(u) ≥ ci

p+
i
|�ui|p̌i

pi(x) – λ|η|1
(

1 +
n∑

i=1

K γ̂i |�ui|γ̂i
pi(x)

)

for each i = 1, . . . , n. Now suppose that u ∈ X and ‖u‖ → ∞. So, there exists 1 ≤ i0 ≤ n
such that |�ui0 |pi0 (x) → ∞. Since according to our assumptions, γi0 (x) < pi0 (x) a.e. in �,
the coercivity of Iλ is obtained.
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Taking into account that


δ,r :=
(

1
Bδ

,
1

Ar

)

⊆
(

�(w, . . . , w)
	(w, . . . , w)

,
r

supu∈�–1(–∞,r) 	(ui)

)

,

Theorem 1.1 ensures that for each λ ∈ 
r,δ , the functional Iλ admits at least three critical
points in X, which are weak solutions of problem (1.1). �

Remark 3.1 An interesting problem is to probe the existence and multiplicity of solutions
of this system under Steklov boundary conditions [10] or in the Heisenberg–Sobolev and
Orlicz–Sobolev spaces. The interested reader can read the details on these spaces in [5–
7, 12–21] and references therein.
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