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1 Introduction

The fractional differential equations have become an important research field because of
the in-depth development of fractional calculus theory and its wide applications in many
sciences such as physics, engineering, biology and so on [1-5].

There are various definitions of fractional derivatives, such as Riemann—Liouville and
Caputo fractional derivatives [6, 7]. On this basis, a more generalized fractional derivative
“Hilfer” derivative has been studied [8]. The Hilfer fractional derivative is an extension
of the Riemann-Liouville and Caputo fractional derivatives. Hilfer fractional differential
equations are very suitable for describing processes with memory and hereditary proper-
ties. They have the advantages of simple modeling and accurate description of complex
systems, and have become one of the important tools for mathematical modeling of me-
chanical and physical processes. Therefore, fractional differential equations with Hilfer
derivative have gradually become a research hotspot [9-11].

Rietal. [11] considered the following multi-point boundary value problems of the Hilfer

fractional differential equations at resonance:

DYPx(t) =f(t,x(t), 0<t<T,
Io, " u(0) = Y71, cie(),
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where0<a<1,0<B8<1,1,€(0,T], Dg;ﬁ is Hilfer fractional derivative of order @ and
type 8.

In the past, the boundary conditions of boundary value problems were generally specific.
In recent years, some scholars have changed the boundary value conditions into abstract
conditions, which contains many specific boundary conditions. And many achievements
have been made in the study of functional boundary value problems [12-17].

Zhao and Liang [15] first used Mawhin’s coincidence degree theory to discuss the solv-
ability of functional boundary value problems:

x"(8) = f(t,x(t),x'(t)), O<t<l,
') =0, I'y(x) =0,

where '}, I’y : C1[0,1] — R are continuous linear functionals. It was discussed according
to the six situations of non-resonance and resonance, and some existence results of the
solution of the functional boundary value problems were obtained.

However, the existence of solutions under the condition of I';(£)I"5(1) = T'1(1)T"2(£) was
not discussed in [15]. Furthermore, Kosmatov and Jiang [16] considered the solvability of
functional boundary value problems under the condition I'; (£)["3(1) = I'; (1) (8):

x"(t) = f(t,x(t),%'(t)), te(0,1),
I'1(x) =0, [y(x) =0,

where I'y, I'; are linear functionals. The conditions in [15] were supplemented here, and
the solvability of functional boundary value problems was analyzed more comprehen-
sively.

The p-Laplacian operator originated from the research of turbulence in porous media.
Leibenson [18] first considered the following p-Laplacian equation:

(6 (@) =f (L:x(0), %' (®)).

Later, many scholars conducted more in-depth research on the p-Laplacian operator and
obtained some excellent results [19-21].

Jiang [22] considered the solvability of fractional differential equations with p-Laplacian
by the extended continuous theorem:

Dy, (9,(Dg, w)(t) + £ (¢, u(t), D§; " u(t), DY, u(t)) = 0,
u(0)=Dg,u(0)=0,  u(l)= [ h(t)u(?)dt,

where 0< B <1, 1<a <2, ¢,(s) = Is]P %5, p>1, fol h(t)t*'dt = 1, D%, is the Riemann—
Liouville fractional derivative.

Based on the above literature, this paper studies the solvability of mixed Hilfer fractional
functional boundary value problems with p-Laplacian operator at resonance:

DY, (DR u(t)) = £ (8, u(t), D> u(t), D" u(t), D™ u(t)),

(1.1)
uw0)=0,  DPu(1) =0, Ti(w) = To(u) =0, te[0,1],
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where 0 <3 <1,2<03<3,0=<B,/a <L, yi=a1 + f1 —a1f1, 2 = a2 + 362 — ax o,
©p(s) = s|P~2s, p > 1, ¢,(0) =0, Dgf is Hilfer right-/left-sided fractional derivative of order
a and type 8,f € C([0,1] x R%,R) and T3, T : C[0, 1] — R are linear bounded functionals.

2 Preliminaries
Definition 2.1 ([23]) Let X and Y be two Banach spaces with norms || - ||x, || - ||y, respec-
tively. A continuous operator L: X Ndom L — Y is said to be quasilinear if
(i) ImL:=L(XNdomL) is a closed subset of Y,
(i) KerL:={xeXNdomL:Lx =0} is linearly homeomorphic to R", n < 0o,
where dom L denotes the domain of the operator L.

Let X; = KerL and X, be the complement space of X; in X, then X = X; & X,. Let P:
X — X; be the projector and €2 C X be an open and bounded set with the origin 6 € .

Definition 2.2 ([22]) Suppose that N : @ — Y, A € [0,1] is a continuous and bounded
operator. Denote N; by N. Let ¥, = {x € Q:Lx = Nyx}. N, is said to be L-quasicompact in
Q if there exists a vector subspace Y; of Y satisfying dim Y; = dim X; and two operators Q
and R such that for A € [0, 1],

(a) KerQ=1ImL,

(b) QN3x=6,21€(0,1) & QNx =0,

(c) R(-,0) is the zero operator and R(-, ) |5, = (I = P) |,

(d) LIP+R(,2)] = - QNy,
where Q: Y — Y7, QY = Y7 is continuous, bounded and satisfies Q(/ — Q) =0 and R :

Q x [0,1] = X, is continuous and compact.

Lemma 2.3 ([22]) Let X and Y be two Banach spaces with the norms || - |x, || - ||y, respec-
tively, and let Q C X be an open and bounded nonempty set. Suppose that L : domLNX —
Y is a quasilinear operator and that N, : Q@ — Y, A € [0,1] is L-quasicompact. In addition,
if the following conditions hold:

(a) Lx # Nyx, Vx € 92 Ndom L, A € (0,1),

(b) deg{/QN,Q2NKerlL,0}+#0,
then the abstract equation Lx = Nx has at least one solution in domL N Q, where N = Ny,

J:Im Q — KerL is a homeomorphism with J(0) = 6.

Definition 2.4 ([6]) The left-sided and right-sided Riemann—Liouville fractional integrals

of order « > 0 of a function y : (0, +00) — R are given by

1 [t 1 !
Iy(t) = —— / (£ —9)*Ly(s) ds, I y(t) = — / (s — ) Ly(s) ds.
0 y F(Ol) 0 y 1 y F(Ot) ; y
Definition 2.5 ([6]) The left-sided and right-sided Riemann—Liouville fractional deriva-
tives of order « > 0 of a function y : (0, +o0) — R are given by

n n

d
D y(t) = %(lé’f V), D)= D" (I=y) (@),

where n = [a] + 1.
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Definition 2.6 ([8]) The right-/left-sided Hilfer fractional derivative of order « and type
B for a function y : (0, +00) — R is given by

d}’l

dr (lz(zitﬂ)(nia)y)(t), n-l<a<n0<p<l.

DL y(t) = ()10

Remark
(1) The operator Dai can also be written as Dai = Iﬂ ) Dl.,y=a+nf-ap.
(2) If B =0, then the Riemann-Liouville fractional derivative can be presented as
DY, = Dot,O
at ~ Hat-

(3) If B = 1, then the Caputo fractional derivative can be presented as D% = D%}

Lemma 2.7 ([6]) Forn—1<a <n,n € N, the general solution of the fractional differential
equation DY_u(t) = 0 is given by

u@®)=c1(1-0* 4102+ +c,(1—)*™"
wherec; € R,i=1,2,...,n,n=[a] +1.

Lemma 2.8 ([6]) Leta >0, n=[a] +1, if y € L1(0,1) and I};*y € AC"[0, 1], then the fol-
lowing holds:

15, DG, y(8) = y(t) - ]Zn; —(Igf(z(t_);t_il)ho 7.
Lemma 2.9 ([6]) Forn—1<a <n,n € N, the general solution of the fractional differential
equation D§, u(t) = 0 is given by

uw(t) = 18t 4 ot 2 oyt
wherec; €R,i=1,2,...,n,n=[a] +1.

Lemma 2.10 ([6]) Ifa >0,8>-1,and B #a—i,i=1,2,...,[a] + 1, then

rp+1) (B-a

DY
0+ FB-a+l)

,  Dit'=o0.
Lemma 2.11 ([6]) Ifa > B >0,andy € Li(R"), then

DY IGy(0) =I5Py(e), D1, y(t) = g ().

In particular, when B =k € N and a > k, then

dk
U RIORS IO}

Lemma 2.12 ([24]) For any u,v > 0, then
(1) @p(u+v) <@p(u) +@,(v), 1<p <2,
(2) @plu+v) <272(gp(u) + 9p(v), p = 2,

where @y(s) = |s|P2s =771, s> 0.
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3 Main results
Take

X = {u | u(t), D> u(t), D2 P u(t), D" ur) € Cl0,1]}, Y =C[0,1],

with norms

2~2,52

2,52
0+ u “ oo’

ul ) Iyl = 19l

o2—1,82
0+ u “ oo’

llellx = max { ||, | D
te(0,1]

where [|yl|oc = maxeeo,1) [¥(¢)]-
Lemma 3.1 (X,| - ), (Y, || - ||) are Banach spaces.

Proof Tt is easy to see that (Y, || - ||) is a Banach space. Next, we prove that (X, | - ||) is also

a Banach space. Suppose that {u,} is a Cauchy sequence of X, then {u,}, {Dj* %A U},

{Dy* Vb2 3, {Dy? Py ) are Cauchy sequences of C[0,1]. So, there exist functions ,v,

w,g € C[0,1] such that u,, D> u,, D> " u,, D*u, converge uniformly to u, v, w,
g on [0, 1], respectively. We need to prove that D>~ 2Py, Dgi_l’ﬂzu w, D% Pryy — g.By

Lemma 2.8, we get
—2 an-2, 9 8 (3 N Y ]
22Dy = I 1 Dy = 1Dy =+ 77
So, we have
1 t ,
(g —2) / (t - s)*273DE2" B2y (s)ds = u, + ct??73,
” —

Let n — oo, we get

ar—3 _ 19— 3
m/ t—38)27°v(s)ds = u + ct” (3.1)

Applying D> and I22°7* to the both sides of (3.1), we obtain

Iﬂz 2) D)/z -2 gf Zv(t) 153(3—0t2)D(1ﬁ 2u Daz 2}32 "

Therefore, from Lemma 2.11 and Lemma 2.8, we get v = D2 >y,

Since I027 DIy =y 4 7272 + ¢p7273 and 122 DI ﬁzu,, =u, + at? + ot +
¢3t7273, similar to the above proof we can get w = D32 "2y and g = Di2u. So, (X, | - ||) is
a Banach space. The proof is completed. 0

In order to obtain our main results, we always suppose that the following conditions
hold:
(Hy) Ty Y To(e727%) = Ty ) To(t727).
(H) Functionals T; : X — R are linear bounded with the respective norms || T;||, i =
1,2. And the functionals T;, T, satisfy the relations T} (t>71) = 8, T1(¢7272) = &y,
Ty (£7271) = k8y, To(£7272) = k&1, where 81,85,k € R, 87 + 83 #0.
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(H3) Functional G(y) = (T> — kT1) 52 412 9)), % + [11 = 1is increasing.
Define operators L:domL NX — Y and N : X — Y as follows

Lu(t) = Dotlﬂl(pp( Otzﬂz (t))

Nuu(t) = Af (8, u(t), Dy >"2u(t), DG u(t), Dy u(p)), te(0,1],1 €[0,1],
where

domL = {u(t) | u(t) € X, D{" ¢, (D5 u(t)) € Y, u(0) = 0,

DG u(1) = 0, Ty(w) = Tr(w) = 0}.
Lemma 3.2 Suppose that (Hy) holds, then L is a quasilinear operator.
Proof 1t is easy to get that Ker L = {u € dom L | u(t) = c(8,£"72 - §;£271),c e R}.
For y € ImL, there exists u € domL such that D" A1 op(Do2 P2y 1)) = ¥(¢). According to
Remark, we get
1D o, (D2 u(t)) = (). (3.2)
Thus, applying Dfi(lf'”) to the both sides of (3.2), and by Lemma 2.7, we have
D u(t) = o (I y(0) + c1 (1 — )1 71).
Since D™ u(1) = 0, we can get
D u(e) = ¢, (17 9(0)). (33)
Applying Dgi(s-o@) to the both sides of (3.3), and because of #(0) = 0, we obtain
u(t) = 120 (I y(0)) + o™ + c3t7272.

The functional boundary condition T; () = T5(u) = 0 implies that

Ty(u) = Ty (Ig2 94 (I ¥(2))) + €285 + €38, =0,
T(u) = To (I, +(pq(1a y(t))) + kcy 8y + kesdy = 0.

Obviously,
(T - kT1) (I 04 (I (8))) = 0. (3.4)

Hence, ImL C {y € Y|(T, — kT1) 57 0,17} y(2))) = 0}.
Conversely, if y € Y and satisfies (3.4), let

T1(Iys 0q(I2y(2))

u(t) = I2 o, (I y(2)) + 5432 (867271 + 81677%).

Page 6 of 23
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It is easy to prove that u(¢) satisfies the boundary conditions of problem (1.1), and we have

- 3-a:
Lu(t) = DY g, (I, DY 15 0 (1 5(0))

= 107Dy 1) = y(0).
Therefore,
ImL 2 {yeY [(Tr-kT1)(Ig e, (17 ¥(2))) = 0}.
In summary, we get
ImL ={y €Y |(Ty - kT1)(Is?¢q (13 ¥(2))) = O}.
Clearly, InL C Y is closed. So, L is a quasilinear operator. d
Define the operator P: X — KerL by

8,D1272u(0) — 8, D} u(0)

P = e s = 1) + 820 ()

(867272 = 8;¢727Y).

It is clear that P>y = Py and ImP = Ker L, X = Ker L @ KerP. So, P: X — KerL is a pro-
jector.
Define the operator Q:Y — R by

QJ’(t) =

where ¢ satisfies

(T - le)(lgf% (Ifi ()’(t) - C))) =0. (3.5)

Next, we will prove that ¢ is the unique constant satisfying (3.5). For y € Y, let

F(c) = (To = KT1) (I 0q (I (v(2) - €))).-

Obviously, F(c) is continuous and strictly decreasing in R. We make ¢; = mingejo1) ¥(£),
¢y = Maxe[o,11 Y(¢). It is easy to see that F(c;) > 0, F(cz) < 0, then, there exists a unique
constant ¢ € [cy, ¢;] such that F(c) = 0.

Lemma 3.3 Q:Y — Y is continuous, bounded and QI — Q)y =Q(y - Qy)=0,y€ Y,
QY =Y, where Y1 =R.

Proof For yy,y, € Y, assume Qy; = c1, Qy, = 5. Since g, is strictly increasing, if ¢c; —¢; >
maxgc(o,1](¥2(£) — y1(2)), then
0 = (T, — KT1) (Ig20q (I (y2(8) - c2)))
= (T - kT) (Ig2 @4 (I (71(8) — c1 + 2() = 31 (2) = (2 — ¢1))))
< (T2~ KT (20, (12 (10 - 1)) 0.

Page 7 of 23
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A contradiction. On the other hand, if ¢; — ¢; < minge[o,17(y2(£) — y1(2)), then

0 = (To — kT1) (Lo g (172 (y2(2) - Cz)))
= (Ty — KT1) (Ig2 04 (172 (71.(8) — 1 + ¥2(8) = 91(8) = (2 — 1))
> (To — kT1) (I 2 (172 (51 (8) — 1)) = 0.

A contradiction, too. So, we can get

in (y2(8) = y1(0)) < ¢ — 1 < ) —y(®), ie lea—cil < ly2—y1lloo.
tre%’r}](yz() y1(0) < cl_trgl[%(yz() y(®), ie lez—cl <lly2 -yl

Therefore, Q is continuous. In addition, if 2 C Y is bounded, then Q(£2) is bounded, i.e., Q
is bounded. According to the definition of Q, we can easily know that Q is not a projector
but satisfies Q7 — Q)Y =Q(Y - QY) =0,y € Y and QY = Y3. a

Lemma 3.4 Define an operator R: X x [0,1] — X as

R(u, 1)(8) = I3 ¢4 (T2 (I - QN u(t))

T1(Io? 0 (I (I - Q)N;u(2))) » .
C BT(n-1)+8T(n) (82T (ya = ) + 51T (1)272),

where KerL ® X, = X.
Then R: Q x [0,1] — X, is continuous and compact, where Q@ C X is an open bounded

set.

Proof Obviously, R is continuous. Let A be any bounded set in X, for Vu € A, Dgf_l’ﬂ ‘ue

A, Dgf_z’ﬁ u € A, A € [0,1]. By the continuity of f and the boundedness of Q, we can
get that there exist constants k; > 0, ky > 0 such that |[f (¢, u(£), Di2 > u(t), D> " u(y),
D2 y(1))| < ky, |Qf| < ky for u € Q. Note that

12904 (I (1 = QN u(2)) |

1
<

t 1 1
ag—1 - -l 3
- F(Olz)./o (¢ wq(r(al)/s (e—9) 7| Q)Nm(x)|dx> ds
1 ¢ -1 M
- F(O‘2)/0 (¢ %(F(al +1))ds
1

< ( k1 +k2
_F(a2+1)(pq T +1))

DG 15204 (172 = QNwu(0))|

+

1

t 1
5/0 (t—s)goq(m/; (x—s)"‘l_l}(l—Q)Nm(x)‘dx) ds

< 1 kl +k2
=29\ T +1))

Page 8 of 23
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DS 220, (191 - QNwu(2)) |

t 1 1
S/O wq(m/; (x—s)“1’1|(1—Q)qu(x)|dx) ds
k1 +k2
= ‘p"(r(ul N 1)>’

and

2,02 2 0‘1 k k
D22 1520, (I (1 - QN u(D))| < (r(;:fl))'

Therefore,

126 @ (1T2( - QNsa1) |

< ma 1 kl + kz 1 kl + k2 k1 + k2
X ) < ’
= T+ 1)\ T+ ) 2%\ Ty + 1) ) Y\ ey + 1)

_ kl +k2
Y\ T +1))

then we have

R, M(@0)| < | 15704 (52U~ QNyt) |
1 T1 Moo (1821T (32 — )+|51|F ¥2))

83T (v, — 1)+ 8T (12
- [1 1T1lloo(1821T (2 — 1) + |51|F()/2)):|
S|t 2 “

85T (2 —1) + 83T (1)

<|:1+ ||T1||oo(|82|r()’2_1)+|81|F(V2))1| ( ki + ko )
- 83T (y2 — 1) + 85T (1) "\ +1))

|62 ¢q (I — Q)N;.u)

I

Ii g (20 - QN.w) |

D277 R(u, 1)(2)|

1
5/ (t—s)wq(ﬁ/s (x—s)"‘l_l\(l—Q)qu(x)|dx) ds

I T1 oo 1152 g (I3 (I — Q)N ) || x
83T (2 = 1) + 82T (1)

x (18217 (y2 = DI T (o) + 181 T (1)1 T (3, - 1))

/(t s) q( kl+k2))

1Tl copq (2L525) <|52|F()/2—1)F(V2) . |51|F(V2—1)F(V2))
32F()/2 1) +8 () \ T(B2(B-02) +2) [(B2(3 —2) +1)

- |:l . [ T1lloo(1821T (y2) + (B2(3 — az) + 1)|51|F(7/2)):|¢ < ki + ky )
L2 (83 + 81 (y2 — DT (B2(3 — 2) + 2) I, +1))

1D R(u, 1)(2)|

t 1 1
S/(; <ﬂq<m/s‘ (X—S)a1_1|(1—Q)N)\u(x)|dx) ds
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1T 1l o7 04 (G2 ( = QNu) lx

(3-a3)
X 82T (ys = DI T (1)
820 (yr — 1) + 82T (1) or

ki +k:
S/t q( ki + ko >d 1T llooPa(F55) y 82| (y2 — )T (y2)
0

Fai+1)) " 8- 1+ 8T(n) « T(BaB3-) + 1)
< |:1 1711001821 T (y2) ] ( ki + K&y )
T IS Pq ’
(65 +871(va — )T (B2(3 —p) + 1) Moy +1)
2,02 1 ! o]1—
|D3P R(u, 1)(8)| < soq(m /t (s =) - QN u(s)| ds)
k1 +k2
= (pq(F(al + 1)>'

So, R is bounded in Q x [0, 1].
For (u,1) € Q x [0,1],0 < t; < t, <1, we have

|R(u, 1)(82) = R, 1) (01|
1 ty w1 1 1 1
= } ) /o (2=9) %(m / (=57 - QNul) dx) ds

3 1 1 o 1 1 . )
F(az)/o (t=5) gDq<1“(on)/s(x $)7 I - QN u(x) dx ) ds

I T oo g2 @q (152 (I = Q)N 1) 1 x
83T (y2 — 1) + 83T (y2)

X (18217 (2 = D(B = 7) + 18T () (87 - 7))

1 i apy—1 ar—1
F(ag)/o[(tz_s) C(h -]

=

1 1 e1-1(1 N )
x<ﬂq(m/sl (x =) (I - QN u(x) | x) o

t:

2 1 1
ay—1 - -l a
" T) f (t2-5) (p"(p(al) /S (=917 |(I - QN u(x)| dx) ds

1T [ty (F52%5) (82— 27+ ol - (2 — £272)
+t - + - -
8% N 8%()/2 -1 21\l 1 11(y2 2 1

k1+ky

(pq( l—(011+1)) 1 ar—1 ay—1 & as—1
SW[/O [(tz—s) —(t1 —s) ]ds+/t1 (tp — ) ds:|

k1 +k:
”Tl”oo(Dq(r(;:fl))

85 +81(ra-1)

ki +k £ — 2 Tilloold _ _
<o, 1+ k (&' -t )+ 2|| 1L|oo| 2] (&7 1_ti/2 1)
Mg +1) /[ Taa+1) 85 +87(y2—-1)

(180(£27" = £271) #1811 = 1)(272 = £127%))

IT1lold11(va=1)  poa  yp—2
2 2 (t2 -4 ) ’
85 +87(ra—1)

DG 2P R(u, ) (t2) — Dy R(u, 1)(t1)|

ty 1 1 w1
/0 (tz—s)wq(m/s‘ (x—s) (I—Q)Nm(x)dx) ds

=
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tl(t 1 1( “1-1(] — Q)N dx)d.
—fo l—sm,(mfs 2= 511 — QN () x)s

ki +k:
” Tl ”Oowq( ]‘*(0;_'_21))

52 T (yy = 1) + 82T (1)
(|52|F(V2 - I)F(y2)tﬁ2(3—a2)+l 18I0 (v2 = DI'(5) tﬂz(B—a2)+1)
(B3 —as) +2) ° (B3 -a)+2)

a 1 1 -
- /0 [(tz—s>—(t1—s)]¢q(m / (x—s) |(1—Q)qu(x)|dx)ds

ty 1 1 w11
+/r1 (tz—s)goq(mfs (x—s) |(1—Q)N,\u(x)|dx> ds
1T lloo g (#5225 851 T (1)

L(Ba(3 - a2) +2)(83 + 87 (12— 1))

ki +k ! t
Ssoq(ﬁ)[/o (-9~ (& _S)]d”ftl (tg—s)ds]

1T lloopq (F52%5)181T (32)
L(Ba(3 — o) +2)(83 + 83 (2 — 1))

k1+k2 (tz—t%)
- (pq(l"(al + 1)>[ 2

I T1 1l 18211 (y2) (L2t tﬁz(S—az)H)]
T(B(3—aws) +2)(83 +82(ya— 1))\ ° !

|Daz lﬁzR(u M(t) — Daz 1/32R(M,)&)(t1)|

ap—1

SVO (r(al)/ (x =) (I - QN u (x)dx)ds
_/0 ‘Dq(r(al)/ o g7 - Q)N*”(x)dx)ds
t 1

S/tl %(m/S (x—s)“11|(1—Q)N,\u(x)|dx> ds

k1 +k2
: “"q<r<a1 + 1))“2 o

So, {R(u, A) | (1, ) € Q2 x [0, 1]}, {DE2>P2R(u, 1) | (u, 1) € Q x [0,1]} and {DZ> " R(u, 1) |
(u,1) € Q x [0,1]} are equicontinuous. Next, we prove that {Dj* PR, M) | (, 1) € Q2 x

(tﬁ 2(3-ag)+l tlﬂz(S—az)H)

(t§2(3—a2)+1 _ tfz(B—a2)+1)

’

[0,1]} is also equicontinuous.
For (u,1) € @ x [0,1],0 < t; <t; < 1, then

|Dg2 ﬁzR(u ) (t) — Dg2 ﬂzR(u,K)(tl)i

1 1
= ¢q<m /tz (s — t2) 171 = QIN;u(s) ds)

1 1
<ﬂq<m i (s = £)7H (I = QN u(s) dS) .
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Since
011 1 _ w11
‘F(On) / (=B~ QNauls) ds (1) / -0)" (I - QNyu(s) ds
1
= (@) (‘/t‘2 [(S )l (s — tl)al—l] |(1 - Q)qu(s)| ds
+ / 2(5 — )7 (I - QN uls)| ds)
2(ky + k2) ”
= m(tz —-t)",
and
’F( ) / (s—t)“1~ 1(1 Q)N u(s)ds| < %, (u, 1) e x 0,11,

k1 +/<2 k1 +k2
I(a1+1)’ T(ag+1)

{Dy? P2R(u, M) | (u,2) € 2 x [0,1]} is also equicontinuous. By the Arzela—Ascoli theorem,
we get that R: Q x [0,1] — X, is compact. (I

and taking into account that ¢, is uniformly continuous in [ ], we can obtain

Lemma 3.5 Assume that Q C X is an open and bounded set. Then N, is L-quasicompact
in Q.

Proof 1t is obvious that ImP =KerL, dimKerZ =dimImQ, Q(/ - Q) =0, KerQ =ImL,
R(-,0) = 0 and that Definition 2.2(b) holds.

Foru e ¥, = {u € Q| Lu = N, u}, we can get Ny u € Im L = Ker Q. Thus, we have QN u =
0and Nyu = Lu = D" ﬁl(,op(DD‘2 24, then

120, ([ANu(t)) = I 0 (I 10V D, (152 DI u(t)) ) = 12D ()

DEu0) .y DEu0) 5 DETul0) L

=40 =71, fm-1' T2

Since u(0) = 0, we obtain D> °u(0) = 0. It follows from Dgi’ﬁ 2u(1) = u(0) =
D" R(u, 1)(1) = R(u, 1)(0) = DI2>u(0) = Ty () = O that

R(u, 1) = Ig2 g (I (No.u(2) — QN u(2)))
~ Ty Iy g (I (N5 u(2) — QN,u(2))))
83T (y2 — 1) + 83T (y2)

(82T (y2 = 1) 7" + 81T (12)7272)

-1 -2
o) - Dy w(©0) -, Dy u©) .,
F( ¥2) r‘()’2 -1)
Dy 'u(0) 1 ©) yp—2
T (8 271 + ( tr27%)
() T n 4 -
83T (ya — I + 81T (yp) 872
(S%F(yz _ 1) N 8% (yz) ( 2 (V2 ) 1 (VZ) )
o) DYE'u(0) ,y 83T (v = DD u(0) + 8181 () D *u(0) .,

() * T (7282 (v, — 1) + 82T ()
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_DRu0) 5 51820 = VDR u(0) + ST (DG " u(0)
T(y2-1) L(y2 = DT (2= 1) + 8T (1))

8,012 u(0) — 8, D% " u(0)
85T (2= 1) + 8T (1)

= u(t) - (867277 - §1¢7271)

=u(t) — Pu(t) = (I - P)u,

i.e., Definition 2.2(c) holds.
For u € Q, we have
L[Pu(t) + Ru, 2)(8)] = 'V DL, (152%7 D2 (Pule) + R(u, 1)(0)
[Pu(t) + R(u, |=1t 10 (los or (Pu(t) + R(u, )
= [V DR (- QN ue)

= - QN;.u(?),
i.e., Definition 2.2(d) holds. Therefore, N, is L-quasicompact in Q. (I

Theorem 3.6 Suppose that (Hy)—(Hs) and the following conditions hold:
(Hy) There exists a constant My > 0 such that if |t‘52(3“"2)Dgf_2"3 2u(t)| + |gP28-e2)
DL u(t)| > My, then (Ty — KTy (I 0, (I Nu(t))) #0.
(Hs) There exist nonnegative functions a(t), b(t), c(t), d(t), e(t) € C[0,1], such that

If (t,%,3,2,w)| < a(t) + b()g,(Ix]) + c®)@p(1y])
+d(Og,(Iz]) +e®pp(Iwl), x%y,zweR,

where T(oy + 1) > A(He=USellb ol R y-lip)| 4+ A% el +
A2 M|dl o + llelloos A = MaXpe(1, 100 (1, 2272).

(He) There exists By > 0 such that one of the following inequalities holds:

(1) cQN(c(8:87%=8:8771)) >0,  (2) cQN(c(8:877% - 8,771)) <.
Then problem (1.1) has at least one solution in X.

Lemma 3.7 Suppose that (Hy) and (Hs) hold, then Q1 = {u | u € domL\KerL,Lu =
N,u, ) € (0,1)} is bounded in X.

Proof For u € domL, according to Lemma 2.8, we obtain
u(t) = DR u(t) + et + cpt 72 (3.6)
Applying Di2"2 and D™ to both sides of (3.6) respectively, we can get

_ ‘ al
D l,ﬁzu(t)zf DE2P2y(s)dis + 1I(y2) {ha(3-a2)

0 (B3 —az) +1)
_ t I'(y2)
D3Py (4 = / (t — $)D2P2y(s) ds + Wi
or ) 0 or I'(B2(3 - ) +2)

+ al(y,-1) B2(3—a2)
(828 —a2) +1)

Page 13 of 23
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Therefore,
r 3 1 ¢
o - [BB-m)+1) (t Pa(B-0) pea=bba () _ p=2(3-e2) / DL (s) ds), (3.7)
(1) 0
r 3 - 1 t
Cy = LB3-ar) +1) (t‘ﬁZ(S_“Z)Dgf_z’ﬁ 2u(t) — ¢ F26-2) / (¢ —s)Dgi’ﬁ 2u(s) ds
F'(y-1) 0
r t
B al'(y) ) (3.8)
['(Ba(3 —a2) +2)

For u € Q;, we have Lu = N u, N,u € Im L = Ker Q, we get QN u(¢) = 0. It follows from
(H,4) that there exists £y € (0, 1], such that It_ﬁ2 3_OZZ)DOQ_Z"BZu(to)| + ItgﬂZ(g_WZ)Dgi_l'ﬁzu(to)| <
My, then It_ﬁ2 (3 "‘Z)DO[2 2P2(t0)| < My and |t_'32 (6 O‘Z)D“z VP2 4(t0)| < M. Taking ¢ = £ into

equations (3.7) and (3.8), we have

[(B2(3 —a3) + 1)

PR (Mo + | DR ),
(823 -a2) +1) 1y peztr,, M)
lea] < Y <M0+ | D5 ||°O+F(,32(3—a2)+2)
3 M(m 2D nm).
[(n-1)
Thus,
o el = M2l D <30 + D)

Since u(t) in (3.6) can also be written as u(t) = I Dy ﬂzu(t) +c1t”?1 + ¢yt7272, then

litlos < 3T (Ba(3 —arx) +1)
N I'(y,-1)
2I(y2 = 1) + 5T (B2(3 —az) + I (g + 1)
20 (a + 1) (3 — 1)

My

” DOlz B2 ”
[o¢]
According to Lu(t) = N, u(t) and boundary conditions, we can get
u(t) = Igfqu(l‘fiN;\u(t)) +e3t” ™ 4 g2,
Therefore,

|0p (DG u())|

= |(pp(1132 (3—a2) DV2 0+‘Pq(1411iN)\ t)) } |[u1N)LM(t)|

-1 az 2,82 02—1,82 vlz B2
< l"( 1)/ (s—1¢) [f(s,u(s) D, u(s),Dy; ""*u(s), D, s))|ds

A 1 et .
[t by ) + 001 0]

+d(0)ep (|5 u(®)]) + e(0)gp (|1D57 u(t)])) ds

Page 14 of 23
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1 -
=ty 1loe + MBlolls! + llelloe [ D52l + el [ D22l

* llelo |25 7)

<2F()/2 — 1) + 5F(,32(3 - (Xz) + I)F(Olz + 1

2,52
2F(O[2 + 1)1“()/2 — 1) ”D ”oo

<1 llale+10l
ST+ )| e o0

3MoT'(B2(3 —ag) + 1)
'(yn-1)

p-1
) + llelloo (3Mo + 3| D P2ul )™

+ldlloo (Mo + 2| D] )7 + el [ D2 ||1;;1}.

It is known that |¢,(Dg? P2u(6)| = IDZPu(t) P, then

’Dwz B2 u(t) |P*1
1 2I(yp = 1) + 5T 3—ay) + 1) (ag +1 o
< - ||a”oo+ ”b”oo (V2 ) (,32( 2) ) ( 2 )”Doiﬁz ”oo
F(Oll + 1) 2F(O{2 + I)F()/z — 1)
3MoI'(B2(3 — az) + 1))p 2,8 p-1
o (3Mo + 3| Dy>"™
e * lello (300 + 3] D5 ] )

#ldlloo (Mo + 2] D2 1] )7 + llelo [ D2 ||';;1].

If1<p <2, then

D]
o0
1 2T (ys — 1) + 5T (BB —az) + D (az + 1)\
< ———|lallec + 16l
ag +1) 2N (o + )T (yp — 1)
x Dl
3MoT(Br(3 — ) + 1) 7! - . -
" ||b||oo( 0 F(Zy 1)2 + llellooBMoY ™ + llellao3” ™ | DEZu||2
-

oMy + l1dlloo2 | D077 + lleloo | D2 ||’§;l]'

Consequently,
1952 1.
- ( oo + [1b]oo(MTLEE- I NP1 i)l (BMo) ™ + 1o ME ™ )p—l
D(aty +1) = [|1B]| o (P2t o IRt )t )|, 377 + [l d 00 227 + el o]
If p> 2, then
1952 1.

T(y2-1)

Tty + 1) = 2771 [|| ]| o (B2l Nt ot i)l 3771 + oo 2 +

( alloo + 2271 | bll o (T E2E-02) D ypt o011l (3Mo )P~ + 2771 || o ME )H
<
HeHoo]
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Set A = max,e(1,400){1s 2772}, then the above inequality is equivalent to

|5
( lalloo + Allb]l oo (HTE2C2) Dy 4 Al (3Mo) ! + Alldll oo MG ),,_1
T\ D (e + 1) = [A bl oo (BR=teitalcn) UHer Dyt 4 4]l 377! + Alld 0020 + llel]oc]
= Ml.
Therefore,
D <My, DY < Mo+ 2My, | DGR < 3(Mo + M),
3T (B2(3 — o) + 1) 2I'(ya — 1) + 5T (B2(3 — ) + )T (axz + 1)
Il < My + M = M,
F(n-1) 20 (o2 + D (y2 - 1)
we can get

DRl 195 D5
(0]

= maX{M2’ 3(M0 +M1)1M0 + 2M1,M1} = M3.

lluellx = max{|lul|oo, | D

Hence, we can conclude that €2; is bounded in X. O

Lemma 3.8 Suppose that (H,)—(Hs) and (Hg) hold, then Q2 = {u|u € Ker L, QNu = 0} is
bounded in X.

Proof Let u € Qy, we have u(t) = ¢(8,¢7>72 - §;£771), c e R.
Since QNu(t) = 0, according to (Hs), there exists a constant B; > 0 such that |c| < By,
then

l#llco < Bi(182] + 1811),

| DE 2,6 u| < Bl(|52|(f52(3 —a)+ DI —-1) + |51|F(V2)>1
e [(B2(3 —a3) +2)

B11811T (y2)

Daz LB2 )
” “loe = (823 —a2) +1)

Thus,

llzell x < maX{Bl(|52| + |51|),31(

B11811T(2) }
[(B2(3—az) +1)

= M4,

[821(B2(3 —a2) + DI'(y2 — 1) + |6, |F()/2))
I'(B2(3—0a2) +2) ’

we can conclude that €, is bounded in X. O

Proof of Theorem 3.6 Let Q2 D QU QU {u | u € X, |ullx < max{Ms, M,} + 1} be an open
and bounded set of X. By Lemma 3.7 and Lemma 3.8, we can get Lu # Ny u, u € dom LN 92
and QNu #0, u € KerL N 9Q2.

Page 16 of 23
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Let H(u,&) = péu + (1 — €)JQNu, &£ € [0,1], u € KerL N Q, where J : ImQ — KerL is a
homeomorphism with Je = ¢(8,£7272 — §;£7271),

1, if (H) (1) holds,
-1, if (Hg) (2) holds.

For u € Ker L N 32, we have u(t) = ¢(8,£7272 — §;£"71). Therefore
H(u,€) = p&c(8:67272 = 81677) + (1 - £)QN (c(8:6727% = 8187271)) (8267272 = 8,7271).
If £ = 1, then H(u,1) = pc(82¢727%2 — §,7271) #0. If £ = 0, then H(u,0) = QN (c(6,£772 -
818727 1)) (8217272 = 8187271) #0.1f 0 < £ < 1, suppose H(u, £) = 0, then p&c(8,t7272 - §,17271) =

—(1-E)QN(c(8527272 = :8727)) (8227272 = 618271). So, ¢ = —(55) QN (€(8o67 7% = 816771)). By
(Hs), we get

32=- ( lp_; )cQN(c(cSzt”z_2 - 81tn_l)) <0.

A contradiction. That is, H(u,&) #0, u € Ker LN 9L, &£ € [0,1].
Therefore, via the homotopy property of degree, we obtain
deg(JQN, @ NKerL,0) = deg(H(-,0), 2 N KerL,0)
=deg(H(-,1),2 N KerL,0)
=deg(pl, 2N KerL,0) #0.

Applying Lemma 2.3, we conclude that boundary value problem (1.1) has at least one
solution in X. O

For another result of problem (1.1), suppose that the inequality [¢23-22) D322 (1)| +
|t~P23-2) DE2~VP2 (4| > M in condition (Hy) is replaced by [¢7#26-2) DE27P2y()| > M) or
|t‘ﬂ2(3‘“2)Dgi_2’ﬂ2u(t)| > My, which will cause the proof of Lemma 3.7 to change, but the
result of Theorem 3.6 can still be obtained, as shown below.

Theorem 3.9 Suppose that (H1)—(Hs), (Hs) and the following conditions hold:
(H7) There exists a constant My > 0 such that L'f|t‘ﬁ2(3‘“2)Dgi_l"32u(t)| > M., then (T, —
KT1) Iy} ¢4 (I! Nu(2))) # 0.
(Hg) There exist nonnegative functions a(t), b(t), c(t), d(t), e(t) € C[0, 1], such that
If (t,%,9,2,w)| < a(t) + b(©)g,(Ix]) + c)@p(1y])

+d(Og,(Izl) + e®@p(Iwl), xy,z,WweR,
where L(CiM + Co)([|Blloo + llclloo + 1d]loo + llelloc)?™ < 1, L = maxXge(,100) {1,277},

[821(B2(3 — a2) + I (2 — 1) + 61] T (y2)
F(B2(3—0a) +2)

’

C = max{|52| + 1811,

1611T () }
F(BB-a)+1) ]
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1 T1 100 (1821T (32 = 1) + 181IT(y2))
83T (y2 — 1) + 87T (y2)
1 1 Tilleo(1821T (y2) + (B2(3 — ar2) + 1)[8, T (32))

. )

2 (82 +83(y2 — 1)T(Ba(3 — ) +2)

’

Cy = max{l +

171l 0o]82IT (¥2) }x < 1 )
024820 - DT (BB -0+ 1)) P\ T +1) )
D823 —) + Dot | 1T ll2IT 02 = Dot

18110 (1) 1811520 (s — 1) + 62T (1))

Then problem (1.1) has at least one solution in X.

Proof For u € 1, we have QN, u(¢) = 0. It follows from (H7) that there exists £, € (0,1],
such that It_ﬁ2 (5 O‘Z)Dai_l’ﬂzu(toﬂ < Mj,. By Lemma 3.5, we obtain R(u, A)(t) = (I - P)u(t) =

u(t) = Pu(t). So DR P2 Pu(t) = DI P2 u(t) - D>~ R(u, 1)(¢). According to the definition

of P, we can get

8,012 u(0) — 8, D' u(0)
83T (2 —1) + 81T (1)
- F(Ba(B—0a2) +1)
18111 (32)

(|G- DGz P2y 1) + P2 eD DE2 2 R, 2) (8)]). (3.9)

Taking ¢ = ¢, into equation (3.9), we have

8,082 u(0) — 8, D} " u(0)
8T (ya = 1) + 81T ()
- ['(B2(3 — ) + 1)
16117 (2)

(ME) n |t5f32(3—0¢2) D2 1ﬂ2R(u,A)(t0)|)
Since

| taﬂz(a—az) Daz—lﬁzR(u, M%)

_ -1
Etaﬁzii otz/ (/ (xr(s)) |Nku(x)‘dx) ds

I 71 lloo 1152 0q (I N1t) | 182 | T (2 — 1)L (12)
(33T (2 = 1) + 8IT (1)) T (B2(3 — 2) + 1)

<tﬁ2(3a2)/to ING 2]l 00 . ||T1||oo|52|r()/2—1)F(V2)¢q(l¥\(1ﬂ({°)
- o "\ T +1) (33T (12 = 1) + 8iT (1) T (B2(3 — ) + 1)

[ ( 1 ) IT1llool82IT (va = DT (12) 4 (7717 }
Pl +1))  (BT(r2=1) + 8T (1) (B2(3 - a2) +1)

-1
x [INwullZ™,
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we can obtain

8,DF> > u(0) — 8, D" u(0)
82T (ya — 1) + 82T (1)

T(B2(8 - ) + Doy () N T1llol82IT (v2 = Dy () o
< + 5 5 INwullZ
[81IT(y2) 1611(85T (y2 — 1) + 67T (32))
MT (823 - ) +1)
16111 (32)
Therefore,

1Pullx < max{ 1851+ 1811, [821(B2(3 — at2) + DI (y2 — 1) + 811 (2) 18111 (32) }

T'(B2(3 —0a2) +2) "T(B(3-a2) +1)

y ([F(ﬂ2(3—0!2) + 1)%(@) N 1T1llol82IT (y2 = 1)%(@)]
181IT (1) 1811(85T (2 — 1) + 83T (1))

X INwu|| Tt + Mol (BoB — o) + 1))

Fee 1611T ()
1 MT(B2(3—an) + 1))
.=C gq-1 0 ,
1(M”N*””°" HNTATYe)

where

C - max{|82| 181l [821(B2(3 — a2) + I (2 — 1) + 161" (y2) 1611 (1) }’

[(B2(3 —a2) +2) "T(Ba(3—ax) + 1)
CT(BB-) + Do) 1T1llool820T (v = Doy (5 75)
- 1811T (y2) 1811(83T (y2 — 1) + 82T (1))

According to Lemma 3.4, we can get

1Tl (1821 T (y2 — 1) + 81T (32))
85T (va = 1) + 81T (12)
. 171101821 T (2)
(83 + 87— T (BB - ) +1)
1 N 171100 (1821 T (y2) + (B2(3 — ax2) + 1)|51|F(V2))} » < 1 )]
2 (83 +81(a = DT (B2(3 — a2) + 2) I\ +1)

-1
X [|NsullZ

’

||R(u,k)}}x < [max{l +

-1
= GlINullLSs

where

C, =

’

x{l . 1 T1 Moo (1821T (32 — 1) + [61IT(2))
830 (y2 — 1) + 81T (1)
17110 [82] T (2)
(03 + 832 — )T (B(B—2) +1)’
1, ||T1||oo(|32|r()/2)+(,32(3—012)+1)|31|F(V2))} % o0 1 )
2 (85 + 87 (v = DT (23 - 02) +2) T +1)7
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Using Lemma 3.5 and hypothetical condition (Hg), we have

lullx < I1Pullx + [Rae, 1),
CiMT(B2(3—p) + 1)
18111 ()
— o9—2, -1
< (OM + C)(llalloo + 1Bllo l2eliZS" + lcloo | DG u]|”

o -1 CIMET(Ba(3 — 2) +1)
+ oo | DF 20|70 + llelloo | D220 |2)1) T 4 =2 |81|2F(V2)2

< (CiM + C) Nl 5" +

If1<q<2,then

lullx < (C:M + C)llallZt + (CrM + Co) (I1blloo + llcllo + 1d]loo + ||€||oo)q_l||u||x
CIMT(B2(3 — o) + 1)

18111 (2)
Thus,
l (M + Cy)ljafl & + SETE2E=tD
Ullx = .
1 (CGM + G)(IIBlloo + llclloo + ldlloo + llelloc)d™!
If g > 2, then

lullx <27(CM + Co)llall &'

— -1
+27HCM + Co)(I1Bllos + liclioo + lIdlloo + llelloa) ™™ llllx

CIMT(B2(3 — o) + 1)
1611 (32)

Therefore,

q-2 q-1 C1M6F(ﬂ2(3—a2)+1)
2CM + Gl + el

llaellx < — =g
1-2172(CiM + G)([1blloo + llclloo + 1 dlloc + llelloo)?

Set L = maxge(1,+00){ 1, 2972}, then the above inequality is equivalent to

4-1 . CLM{T(By(3-a)+1)
LM + C)llal&s” + =550

lluellx < .
T = 1-L(CM + C)([1blloo + licllos + 1]l oo + llelloo)t

This means that 2; is bounded. The remaining proofis similar to Theorem 3.6 and is omit-
ted here. Finally, we can get that boundary value problem (1.1) has at least one solution
in X. g

Remark When the inequality |¢#26-%2 D222 y(¢)| > M), in assumption condition (H5) is
replaced by |t‘ﬁ2(3‘°‘2)Dgi_2'ﬂ *u(t)| > My, the method of proving the existence of the so-
lution of boundary value problem (1.1) is similar to Theorem 3.9. There is no detailed

explanation here.
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4 Example
Consider the following boundary value problem at resonance
11 51 . . 11 . 31
Di” g3 (D, u(t)) = 35 (5 + sin(y/[u(®)]) + sin(y |Dg,* u(t)]) + sin(y | Dg, > u(t)])
51
sin(y 105" ) £< 00,1, W
51 3 .
u(0) =Dg,*u(1) =0, Ti(u) = D&u(l) +Dg,u(1) =0,
7 3
To(u) = 2D¢,u(1) + [ D¢,u(t)dt = 0.
Corresponding to boundary value problem (1.1), we have a3 = % 9 = %, B1= %, B2 = %,
Y = %,ygzlz,ng,k=2and
11
[5+s1n( |u(®)]) +sin(y/ [ D2 u(t)|)

11 31 51
S (& u(t),Dg.” u(t), Dg,” u(t), Dg,” u(t)) =

+sin(y/ [0 ut@)]) + sin(y/ D (o)) |

Boundary value problem (4.1) is at resonance with

21 ¢ 7
KerL = {c<—7—ﬁ>,ceR}, Dy, u(t) = -
N I

DI u(t) = 2 - 2).

Thus,

T() =6 = —— 40, Ti(c) =5

1 1= ) 1 =0y =
r(y) T

Take a(t) = é, b(t)=c(t) =d(t) =e(t) = %, and g = 3, then

C, = max{1.715,3.097,1.098} = 3.097, C, = max{2.714,1.148,2.219} = 2.714,

2( 1 )2
s -800025,  L=max{l1,2?} = 4.

2
- (—1 ) (0.25) +
- N 1 4 1
r(1.5) 075 T * T

Therefore,

L(CiM + C2)(||b||oo +llclloo + l1dlloc + ||€||<>o)”F1 =0.8688 <1,

o (Y1) + —wp(I21) + = (Iwl).

1
[f(t x,y,Z,W)\ = § + E‘/’po |)

That means condition (Hg) holds.
31
Let M =5, if |t‘%D§;2u(t)| > M holds for any ¢ € (0,1], then

11 31 51
S (& u(t), D3, u(t), D3, * u(t), D3, * u(t))

1 [5+ sin(y/|u(2)|) +sin(y/ |D é% @®)|) +sin(y/ |D é%u(t)|)+sin( |D§+'%u(t)|)]

>0
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and
(T — KT1) (15204 (7" Nu(t)))

2 pt L 1 , .
:%%)/0 [/0 (t—S)%§03(17_Nu(s))ds—‘/0 (1_S)I¢3(112_Nu(s))ds:|dt<0,

Hence, condition (H7) holds.
3 31
Similarly, let By = 24, u(¢) = c(]ff—g) -
1

7
7 L 31
#‘1‘1)), ¢ € R, if [c| > By, then [t73 D3, u(t)| = 1lc| >
)

3 7
M. Therefore, (T5 — kT1)( Ofgoq(la_lNc(]%(t—?) - rEfl)))) # 0. Clearly, condition (Hg) holds.
1 T

Through the application of Theorem 3.9, we obtain that boundary value problem (4.1)
has at least one solution.
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