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Abstract
This paper deals with a chemotaxis–haptotaxis model which described the process of
cancer invasion on the macroscopic scale. We first explore the global-in-time
existence and uniqueness of a strong solution. For a class of cost functionals, we
prove first-order necessary optimality conditions for the corresponding optimal
control problem and establish the existence of Lagrange multipliers. Finally, we derive
some extra regularity for the Lagrange multiplier.
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1 Introduction
In this paper, we investigate the chemotaxis–haptotaxis model with the initial-boundary
conditions

ut = �u – χ∇ · (u∇v) – ξ∇ · (u∇w) + μu(1 – u – w), in � × [0, T], (1.1)

vt = �v – v + u + f , in � × [0, T], (1.2)

wt = –vw, in � × [0, T], (1.3)

∂u
∂ν

=
∂v
∂ν

=
∂w
∂ν

= 0, on ∂�, (1.4)

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), in �, (1.5)

where � ⊂ R
n(n = 2) is a bounded domain with smooth boundary ∂�; ν is the outward

normal vector to ∂�, and χ , μ, ξ are positive constants. The scalar functions u = u(x, t), v =
v(x, t), and w = w(x, t) represent the density of cancer cells, the concentration of enzyme,
and the density of healthy tissue, respectively. Notice that in the region of � where f ≥ 0
the control acts as a proliferation source of the chemical substance, and inversely, in the
region of � where f ≤ 0 the control acts as a degradation source of the chemical substance
[23]. In this work, the function f ≥ 0 lies in a closed convex set F .
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Anderson et al. [1] presented the following mathematical model which described the
invasion of host tissue by tumour cells:

⎧
⎪⎪⎨

⎪⎪⎩

nt = dn�n – γ∇ · (n∇f ), x ∈ �, t > 0,

mt = dm�m + αn – βm, x ∈ �, t > 0,

ft = –ηmf , x ∈ �, t > 0.

Marciniak-Czochra and Ptashnyk [24] considered the haptotaxis model

⎧
⎪⎪⎨

⎪⎪⎩

ut = du�u – ∇ · (χ (v)u∇v) + μuu(1 – u – v), x ∈ �, t > 0,

mt = dm�m – ρmm + μmuv, x ∈ �, t > 0,

vt = –αmv, x ∈ �, t > 0.

They proved the existence of global solutions of the haptotaxis model of cancer invasion
for arbitrary non-negative initial conditions. Niño-Celis, Rueda-Gómez and Villamizar-
Roa [27] developed two fully discrete schemes for approximating the solutions based on a
semi-implicit Euler discretization in time and Finite Element (FE) discretization on space
(restricted to triangularization made up of right-angled simplices) of two equivalent sys-
tems for the above haptotaxis model.

Chaplain and Lolas [3] first described the process of the cancer invasion on the macro-
scopic scale by the chemotaxis–haptotaxis system. Tao and Winkler [30] studied the prob-
lem

⎧
⎪⎪⎨

⎪⎪⎩

ut – �u = –χ∇ · (u∇v) – ξ∇ · (u∇w) + μu(1 – u – w), x ∈ �, t > 0,

τvt – �v + v = u, x ∈ �, t > 0,

wt = –vw, x ∈ �, t > 0.

They discussed the global solvability of classical solutions in a bounded domain � ⊂
Rn(n ≤ 3). Cao [2] proved that for nonnegative and suitably smooth initial data, if χ/μ
is sufficiently small, the problem possesses a global classical solution, which is bounded in
� × (0,∞). The relevant equations have also been studied in [14, 17, 19, 31, 32].

Jin [15] considered the following system:

⎧
⎪⎪⎨

⎪⎪⎩

ut – �um = –χ∇ · (u∇v) – ξ∇ · (u∇w) + μu(1 – u – w), x ∈ �, t > 0,

vt – �v + v = u, x ∈ �, t > 0,

wt = –vw, x ∈ �, t > 0.

Under zero-flux boundary conditions, they showed that, for any m > 0, the problem admits
a global bounded weak solution for any large initial datum if χ/μ is appropriately small.

Mizukami [25] studied the chemotaxis–haptotaxis system with signal-dependent sen-
sitivity

⎧
⎪⎪⎨

⎪⎪⎩

ut – �u = –∇ · (χ (v)u∇v) – ξ∇ · (u∇w) + μu(1 – u – w), x ∈ �, t > 0,

vt – �v + v = u, x ∈ �, t > 0,

wt = –vw, x ∈ �, t > 0.
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They established the global existence and boundedness for the above system. The relevant
system has also been studied in [33].

During the past years, many authors have been very interested in the optimal control
problems governed by the coupled partial differential equations. Colli, Gilardi, Marinoschi
and Rocca [8] studied the distributed optimal control problems for a diffuse interface
model of tumor growth. Liu and Zhang [21] discussed the optimal distributed control for a
new mechanochemical model in biological patterns. Dai and Liu [10] obtained an optimal
control problem for a haptotaxis model of solid tumor invasion by considering the multi-
ple treatments of cancer. Recently, Guillén-González, Mallea-Zepeda and Villamizar-Roa
[13] studied the following parabolic chemo-repulsion with nonlinear production model
in 2D domains:

⎧
⎨

⎩

ut – �u = ∇ · (u∇v), x ∈ �, t > 0,

vt – �v + v = up + fv1�c , x ∈ �, t > 0.

They proved the existence and uniqueness of global-in-time strong state solution for
each control, and the existence of global optimum solution. Guillén-González, Mallea-
Zepeda and Rodriguez-Bellido [12] considered a bilinear optimal control problem asso-
ciated to the above 3D chemo-repulsion model. Guillén-González et al. [11] studied a
bilinear optimal control problem for the chemo-repulsion model with linear production
term. The existence, uniqueness and regularity of strong solutions of this model were de-
duced. They also derived the first-order optimality conditions by using a Lagrange multi-
pliers theorem. López-Ríos and Villamizar-Roa [23] studied an optimal control problem
associated to a 3D-chemotaxis-Navier–Stokes model. Some other results can be found in
[4–7, 16, 20, 22, 29, 35, 36].

In this paper, we are interested in the optimal control problem for the system (1.1)–(1.5).
The main difficulties for treating the problem (1.1)–(1.5) are caused by the nonlinearity of
–ξ∇ · (u · ∇w) and μu(1 – u – w). Our method is based on a Lagrange multiplier theorem.

This paper is organized as follows. In Sects. 2 and 3, we show the well-posedness of the
state system (1.1)–(1.5). In Sect. 4, the existence of optimal controls is established. Finally,
we derive the first-order necessary optimality conditions in Sect. 5.

Notations: Lp = Lp(�) (1 ≤ p ≤ ∞) denotes the usual Lebesgue space with the usual
norm ‖ · ‖Lp . The Sobolev space in � of order k, k = 0, 1, 2, . . . , is denoted by Hk(�) with
norm ‖ · ‖Hk , and the space H–k(�) is the dual space of Hk(�). The Sobolev space of frac-
tional order s > 0 is denoted by Hs(�) with norm ‖ · ‖Hs . Hs

N (�) denotes a closed subspace
of Hs(�) such that

Hs
N (�) =

{

w ∈ Hs(�) :
∂w
∂n

= 0 on ∂�

}

.

2 Local solutions
We first review the existence theorem for local solutions to an abstract equation in a Ba-
nach space (see Chap. 4 in [34]). Let Z and B be two separable Hilbert spaces with dense
and compact embedding Z ⊂ B. Let ‖ · ‖Z and ‖ · ‖B be the norms of Z and B, respec-
tively. Let Z ⊂ B ⊂ Z∗ be a triplet of spaces. Let ‖ · ‖Z∗ be the norm of Z∗. We consider the
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following Cauchy problem for a semilinear abstract evolution equation:

⎧
⎨

⎩

dU
dt + AU = F(U) + G(t), t > 0,

U(0) = U0.
(2.1)

Here, A is a sectorial operator of Z∗. The nonlinear operator F is a mapping from Z to Z∗,
and for any positive number η > 0, there exist continuous increasing functions ϕ(·) ≥ 0
and ψ(·) ≥ 0 such that the following estimates hold:

∥
∥F(U)

∥
∥

Z∗ ≤ η‖U‖Z + ϕ
(‖U‖B

)
, U ∈ Z, (2.2)

∥
∥F(U) – F(Ũ)

∥
∥

Z∗

≤ η‖U – Ũ‖Z

+
(‖U‖Z + ‖Ũ‖Z + 1

)
ψ

(‖U‖B + ‖Ũ‖B
)‖U – Ũ‖B , U , Ũ ∈ Z. (2.3)

Then, we have the existence theorem of the local solutions to (2.1).

Proposition 2.1 ([34, Theorem 4.6]) Let (2.2) and (2.3) be satisfied. Then, for G ∈
L2(0, T ; Z∗) and any U0 ∈ B, there exists a unique local solution U to (2.1) in the function
space

U ∈ L2((0, TU0,G); Z
) ∩ C

(
[0, TU0,G];B

)
) ∩ H1((0, TU0,G); Z∗),

where TU0,G > 0 is determined by the norms ‖U0‖B and ‖G‖L2(0,T ;Z∗). In addition, U satisfies
the estimate

‖U‖L2((0,TU0,G];Z) + ‖U‖C([0,TU0,G];B)) + ‖U‖H1((0,TU0,G];Z∗) ≤ CG,U0 ,

where CG,U0 > 0 is a constant depending on the norm ‖U0‖B and ‖G‖L2(0,T ;Z∗).

Applying Proposition 2.1, we can show the existence of the local-in-time solutions to
(1.1)–(1.5).

Theorem 2.1 For all initial functions (u0, v0, w0) ∈ H1(�) × H2
N (�) × H3

N (�), u0 ≥ 0, v0 ≥
0, w0 ≥ 0 and 0 ≤ f ∈ L2(0, T ; H1(�)), the problem (1.1)–(1.5) admits a unique local-in-
time nonnegative solution (u, v, w) in the function space

⎧
⎪⎪⎨

⎪⎪⎩

u ∈ H1((0, T); H–2(�)) ∩ C([0, T]; H1(�)) ∩ L2((0, T); H2
N (�)),

v ∈ H1((0, T); H–3(�)) ∩ C([0, T]; H2
N (�)) ∩ L2((0, T); H3

N (�)),

w ∈ H1((0, T); H–3(�)) ∩ C([0, T]; H3
N (�)) ∩ L2((0, T); H3

N (�)),

with the estimate

∥
∥u(t)

∥
∥

H1 +
∥
∥v(t)

∥
∥

H2 +
∥
∥w(t)

∥
∥

H3 + ‖u‖H1((0,T);H–2(�))

+ ‖v‖H1((0,T);H–3(�)) + ‖w‖H1((0,T);H–3(�)) ≤ C, 0 < t ≤ T , (2.4)



Tang and Yuan Boundary Value Problems         (2022) 2022:79 Page 5 of 33

where T and C are positive constants depending only on the norms ‖u0‖H1 + ‖v0‖H2 +
‖w0‖H2 and ‖h‖L2(0,T ;H1(�)).

Proof Let A1 = –� + 1, A2 = –� + 1, and A3 = 1. Then, Ai are three positive definite self-
adjoint operators. We define the linear operator A by

A =

⎡

⎢
⎣

� + 1 0 0
0 –� + 1 0
0 0 1

⎤

⎥
⎦ , Z = H2

N (�) × H3
N (�) × H3

N (�).

Problem (1.1)–(1.5) is, then, formulated as an abstract equation,

dU
dt

+ AU = F(U) + G(t), 0 < t ≤ T ,

U(0) = U0,
(2.5)

in a product Banach space B = H1(�) × H2
N (�) × H3

N (�). The nonlinear operator F is
defined by

F(U) =

⎡

⎢
⎣

–χ∇ · (u · ∇v) – ξ∇ · (u · ∇w) + μu(1 – u – w) + u
u

w – vw

⎤

⎥
⎦ , G(t) =

⎡

⎢
⎣

0
f
0

⎤

⎥
⎦ ,

U = (u, v, w).

The initial value U0 = (u0, v0, w0) is taken in the function space H1(�) × H2
N (�) × H3

N (�).
In this setting, we only need to verify conditions (2.2) and (2.3). Let U = (u, v, w) and Ũ =
(ũ, ṽ, w̃) ∈ Z. Then, using the interpolation of Sobolev spaces (‖u‖H3/2 ≤ C‖u‖1/2

H2 ‖u‖1/2
H1 )

and the Young inequality, for any positive number η > 0, we have

∥
∥F(U)

∥
∥

Z∗ ≤ χ
∥
∥∇ · (u∇v)

∥
∥

H–2 + ξ
∥
∥∇ · (u∇w)

∥
∥

H–2

+ μ
∥
∥u(1 – u – w)

∥
∥

L2 + 2‖u‖L2 + ‖w – vw‖L2

≤ χ‖u∇v‖L2 + ξ‖u∇w‖L2 + C‖u‖L2 + C‖w‖L2 + C‖u‖2
L4

+ C‖v‖2
L4 + C‖w‖2

L4

≤ χ‖u‖H3/2‖v‖H1 + ξ‖u‖H3/2‖w‖H1 + C‖u‖L2 + C‖w‖L2

+ C
(‖u‖2

H1 + ‖v‖2
H1 + ‖w‖2

H1
)

≤ η‖u‖H2 + C‖v‖4
H2 + C‖w‖4

H2

+ C
(‖u‖L2 + ‖w‖L2 + ‖u‖2

H1 + ‖v‖2
H1 + ‖w‖2

H1
)

≤ η‖U‖Z + C
(‖U‖2

B + ‖U‖4
B + 1

)
,

where C is a positive constant depending only on the known quantities.
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On the other hand, we derive

∥
∥F(U) – F(Ũ)

∥
∥

Z∗ ≤ χ
∥
∥∇ · (u∇v – ũ∇ ṽ)

∥
∥

H–2 + ξ
∥
∥∇ · (u∇w – ũ∇w̃)

∥
∥

H–2

+ μ
∥
∥
(
u(1 – u – w) – ũ(1 – ũ – w̃)

)∥
∥

L2 + 2
∥
∥(u – ũ)

∥
∥

L2

+
∥
∥(w – vw) – (w̃ – ṽw̃

∥
∥

L2 .

For the first term of the right-hand side, we see that

χ
∥
∥∇ · (u∇v – ũ∇ ṽ)

∥
∥

H–2 ≤ C‖u∇v – ũ∇ ṽ‖L2

≤ C‖u – ũ‖
H

3
2
‖∇v‖L2 + C‖ũ‖

H
3
2

∥
∥∇(v – ṽ)

∥
∥

L2

≤ η‖u – ũ‖H2 + C‖v‖2
H2‖u – ũ‖H1

+ C‖ũ‖H2‖v – ṽ‖H1 .

Similarly, we deduce that

ξ
∥
∥∇ · (u∇w – ũ∇w̃)

∥
∥

H–2 ≤ η‖u – ũ‖H2 + C‖w‖2
H2‖u – ũ‖H1

+ C‖ũ‖H2‖w – w̃‖H1 .

For the third term of the right-hand side,

μ
∥
∥
(
u(1 – u – w) – ũ(1 – ũ – w̃)

)∥
∥

L2 + 2‖u – ũ‖L2

=
∥
∥(u – ũ) +

(
ũ2 – u2) – u(w – w̃) – w(u – ũ)

∥
∥

L2 + ‖u – ũ‖L2

≤ C
(‖u – ũ‖L2 +

(‖u‖L2 + ‖ũ‖L2 + ‖w̃‖L2
)‖u – ũ‖

H
3
2

+ ‖u‖L2‖w – w̃‖
H

3
2

)

≤ η
(‖u – ũ‖H2 + ‖w – w̃‖H2

)
+ C‖u – ũ‖H1

(
1 + ‖u‖2

L2 + ‖ũ‖2
L2 + ‖w‖L2

)

+ C‖w – w̃‖H1‖u‖2
L2 .

Similarly, we deduce that

∥
∥(w – vw) – (w̃ – ṽw̃

∥
∥

L2

≤ η
(‖v – ṽ‖H2 + ‖w – w̃‖H2

)
+ C‖v – ṽ‖H1‖w̃‖2

L2 + C
(
1 + ‖u‖2

L2
)‖w – w̃‖H1 .

Hence, we can obtain

∥
∥F(U) – F(Ũ)

∥
∥
B

≤ η‖U – Ũ‖Z + C
(‖U‖Z + ‖Ũ‖Z + 1

)(‖U‖2
B + ‖Ũ‖2

B + 1
)‖U – Ũ‖B . (2.6)

Thus, we have verified (2.2) and (2.3). Similarly as in the proof of Proposition 2 in [26], we
obtain u ≥ 0. On the other hand, by the comparison principle, we can be sure that v and
w are nonnegative. The proof is complete. �
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3 Global existence
In this section, we construct several a priori estimates. At first, we introduce the following
lemma.

Lemma 3.1 ([28, Lemma 4.3]) For any nonnegative u ∈ H1(�), the estimate

‖u‖3
L3 ≤ δ‖u‖2

H1

∥
∥(u + 1) ln(u + 1)

∥
∥

L1 + p
(
δ–1)‖u‖L1

holds for any number δ > 0 and some increasing function p(·).

Lemma 3.2 Let (u, v, w) be a local solution to (1.1)–(1.5). Then, it holds that

∫

�

u dx ≤ max

{∫

�

u0 dx, |�|
}

:= M1, for all t ∈ [0, T], (3.1)

∫ t

0

∫

�

u2 dx ≤ M1T +
M1

μ
:= K1(M1, T), for all t ∈ [0, T], (3.2)

‖w‖L∞ ≤ ‖w0‖L∞ , for all t ∈ [0, T]. (3.3)

Proof Using the property u(t) ≥ 0, v(t) ≥ 0 and w(t) ≥ 0 for all t > 0, and integrating equa-
tion (1.1) over �, we have

d
dt

∫

�

u dx ≤ μ

∫

�

u dx – μ

∫

�

u2 dx

≤ μ

∫

�

u dx –
μ

|�|
(∫

�

u dx
)2

. (3.4)

By the comparison argument of ODE, we derive

∫

�

u dx ≤ max

{∫

�

u0 dx, |�|
}

:= M1. (3.5)

Integrating (3.4) over (0, t), it follows from (3.5) that

∫ t

0

∫

�

u2 dx ≤
∫ t

0

∫

�

u dx +
1
μ

(∫

�

u0 dx –
∫

�

u(t) dx
)

≤ M1T +
M1

μ
:= K1(M1, T), for all t ∈ [0, T]. (3.6)

Multiplying equation (1.3) by wp–1 and integrating over �, we have

1
p

d
dt

∫

�

wp dx = –
∫

�

vwp dx.

For all t ∈ [0, T], due to the fact that v, w are nonnegative, we obtain

d
dt

∫

�

wp dx ≤ 0, for all t ∈ [0, T], (3.7)
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which yields

∥
∥w(·, t2)

∥
∥

Lp(�) ≤ ∥
∥w(·, t1)

∥
∥

Lp(�) ≤ ∥
∥w(·, 0)

∥
∥

L∞(�), for all t2 ≥ t1 ≥ 0.

Consequently, (3.3) follows by taking the limit p → ∞. Therefore, we complete the
proof. �

Lemma 3.3 Let (u, v, w) be a local solution to (1.1)–(1.5). Then, it holds that

‖u‖H1 + ‖v‖H2 + ‖w‖H3 +
∫ t

0
‖u‖2

H2 dτ +
∫ t

0
‖v‖2

H3 dτ ≤ C. (3.8)

Proof Step 1. v is bounded in L∞(0, T ; H1(�)) ∩ L2(0, T ; H2(�)).
Multiplying equation (1.2) by v and integrating over �, we have

d
dt

∫

�

v2 dx + 2
∫

�

|∇v|2 dx +
∫

�

v2 dx ≤ 2
∫

�

u2 dx + 2
∫

�

f 2 dx. (3.9)

Integrating (3.9) over (0, t), we derive

∥
∥v(t)

∥
∥2

L2 +
∫ t

0
‖v‖2

H1 dτ ≤ ‖v0‖2
L2 + 2

∫ t

0

(‖u‖2
L2 + ‖f ‖2

L2
)

dτ for all t ∈ [0, T]. (3.10)

Multiplying equation (1.2) by –�v and integrating over �, we have

d
dt

∫

�

|∇v|2 dx +
∫

�

|�v|2 dx + 2
∫

�

|∇v|2 dx ≤ 2
∫

�

u2 dx + 2
∫

�

f 2 dx. (3.11)

Integrating (3.11) over (0, t), we obtain

∥
∥∇v(t)

∥
∥2

L2 +
∫ t

0
‖�v‖2

L2 dτ +
∫ t

0
‖∇v‖2

L2 dτ

≤ ‖∇v0‖2
L2 + 2

∫ t

0

(‖u‖2
L2 + ‖f ‖2

L2
)

dτ , for all t ∈ [0, T]. (3.12)

Moreover, using (3.2) and combining (3.10) and (3.12), we have

∥
∥v(t)

∥
∥2

H1 +
∫ t

0
‖v‖2

H2 dτ ≤ ‖v0‖2
H1 + 4

∫ t

0

(‖u‖2
L2 + ‖f ‖2

L2
)

dτ

≤ K2
(‖v0‖H1 , M1,‖f ‖L2(Q), T

)
, for all t ∈ [0, T]. (3.13)

Step 2. w is bounded in L∞(0, T ; H2(�)).
Multiplying equation (1.3) by –�w and integrating over �, from (3.3) and the negative

of v, we have

1
2

d
dt

∫

�

|∇w|2 dx = –
∫

�

∇w∇(vw) dx

= –
∫

�

∇w(∇vw + ∇wv) dx
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≤ –
∫

�

∇w∇vw dx

≤ ‖w‖L∞‖∇w‖L2‖∇v‖L2

≤ 1
2
‖∇w‖2

L2 +
1
2
‖w‖2

L∞‖∇v‖2
L2 . (3.14)

Thanks to (3.3), from (3.13), (3.14) and Gronwall lemma, we have

‖∇w‖2
L2 ≤ et

(

‖∇w0‖2
L2 +

∫ t

0
‖w‖2

L∞‖∇v‖2
L2 dτ

)

≤ et
(

‖∇w0‖2
L2 + ‖w0‖2

L∞

∫ t

0
‖∇v‖2

L2 dτ

)

= K3
(‖w0‖H1 ,‖w0‖L∞ ,‖v0‖L2 ,‖f ‖L2(Q)M1, T

)
. (3.15)

Applying � to equation (1.3), multiplying by �w, and integrating the product over �, we
have

1
2

∫

�

|�w|2 dx = –
∫

�

�w�(vw) dx. (3.16)

For the term on the right-hand side, using the interpolation of Sobolev spaces,

–
∫

�

�w�(vw) dx = –
∫

�

�w(�vw + 2∇v∇w + �wv) dx

≤ ‖�w‖L2‖w‖L∞‖�v‖L2 + C‖∇w‖L4‖∇v‖L4‖�w‖L2

≤ ‖�w‖L2‖w‖L∞‖�v‖L2 + C‖∇w‖L2‖�w‖3/2
L2 ‖�v‖1/2

L2 ‖∇v‖1/2
L2

≤ C
(‖w‖L∞ + ‖∇w‖L2

)2‖�w‖2
L2 +

1
2
‖�v‖2

L2 . (3.17)

Combining (3.16) and (3.17), we can get

d
dt

∫

�

|�w|2 dx ≤ C
(‖w‖L∞ + ‖∇w‖L2

)2‖�w‖2
L2 + ‖�v‖2

L2 . (3.18)

From (3.3), (3.13), (3.15), and Gronwall lemma, we have

‖�w‖2
L2 ≤ eC

∫ t
0 (‖w0‖L∞ +‖∇w‖L2 ) dτ

(

‖�w0‖2
L2 +

∫ t

0
‖�v‖2

L2 dτ

)

≤ eC
∫ t

0 (‖w0‖L∞ +K3) dτ

(

‖�w0‖2
L2 +

∫ t

0
‖�v‖2

L2 dτ

)

≤ K4
(‖w0‖H1 ,‖w0‖L∞ ,‖∇v0‖L2 ,‖f ‖L2(Q), M1, T

)
. (3.19)

Step 3. u is bounded in L∞(0, T ; H2(�)).
We observe that, thanks to the positivity of u, we have 0 ≤ ln(u + 1) ≤ u. Then

∫

�

∣
∣ln(u + 1)

∣
∣2 dx ≤

∫

�

|u|2 dx. (3.20)



Tang and Yuan Boundary Value Problems         (2022) 2022:79 Page 10 of 33

We also note that

∫

�

∣
∣∇ ln(u + 1)

∣
∣2 dx =

∫

�

∣
∣
∣
∣

∇u
u + 1

∣
∣
∣
∣

2

dx ≤
∫

�

|∇u|2 dx. (3.21)

Taking into account that u ∈ L2(0, T ; H1(�)), from (3.20) and (3.21), we deduce that ln(u +
1) ∈ L2(0, T ; H1(�)). Note that

d
dt

∫

�

{(
u(t) + 1

)
ln

(
u(t) + 1

)
– u(t)

}
dx =

〈
du
dt

(t), ln
(
u(t) + 1

)
〉

(H1)′×H1
.

Testing equation (1.1) with ln(u + 1) ∈ L2(0, T ; H1(�)), and integrating by parts, we have

d
dt

∫

�

(u + 1) ln(u + 1) dx + 4‖∇√
u + 1‖2

L2

≤ –χ

∫

�

u
u + 1

∇v · ∇u – ξ

∫

�

u
u + 1

∇w · ∇u + μ

∫

�

(u + 1) ln(u + 1) dx. (3.22)

Applying the Young inequality, we obtain

χ

∫

�

u
u + 1

∇u · ∇v dx = χ

∫

�

∇u
(

1 –
1

u + 1

)

∇v dx

= χ

∫

�

∇(
u – ln(u + 1)

)∇v dx

= χ

∫

�

(
ln(u + 1) – u

)
�v dx

≤ χ

∫

�

∣
∣u – ln(u + 1)

∣
∣|�v|dx

≤ χ

∫

�

u|�v|dx

≤ δ‖u‖2
L2 + Cδ‖�v‖2

L2 . (3.23)

Similarly, we have

ξ

∫

�

u
u + 1

∇u · ∇w ≤ δ‖u‖2
L2 + Cδ‖�w‖2

L2 . (3.24)

Then combining (3.22)–(3.24) and (3.1), we have

d
dt

∫

�

(u + 1) ln(u + 1) dx + 4‖∇√
u + 1‖2

L2

≤ 2δ‖u‖2
L2 + C

(‖�v‖2
L2 + ‖�w‖2

L2
)

+ μ

∫

�

(u + 1) ln(u + 1) dx. (3.25)

Then, from (3.2), (3.13) and (3.19), as well as applying Gronwall lemma to (3.25), we deduce

∫

�

(u + 1) ln(u + 1) dx

≤ e
∫ t

0 μdτ (
∥
∥(u0 + 1) ln(u0 + 1)

∥
∥

L1 + C
∫ t

0

(‖u‖L2 + ‖�v‖2
L2 + ‖�w‖2

L2
)

dτ
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≤ K5
(‖w0‖H1 ,‖w0‖L∞ ,‖v0‖H1 ,‖f ‖L2(Q), M1, T

)
. (3.26)

Multiplying equation (1.1) by u and integrating over �, we see that

1
2

d
dt

∫

�

u2 dx +
∫

�

|∇u|2 dx

≤ χ

∫

�

u∇u∇v dx + ξ

∫

�

u∇u∇w dx + μ

∫

�

u2 dx

≤ –
χ

2

∫

�

u2�v dx –
ξ

2

∫

�

u2�w dx + μ

∫

�

u2 dx. (3.27)

Here, we note that

–
χ

2

∫

�

u2�v dx ≤ χ

2
‖u‖2

L3‖�v‖L3

≤ C‖u‖2
L3‖v‖2/3

H3 ‖v‖1/3
H1

≤ C‖u‖2
L3‖v‖2/3

H3 , (3.28)

for some positive constant C. Applying Young’s inequality, we further deduce that

–
χ

2

∫

�

u2�v dx ≤ C
(
δ‖u‖2

H1

∥
∥(u + 1) ln(u + 1)

∥
∥

L1 + p
(
δ–1)‖u‖L1

)2/3‖v‖2/3
H3

≤ C
(
δ‖u‖2

H1 + p
(
δ–1))2/3‖v‖2/3

H3

≤ δ‖v‖2
H3 + Cδ1/2‖u‖2

H1 + C–1/2
δ p

(
δ–1). (3.29)

So, in the same way, we can derive

–
ξ

2

∫

�

u2�w dx ≤ ‖w‖2
H3(�) + Cδ1/2‖u‖2

H1 + C–1/2
δ p

(
δ–1). (3.30)

Combining (3.27)–(3.30), (3.13) and (3.15), we then deduce

d
dt

∫

�

u2 dx +
∫

�

|∇u|2 dx ≤ Cδ
(‖v‖2

H3 + ‖w‖2
H3

)
+ Cδ–1/2p

(
δ–1) + μ

∫

�

u2 dx. (3.31)

Next, applying ∇ to the equation of (1.2), multiplying by ∇�v, and integrating the product
over �, we have

d
dt

∫

�

|�v|2 dx +
∫

�

|∇�v|2 dx + 2
∫

�

|�v|2 dx

≤ 2
∫

�

|∇u|2 dx + 2
∫

�

|∇f |2 dx. (3.32)

Applying operator ∇� to equation (1.3), multiplying by ∇�w, and integrating over �, we
have

1
2

d
dt

∫

�

|∇�w|2 dx = –
∫

�

∇�(vw)∇�w dx. (3.33)
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Thanks to (3.3), (3.19), we further deduce that

–
∫

�

∇�(vw)∇�w dx

= –
∫

�

(∇�vw + 3�v∇w + 3∇v�w + ∇�wv)∇�w dx

≤ ‖∇�v‖L2‖w‖L∞‖∇�w‖L2 + 3‖�v‖L4‖∇w‖L4‖∇�w‖L2

+ C‖∇�w‖L2‖�w‖L4‖∇v‖L4

≤ ‖∇�v‖L2‖w‖L∞‖∇�w‖L2 + C‖v‖H3‖w‖H2‖∇�w‖L2

+ C‖w‖1/2
H2 ‖w‖3/2

H3 ‖�v‖1/2
L2 ‖∇v‖1/2

L2

≤ C‖v‖H3‖w‖H3 + C‖w‖3/2
H3 ‖�v‖1/2

L2 ≤ 1
4
‖v‖2

H3 + C‖w‖2
H3 . (3.34)

Replacing (3.34) in (3.33), we have

d
dt

∫

�

|∇�w|2 dx ≤ 1
2
‖v‖2

H3 + C‖w‖2
H3 . (3.35)

Then, choosing δ small enough to absorb ‖v‖H3 , from (3.7) with p = 2, (3.9), (3.11), (3.14),
(3.18), (3.31), (3.32), and (3.35), we have

d
dt

(‖u‖2
L2 + ‖v‖2

H2 + ‖w‖2
H3

)
+

1
4
∥
∥v|2H3 +

∥
∥u‖2

H1

≤ C‖w‖2
H3 + Cδ–1/2p

(
δ–1) + 3μ‖u‖2

L2 + 2
∫

�

|∇f |2 dx. (3.36)

Then, applying the Gronwall lemma to (3.36), we deduce

‖u‖L2 + ‖v‖H2 + ‖w‖H3 ≤ K6
(‖u0‖L2 ,‖v0‖H2 ,‖w0‖H3 ,‖∇f ‖L2(Q), T

)
. (3.37)

Integrating (3.36) over (0, t), we obtain

∫ t

0
‖u‖2

H1 dτ +
∫ t

0
‖v‖2

H3 dτ ≤ C. (3.38)

Multiplying equation (1.1) by –�u and integrating over �, we have

1
2

d
dt

∫

�

|∇u|2 dx +
∫

�

|�u|2 dx

= χ

∫

�

(�u)(∇u · ∇v + u�v) dx + ξ

∫

�

(�u)(∇u · ∇w + u�w) dx

–
∫

�

(�u)u(1 – u – w) dx. (3.39)

The first two terms in the right-hand side can be estimated as follows:

χ

∣
∣
∣
∣

∫

�

(�u)(∇u · ∇v + u�v) dx
∣
∣
∣
∣ ≤ χ‖�u‖L2

(‖∇u‖L3‖∇v‖L6 + ‖u‖C‖�v‖L2
)

≤ C‖�u‖L2
(‖∇u‖

H
1
3
‖∇v‖H1 + ‖u‖

H
4
3
‖�v‖L2

)
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≤ C‖u‖H2‖u‖
H

4
3
‖v‖H2

≤ C‖u‖ 5
3
H2‖u‖ 1

3
L2‖v‖H2

≤ δ‖u‖2
H2 + Cδ‖u‖2

L2‖v‖6
H2 . (3.40)

Through a similar calculation as in obtaining the above inequality, it is easy to get

ξ

∣
∣
∣
∣

∫

�

(�u)(∇u · ∇w + u�w) dx
∣
∣
∣
∣ ≤ δ‖u‖2

H2 + Cδ‖u‖2
L2‖w‖6

H2 . (3.41)

For the third term of the right-hand side, thanks to the nonnegativity of u and w, applying
the Gagliardo–Nirenberg inequality and (3.19), we have

–
∫

�

(�u)u(1 – u – w) dx = –
∫

�

(�u)
(
u – u2 – uw

)
dx

=
∫

�

|∇u|2 dx – 2
∫

�

|∇u|2u dx –
∫

�

∇u(∇uw + u∇w) dx

≤
∫

�

|∇u|2 dx –
∫

�

∇uu∇w dx

≤
∫

�

|∇u|2 dx –
1
2

∫

�

∇u2∇w dx

=
∫

�

|∇u|2 dx +
1
2

∫

�

u2�w dx

≤ ‖∇u‖2
L2 + ‖u‖2

L4‖�w‖L2

≤ ‖∇u‖2
L2 + C‖u‖L2‖u‖H1‖�w‖L2

≤ ‖∇u‖2
L2 + C‖u‖H1‖�w‖L2

≤ ‖u‖2
H1 + C. (3.42)

Therefore, we have

d
dt

‖u‖2
H1 + ‖u‖2

H2 ≤ 2δ‖u‖2
H2 + C‖u‖2

L2
(‖v‖6

H2 + ‖w‖6
H2

)
+ C‖u‖2

H1 + C. (3.43)

Taking δ > 0 small enough, and using (3.39), we can get

‖u‖2
H1 +

∫ t

0
‖u‖2

H2 dτ ≤ K7
(‖u0‖H1 ,‖v0‖H2 ,‖w0‖H3 ,‖∇f ‖L2(Q), T

)
. (3.44)

The proof is complete. �

Theorem 3.1 For all initial functions (u0, v0, w0) ∈ H1(�) × H2
N (�) × H3(�) and f ∈

L2(0, T ; H1(�)), the problem (1.1)–(1.5) admits a unique global-in-time nonnegative so-
lution (u, v, w) in the function space

⎧
⎪⎪⎨

⎪⎪⎩

u ∈ H1((0, T); H–2(�)) ∩ C([0, T]; H1(�)) ∩ L2((0, T); H2
N (�)),

v ∈ H1((0, T); H–3(�)) ∩ C([0, T]; H2
N (�)) ∩ L2((0, T); H3

N (�)),

w ∈ H1((0, T); H–3(�)) ∩ C([0, T]; H3
N (�)) ∩ L2((0, T); H3

N (�)).
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In addition, the solution satisfies the uniform estimate involving the norms of initial func-
tions such that

‖u‖2
H1 + ‖v‖2

H2 + ‖w‖2
H3 + ‖u‖H1((0,T);H–2(�))

+ ‖v‖H1((0,T);H–3(�)) + ‖w‖H1((0,T);H–3(�)) ≤ C, t ≥ 0. (3.45)

Proof From Theorem 2.1 and Proposition 2.1, for each triplet of nonnegative initial func-
tions (u0, v0, w0), there exists a unique nonnegative local solution (u, v, w) on an interval
[0, T], where the existence time T > 0 depends only on the norms of those functions,
‖u0‖H1 + ‖v0‖H2 + ‖w0‖H3 . In addition, from Lemma 3.3, the norm ‖u(t)‖H1 + ‖v(t)‖H2 +
‖w(t)‖H3 , 0 ≤ t ≤ T , is estimated from above by a uniform constant C, depending only on
the norm ‖u0‖H1 + ‖v0‖H2 + ‖w0‖H3 . Then, we consider the problem in [T , 2T]. Hence,
the interval can be extended to [0, 2T], and the norm ‖u(t)‖H1 + ‖v(t)‖H2 + ‖w(t)‖H3 ,
0 ≤ t ≤ 2T , is estimated again by the same constant C from (3.8). Then, the existence
time can be extended to 3T . Iterating this procedure proves the global-in-time existence
of solutions with the estimate (3.8). �

4 Existence of an optimal control
In this section, we will prove the existence of the optimal solution of the control prob-
lem. The method we use for treating this problem was inspired by some ideas of Guillén-
González et al. [11]. Assume that F ⊂ L2(0, T ; H1(�c)) is a nonempty, closed and convex
set, where �c ⊂ � is the control domain, and �d ⊂ � is the observability domain. We
consider data (u0, v0, w0) ∈ H1(�) × H2(�) × H3(�) with u0 ≥ 0, v0 ≥ 0 and w0 ≥ 0 in �,
and the function f ∈F that describes the control acting on the v-equation.

Now, we consider the optimal control problem for system (1.1)–(1.5) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find (u, v, w, f ) ∈M such that the functional

J(u, v, w, f ) = β1
2 ‖u(x, t) – ud(x, t)‖2

L2(Qd) + β2
2 ‖v(x, t) – vd(x, t)‖2

L2(Qd)

+ β3
2 ‖w(x, t) – wd(x, t)‖2

L2(Qd) + β4
2 ‖f (x, t)‖2

L2(Qc)

is minimized, subject to (u, v, w, f ) satisfying

the system (1.1)–(1.5) a.e. in Qd,

(4.1)

where

M = L∞(
0, T ; H1(�)

) ∩ L2(0, T ; H2(�)
) × L∞(

0, T ; H2(�)
)

∩ L2(0, T ; H3(�)
) × L∞(

0, T ; H2(�)
) ∩ L2(0, T ; H3(�)

) ×F ,

Qd = [0, T] × �d, Qc = [0, T] × �c.

(4.2)

Here (ud, vd, wd) ∈ L2(Qd) × L2(Qd) × L2(Qd) represents the desired states and the βi(i =
1, 2, 3, 4) > 0. We will use

Sad =
{

s = (u, v, w, f ) ∈M : s is a solution of (1.1)–(1.5)
}

, (4.3)

which denotes the set of admissible solutions of (4.1).
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First, we will consider the existence of a global optimal solution of problem (4.1). To this
end, we start with the definition of optimal solution.

Definition 4.1 An element (ũ, ṽ, w̃, f̃ ) ∈ Sad will be called a global optimal solution of
problem (4.1) if

J(ũ, ṽ, w̃, f̃ ) = min
(u,v,w,f )∈Sad

J(u, v, w, f ). (4.4)

Here we state the following result.

Theorem 4.1 Let u0 ∈ H1(�), v0 ∈ H2(�) and w0 ∈ H3(�) with u0 ≥ 0, v0 ≥ 0 and w0 ≥
0 in �. Then the optimal control problem (4.1) has at least one global optimal solution
(ũ, ṽ, w̃, f̃ ) ∈ Sad.

Proof From Theorem 3.1, recalling that Sad is nonempty, there exists a minimizing se-
quence {sm}m∈N ⊂ Sad such that limm→+∞ J(sm) = infs∈Sad J(s). Then, by the definition of
Sad, we know that for each m ∈N, sm satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

umt = �um – χ∇ · (um · ∇vm) – ξ∇ · (um · ∇wm)

+ μum(1 – um – wm), in Q,

vmt = �vm – vm + um + fm, in Q,

wmt = –vmwm, in Q,
∂um
∂ν

= ∂vm
∂ν

= ∂wm
∂ν

= 0, on ∂�,

um(x, 0) = u0(x), vm(x, 0) = v0(x), wm(x, 0) = w0(x), in �.

(4.5)

Hence, it follows that

{fm}m∈N is bounded in L2(Qc). (4.6)

By (3.37), (3.38), (3.44), and (3.45), we see that there exists C > 0 such that

‖um‖2
H1 + ‖vm‖2

H2 + ‖wm‖2
H3 + ‖u‖H1(0,T ;H–2(�)) + ‖v‖H1(0,T ;H–3(�))

+ ‖w‖H1(0,T ;H–3(�)) +
∫ t

0
‖um‖2

H2 dτ +
∫ t

0
‖vm‖2

H3 dτ ≤ C, t ≥ 0. (4.7)

Therefore, by (4.6), (4.7) and since F is a closed convex subset of L2(Qc), we deduce that
there exist s̃ = (ũ, ṽ, w̃, f̃ ) ∈ M and a subsequence of {sm}m∈N, not relabeled, such that, as
m → +∞,

um → ũ, weakly in L2(0, T ; H2(�)
) ∩ H1(0, T ; H–2(�)

)
, (4.8)

vm → ṽ, weakly in L2(0, T ; H3(�)
) ∩ H1(0, T ; H–3(�)

)
, (4.9)

wm → w̃, weakly in H1(0, T ; H–3(�)
)

(4.10)

and

um → ũ, weak * in L∞(
0, T ; H1(�)

)
, (4.11)
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vm → ṽ, weak * in L∞(
0, T ; H2(�)

)
, (4.12)

wm → w̃, weak * in L∞(
0, T ; H3(�)

)
, (4.13)

fm → f̃ , weak in L2(Qc), and f̃ ∈F . (4.14)

From (4.8)–(4.13) and the Aubin–Lions lemma, we have

um → ũ, strongly in C
(
0, T ; L2(�)

) ∩ L2(0, T ; H1(�)
)
, (4.15)

vm → ṽ, strongly in C
(
0, T ; H1(�)

) ∩ L2(0, T ; H2(�)
)
, (4.16)

wm → w̃, strongly in C
(
0, T ; H2(�)

)
. (4.17)

In particular, since ∇ · (um∇vm) = ∇um · ∇vm + um�vm and ∇ · (um∇wm) = ∇um · ∇wm +
um�wm is bounded in L2(0, T ; L2(�)), one has the weak convergences:

∇ · (um∇vm) → ψ1, weakly in L2(0, T ; L2(�)
)
,

∇ · (um∇wm) → ψ2, weakly in L2(0, T ; L2(�)
)
.

On the other hand, from (4.8)–(4.17), one has

um∇vm → ũ∇ ṽ, weakly in L∞(
0, T ; L2(�)

)
,

um∇wm → ũ∇w̃, weakly in L∞(
0, T ; L2(�)

)
.

Therefore, we can identify ψ1 = ∇ · (ũ∇ ṽ) and ψ2 = ∇ · (ũ∇w̃) a.e. in Q, and thus

∇ · (um∇vm) → ∇ · (ũ∇ ṽ), weakly in L2(0, T ; L2(�)
)
, (4.18)

∇ · (um∇wm) → ∇ · (ũ∇w̃), weakly in L2(0, T ; L2(�)
)
. (4.19)

Moreover, by (4.15)–(4.17), we see (um(0), vm(0), wm(0)) → (ũ(0), ṽ(0), w̃(0)), in L2(�) ×
H1(�) × H2(�). Since um(0) = u0, vm(0) = v0, wm(0) = w0, we conclude that ũ(0) = u0,
ṽ(0) = v0 and w̃(0) = w0, thus s̃ satisfies the initial conditions given in (1.1)–(1.5). Therefore,
considering the convergences (4.8)–(4.19), we can pass to the limit in (4.5) as m → +∞,
and conclude that s̃ = (ũ, ṽ, w̃, f̃ ) is a solution of the system (1.1)–(1.5), that is, s̃ ∈ Sad.
Hence,

lim
m→+∞ J(sm) = inf

s∈Sad
J(s) ≤ J(s̃). (4.20)

On the other hand, since J is lower semicontinuous on Sad, we have J(s̃) ≤
lim infm→+∞ J(sm), which, jointly with (4.20), implies (4.4). �

5 First-order necessary optimality condition
Now, we will study the first-order necessary optimality conditions for a local optimal so-
lution (ũ, ṽ, w̃, f̃ ) of problem (4.1). To this end, we will use a result on existence of Lagrange
multipliers in Banach spaces [37]. First, we discuss the following problem:

min J(s) subject to s ∈ S =
{

s ∈M : G(s) ∈N
}

, (5.1)
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where J : X →R is a functional, G : X → Y is an operator, X and Y are Banach spaces, M
is a nonempty closed convex subset of X, and N is a nonempty closed convex cone in Y
with vertex at the origin.

For a subset A of X (or Y ), A+ denotes its polar cone, that is,

A+ =
{
ρ ∈ X ′ : 〈ρ, a〉X′ ≥ 0,∀a ∈ A

}
.

Definition 5.1 A point s̃ ∈ S is said to be a local optimal solution of problem (5.1), if there
exits ε > 0 such that for all s ∈ S satisfying ‖s – s̃‖X ≤ ε one has J(s̃) ≤ J(s).

Definition 5.2 Let s̃ ∈ S be a local optimal solution for problem (5.1) with respect to the
X-norm. Suppose that J and G are Fréchet differentiable in s̃, with derivatives J ′(s̃) and
G′(s̃), respectively. Then, any λ ∈ Y ′ is called a Lagrange multiplier for (5.1) at the point s̃
if

⎧
⎪⎪⎨

⎪⎪⎩

λ ∈N +,

〈λ, G(s̃)〉Y ′ = 0,

J ′(s̃) – λ ◦ G′(s̃) ∈ C(s̃)+,

(5.2)

where C(s̃) = {θ (s – s̃) : s ∈M, θ ≥ 0} is the conical hull of s̃ in M.

Definition 5.3 Let s̃ ∈ S be a local optimal solution for problem (5.1). We say that s̃ is a
regular point if

G′(s̃)
[
C(s̃)

]
– N

(
G(s̃)

)
= Y , (5.3)

where N (G(s̃)) = {(θ (n – G(s̃)) : n ∈N , θ ≥ 0} is the conical hull of G(s̃) in N .

Theorem 5.1 ([37, Theorem 3.1]) Let s̃ ∈ S be a local optimal solution for problem
(5.1). Suppose that J is a Fréchet differentiable function and G is continuously Fréchet-
differentiable. If s̃ is a regular point, then the set of Lagrange multipliers for (5.1) at s̃ is
nonempty.

Remark 5.1 To obtain the existence of first-order necessary optimality conditions, because
of the nonlinearity of –ξ∇ · (u · ∇w) and μu(1 – u – w), the method used in [10] seems
not applicable to the present situation. Our method is based on the Lagrange multiplier
theorem.

Now, we will reformulate the optimal control problem (4.1) in the abstract setting (5.1).
We consider the following Banach spaces:

X := Wu ×Wv ×Ww × L2(Qc),

Y := L2(Q) × L2(0, T ; H1(�)
) × L∞(

0, T ; H3(�)
) × H1(�) × H2(�) × H3(�),

(5.4)

where

Wu =
{

u ∈ L∞(
0, T ; H1(�)

) ∩ L2(0, T ; H2(�)
)

:
∂u
∂ν

= 0 on ∂�

}

, (5.5)
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Wv =
{

v ∈ L∞(
0, T ; H2(�)

) ∩ L2(0, T ; H3(�)
)

:
∂v
∂ν

= 0 on ∂�

}

, (5.6)

Ww =
{

w ∈ L∞(
0, T ; H3(�)

)
:
∂w
∂ν

= 0 on ∂�

}

. (5.7)

By Theorem 3.1, we know that the operator G = (G1, G2, G3, G4, G5, G6) : X → Y , where

G1 : X → L2(Q), G2 : X → L2(Q), G3 : X → L∞(
0, T ; H3(�)

)
,

G4 : X → H1(�), G5 : X → H2(�), G6 : X → H3(�)

are defined at each point s = (u, v, w, f ) ∈ X by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

G1(s) = ∂tu – �u + χ∇ · (u∇v) + ξ∇ · (u∇w) – μu(1 – u – w),

G2(s) = ∂tv – �v + v – u – f ,

G3(s) = ∂tw + vw,

G4(s) = u(0) – u0, G5(s) = v(0) – v0, G6(s) = w(0) – w0.

(5.8)

By taking M = Wu ×Wv ×Ww ×F a closed convex subset of X and N = {0}, the optimal
control problem (4.1) is reformulated as follows:

min J(s) subject to s ∈ Sad =
{

s = (u, v, w, f ) ∈M : G(s) = 0
}

. (5.9)

Similar to [21], by the definition of the Fréchet derivative, using a direct calculation, we
have the following results.

Lemma 5.1 The operator G : X → Y is continuously Fréchet differentiable and the Fréchet
derivative of G in s̃ = (ũ, ṽ, w̃, f̃ ) ∈ X, in the direction r = (U , V , W , F) ∈ X, is the linear
operator

G′(s̃)[r] =
(
G′

1(s̃)[r], G′
2(s̃)[r], G′

3(s̃)[r], G′
4(s̃)[r], G′

5(s̃)[r], G′
6(s̃)[r]

)

defined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

G′
1(s̃)[r] = ∂tU – �U + χ∇ · (U∇ ṽ) + χ∇ · (ũ∇V ) + ξ∇ · (U∇w̃)

+ ξ∇ · (ũ∇W ) – μU + 2μUũ + μUw̃ + μũW ,

G′
2(s̃)[r] = ∂tV – �V + V – U – F ,

G′
3(s̄)[r] = ∂tW + V w̃ + ṽW ,

G′
4(s̃)[r] = U(0), G′

5(s̄)[r] = V (0), G′
6(s̄)[r] = W (0).

(5.10)

Lemma 5.2 The functional J : X → R is Fréchet differentiable and the Fréchet derivative
of J in s̃ = (ũ, ṽ, w̃, f̃ ) ∈ X in the direction r = (U , V , W , F) ∈ X is given by

J ′(s̃)[r] = β1

∫ T

0

∫

�d

(ũ – ud)U dx dt + β2

∫ T

0

∫

�d

(ṽ – vd)V dx dt

+ β3

∫ T

0

∫

�d

(w̃ – wd)W dx dt + β4

∫ T

0

∫

�c

f̃ F dx dt. (5.11)
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We wish to prove the existence of Lagrange multipliers, which is guaranteed if a local
optimal solution of problem (5.9) is a regular point of operator G.

Lemma 5.3 If s̃ = (ũ, ṽ, w̃, f̃ ) ∈ Sad, then s̃ is a regular point.

Proof Fix (ũ, ṽ, w̃, f̃ ) ∈ Sad and let (gu, gv, gw, U0, V0, W0) ∈ Y . Since 0 ∈ C(f̃ ), it suffices to
show the existence of (U , V , W ) such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tU – �U + χ∇ · (U∇ ṽ) + χ∇ · (ũ∇V ) + ξ∇ · (U∇w̃) + ξ∇ · (ũ∇W )

– μU + 2μUũ + μUw̃ + μũW = gu, in Q,

∂tV – �V + V – U = gv, in Q,

∂tW + V w̃ + ṽW = gw, in Q,

U(0) = U0, V (0) = V0, W (0) = W0, in �,
∂U
∂ν

= 0, ∂V
∂ν

= 0, ∂W
∂ν

= 0, on (0, T) × ∂�.

(5.12)

Step 1. Local existence of a solution,
In order to prove the existence of a solution of (5.12), we use Proposition 2.1 to solve the

problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tU – �U + χ∇ · (U∇ ṽ) + χ∇ · (ũ∇V ) + ξ∇ · (U∇w̃) + ξ∇ · (ũ∇W )

– μU + 2μUũ + μUw̃ + μũW = gu, in Q,

∂tV – �V + V – U = gv, in Q,

∂tW + V w̃ + ṽW = gw, in Q,

(5.13)

endowed with the corresponding initial and boundary conditions. On the product Banach
space B = H1(�) × H2

N (�) × H3
N (�), we define the linear operator A by

A =

⎡

⎢
⎣

–� + 1 0 0
0 –� + 1 0
0 0 1

⎤

⎥
⎦ , Z = H2

N (�) × H3
N (�) × H3

N (�).

The nonlinear operator F is defined by

F(Y ) =

⎡

⎢
⎢
⎢
⎣

–χ∇ · (U∇ ṽ) – χ∇ · (ũ∇V ) – ξ∇ · (U∇w̃)
–ξ∇ · (ũ∇W ) + (μ + 1)U – 2μUũ – μUw̃ – μũW

U
W – V w̃ – ṽW

⎤

⎥
⎥
⎥
⎦

, G(t) =

⎡

⎢
⎣

gu

gv

gw

⎤

⎥
⎦ ,

Y =
[

U V W
]T

.

The remaining part of the proof can be done in the same way as that in the proof of The-
orem 2.1, so we omit the details.

Now, we prove the global-in-time solutions in the following part.
Step 2. (U , V , W ) ∈ L∞(0, T ; L2(�)) ∩ L2(0, T ; H1(�)) × L∞(0, T ; H1(�)) ∩ L2(0, T ;

H2(�)) × L∞(0, T ; H2(�)).
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By testing the first equation of (5.13) with U , one has

1
2

d
dt

∫

�

U2 dx +
∫

�

|∇U|2 dx

= χ

∫

�

U∇U∇ ṽ dx + χ

∫

�

∇Uũ∇V dx + ξ

∫

�

U∇U∇w̃ dx

+ ξ

∫

�

∇Uũ∇W dx + μ

∫

�

U2 dx – 2μ

∫

�

U2ũ dx – μ

∫

�

U2w̃ dx

– μ

∫

�

UũW dx +
∫

�

Ugu dx. (5.14)

Applying the Hölder and Young inequalities as well as (3.8) to the terms on the right-hand
side of (5.14),

χ

∫

�

U∇U∇ ṽ dx =
χ

2

∫

�

∇U2∇ ṽ dx = –
χ

2

∫

�

U2�ṽ dx

≤ χ

2
‖U‖2

L4‖�ṽ‖L2 ≤ C‖∇U‖L2‖U‖L2‖�ṽ‖L2

≤ δ‖∇U‖2
L2 + Cδ‖U‖2

L2 , (5.15)

and

χ

∫

�

∇Uũ∇V dx ≤ χ‖ũ‖L4‖∇V‖L4‖∇U‖L2

≤ Cδ‖ũ‖2
L4‖∇V‖2

L4 + δ‖∇U‖2
L2

≤ Cδ‖ũ‖2
H1‖∇V‖L2‖�V‖L2 + δ‖∇U‖2

L2

≤ δ
(‖∇U‖2

L2 + ‖�V‖2
L2

)
+ Cδ‖∇V‖2

L2 . (5.16)

In the same way, we can get

ξ

∫

�

U∇U∇w̃ dx ≤ δ‖∇U‖2
L2 + Cδ‖U‖2

L2 (5.17)

and

ξ

∫

�

∇Uũ∇W dx ≤ δ
(‖�W‖2

L2 + ‖∇U‖2
L2

)
+ Cδ‖∇W‖2

L2 . (5.18)

For the other terms on the right,

– 2μ

∫

�

U2ũ dx – μ

∫

�

U2w̃ dx – μ

∫

�

UũW dx +
∫

�

Ugu dx

≤ 2μ‖U‖2
L4‖ũ‖L2 + μ‖U‖2

L4‖w̃‖L2 + μ‖U‖L2‖ũ‖L4‖W‖L4 + ‖U‖L2‖gu‖L2

≤ C‖U‖L2‖∇U‖L2‖ũ‖L2 + C‖U‖L2‖∇U‖L2‖w̃‖L2

+ C‖U‖L2‖ũ‖H1‖∇W‖L2 + ‖U‖L2‖gu‖L2

≤ C‖U‖2
L2 + δ‖∇U‖L2 + C‖∇W‖L2 + ‖gu‖L2 . (5.19)
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Replacing (5.15)–(5.19) in (5.14), we have

1
2

d
dt

∫

�

U2 dx +
∫

�

|∇U|2 dx ≤ 5δ‖∇U‖2
L2 + C‖U‖2

L2 + δ
(‖�V‖2

L2 + ‖�W‖2
L2

)

+ ‖gu‖2
L2 + C

(‖∇V‖2
L2 + ‖∇W‖2

L2
)
. (5.20)

By testing the second equation of (5.13) with V , we conclude

d
dt

∫

�

|V |2 dx +
∫

�

|∇V |2 dx + 2
∫

�

|V |2 dx ≤
∫

�

U2 dx +
∫

�

g2
v dx. (5.21)

By testing the second equation of (5.13) with �V , we get

d
dt

∫

�

|∇V |2 dx +
∫

�

|�V |2 dx + 2
∫

�

|∇V |2 dx ≤
∫

�

U2 dx +
∫

�

g2
v dx. (5.22)

By testing the third equation of (5.13) with W , we obtain

d
dt

∫

�

|W |2 dx ≤ C
∫

�

W 2 dx + C
∫

�

V 2 dx +
∫

�

g2
w dx. (5.23)

Next, applying ∇ to the third equation of (5.13), multiplying by ∇W , and integrating the
product over �, we have

1
2

d
dt

∫

�

|∇W |2 dx = –
∫

�

∇W∇(V w̃) dx –
∫

�

∇W∇(ṽW ) dx

+
∫

�

∇W∇gw dx. (5.24)

From (3.3) and (3.8), we derive that

–
∫

�

∇W∇(V w̃) dx = –
∫

�

∇W (∇V w̃ + V∇w̃) dx

≤ ‖∇W‖L2‖∇V‖L2‖w̃‖L∞ + ‖∇W‖L2‖V‖L4‖∇w̃‖L4

≤ ‖∇W‖L2‖∇V‖L2‖w̃‖L∞ + ‖∇W‖L2‖V‖H1‖w̃‖H2

≤ C‖W‖H1‖V‖H1 ≤ ‖W‖2
H1 +

1
2
‖V‖2

H1 , (5.25)

–
∫

�

∇W∇(ṽW ) dx = –
∫

�

∇W (∇ ṽW + ṽ∇W ) dx

=
1
2

∫

�

W 2�ṽ dx –
∫

�

ṽ|∇W |2 dx

≤ 1
2
‖W‖2

L4‖�ṽ‖L2 ≤ C‖W‖2
H1‖�ṽ‖L2 ≤ C‖W‖2

H1 , (5.26)

and
∫

�

∇W∇gw dx ≤ C‖∇W‖2
L2 +

1
2
‖∇gw‖2

L2 . (5.27)
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So, combining (5.23)–(5.27), we can get

d
dt

‖W‖2
H1 ≤C‖W‖2

H1 + ‖V‖2
H1 + ‖∇gw‖2

L2 . (5.28)

Applying � to the third equation of (5.13), multiplying by �W , and integrating the prod-
uct over �, we have

1
2

d
dt

∫

�

|�W |2 dx = –
∫

�

�W�(V w̃) dx –
∫

�

�W�(ṽW ) dx

+
∫

�

�W�gw dx. (5.29)

Applying the Hölder and Young inequalities to the terms on the right-hand side of (5.29),
we have

–
∫

�

�W�(V w̃) dx = –
∫

�

�W (�V w̃ + 2∇V∇w̃ + V�w̃)

≤ ‖�W‖L2‖�V‖L2‖w̃‖L∞ + 2‖�W‖L2‖∇V‖L4‖∇w̃‖L4

+ ‖�W‖L2‖V‖L4‖�w̃‖L4

≤ ‖�W‖L2‖�V‖L2‖w̃‖L∞ + C‖�W‖L2‖V‖H2‖w̃‖H2

+ ‖�W‖L2‖∇V‖L2‖w̃‖H3

≤ C‖W‖H2‖V‖H2 + C‖W‖H2‖V‖H1

≤ C‖W‖2
H2 +

δ

2
‖V‖2

H2 + C‖V‖2
H1 , (5.30)

–
∫

�

�W�(ṽW ) dx = –
∫

�

�W (�ṽW + 2∇ ṽ∇W + ṽ�W ) dx

≤ –
∫

�

�W (�ṽW + 2∇ ṽ∇W ) dx

= –
∫

�

�W�ṽW dx –
∫

�

∇(∇W )2∇ ṽ dx

= –
∫

�

�W�ṽW dx +
∫

�

|∇W |2�ṽ dx

≤ ‖�W‖L2‖�ṽ‖L4‖W‖L4 + ‖∇W‖2
L4‖�ṽ‖L2

≤ C‖W‖2
H2‖ṽ‖H3 , (5.31)

and

∫

�

�W�gw dx ≤ C‖�W‖2
L2 +

1
2
‖�gw‖2

L2 . (5.32)

So, we can get

d
dt

‖W‖2
H2 ≤C‖W‖2

H2

∥
∥
(
ṽ‖2

H3 + 1
)

+ δ
∥
∥V‖2

H2 + C‖V‖2
H1 + ‖gw‖2

H2 . (5.33)
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Therefore, we can obtain

d
dt

(‖U‖2
L2 + ‖V‖2

H1 + ‖W‖2
H2

)
+ ‖U‖2

H1 + ‖V‖2
H2

≤ 5δ‖U‖2
H1 + C‖U‖2

L2 + 2δ‖V‖2
H2 + C

(‖V‖2
H1 + ‖W‖2

H1
)

+ C‖W‖2
H2

(‖ṽ‖2
H3 + 1

)
+ ‖gu‖2

L2 + ‖gv‖2
L2 + C‖gw‖2

H2 . (5.34)

By choosing δ small enough, and utilizing the Gronwall inequality, we have

‖U‖L2 + ‖V‖H1 + ‖W‖H2 +
∫ t

0
‖U‖2

H1 dτ +
∫ t

0
‖V‖2

H2 dτ ≤ C,

for all t ∈ [0, T]. (5.35)

Step 3. (U , V , W ) ∈ L∞(0, T ; H1(�)) ∩ L2(0, T ; H2(�)) × L∞(0, T ; H2(�)) ∩ L2(0, T ;
H3(�)) × L∞(0, T ; H2(�)).

By testing the first equation of (5.13) with –�U , one has

1
2

d
dt

∫

�

|∇U|2 dx +
∫

�

|�U|2 dx

= χ

∫

�

�U∇ · (U∇ ṽ) dx + χ

∫

�

�U∇ · (ũ∇V ) dx + ξ

∫

�

�U∇ · (U∇w̃) dx

+ ξ

∫

�

�U∇ · (ũ∇W ) dx + μ

∫

�

|∇U|2 dx + 2μ

∫

�

�UUũ dx

+ μ

∫

�

�UUw̃ dx + μ

∫

�

�UũW dx +
∫

�

�Ugu dx. (5.36)

By applying the boundedness of ‖ṽ‖2
H2 , (5.35), and the Gagliardo–Nirenberg interpolation

inequality, we have

χ

∫

�

�U∇ · (U∇ ṽ) dx = χ

∫

�

�U(∇U∇ ṽ + U�ṽ) dx

= –
χ

2

∫

�

|∇U|2�ṽ dx + χ

∫

�

�UU�ṽ

≤ χ

2
‖∇U‖2

L4‖�ṽ‖L2 + χ‖�U‖L2‖U‖L4‖�ṽ‖L4

≤ C‖∇U‖L2‖�U‖L2 + C‖�U‖L2‖U‖L2‖U‖H1‖�ṽ‖H1

≤ C‖U‖2
H1

(‖ṽ‖2
H3 + 1

)
+ δ‖U‖2

H2 (5.37)

and

χ

∫

�

�U∇ · (ũ∇V ) dx ≤ χ

∫

�

�U(∇ũ∇V + ũ�V )

≤ ‖�U‖L2‖∇ũ‖L4‖∇V‖L4 + ‖�U‖L2‖ũ‖L∞‖�V‖L2

≤ C‖�U‖L2‖ũ‖H2‖V‖H2 ≤ δ‖U‖2
H2 + C‖ũ‖2

H2‖V‖2
H2 . (5.38)
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By utilizing the same ideas, we can get

ξ

∫

�

�U∇ · (U∇w̃) dx ≤ C‖U‖2
H1

(‖w̃‖2
H3 + 1

)
+ δ‖U‖2

H2 (5.39)

and

ξ

∫

�

�U∇ · (ũ∇W ) dx ≤ δ‖�U‖2
L2 + C‖ũ‖2

H2 . (5.40)

With (5.35) and the boundedness of ‖w̃‖2
H1 , ‖ũ‖2

H1 in hand, we derive

μ

∫

�

�UUw̃ dx + μ

∫

�

�UũW dx +
∫

�

�Ugu dx

≤ μ‖�U‖L2‖U‖L4‖w̃‖L4 + μ‖�U‖L2‖ũ‖L4‖W‖L4 + ‖�U‖L2‖gu‖L2

≤ C‖�U‖L2‖U‖H1‖∇w̃‖L2 + C‖�U‖L2‖ũ‖H1‖W‖H1 + ‖�U‖L2‖gu‖L2

≤ δ‖U‖2
H2 + C

(‖U‖2
H1 + ‖gu‖2

L2 + 1
)
. (5.41)

Replacing (5.37)–(5.41) in (5.36), and using the fact that ‖w̃‖2
H3 ≤ C and (5.35), we have

1
2

d
dt

(‖U‖2
H1 + ‖U‖2

H2 ≤ C‖U‖2
H1

(‖ṽ‖2
H3 + ‖w̃‖2

H3 + 1
)

+ 5δ‖U‖2
H2

+ C‖ũ‖2
H2

(‖V‖2
H2 + 1

)
+ C

(‖gu‖2
L2 + 1

)
. (5.42)

Next, applying � to the second equation of (5.13), multiplying by �V , and integrating the
product over �, we see

1
2

d
dt

∫

�

|�V |2 dx +
∫

�

|∇�V |2 dx +
∫

�

|�V |2 dx

= –
∫

�

∇U∇�V dx –
∫

�

∇gv∇�V dx. (5.43)

Applying the Hölder and Young inequalities, we obtain

–
∫

�

∇U∇�V dx –
∫

�

∇gv∇�V dx ≤ δ‖∇�V‖2
L2 + C

(‖∇U‖2
L2 + ‖∇gv‖2

L2
)
. (5.44)

Therefore, from (5.43) and (5.44), we get

1
2

d
dt

∫

�

|�V |2 dx +
∫

�

|∇�V |2 dx +
∫

�

|�V |2 dx

≤ δ‖∇�V‖2
L2 + C

(‖∇U‖2
L2 + ‖∇gv‖2

L2
)
. (5.45)

Applying ∇� to the third equation of (5.13), multiplying by ∇�W , and integrating the
product over � yields

1
2

d
dt

∫

�

|∇�W |2 dx

= –
∫

�

∇�W∇�(V w̃) dx –
∫

�

∇�W∇�(ṽW ) dx +
∫

�

∇�W∇�gw dx. (5.46)
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For the first term on the right,

–
∫

�

∇�W∇�(V w̃) dx

= –
∫

�

∇�W (∇�V w̃ + 3�V∇w̃ + 3∇V�w̃ + V∇�w̃) dx

≤ ‖∇�W‖L2‖∇�V‖L2‖w̃‖L∞ + 3‖∇�W‖L2‖�V‖L4‖∇w̃‖L4

+ 3‖∇�W‖L2‖∇V‖L4‖�w̃‖L4 + ‖∇�W‖L2‖∇�w̃‖L2‖V‖L∞

≤ C‖W‖H3‖V‖H3‖w̃‖H2 + C‖W‖H3‖V‖H2‖w̃‖H3

+ C‖W‖H3‖w̃‖H3‖W‖H2 . (5.47)

Thanks to the boundedness of ‖∇�w̃‖L2 and (5.35), we can get

–
∫

�

∇�W∇�(V w̃) dx ≤ C‖W‖2
H3 +

δ

2
‖V‖2

H3 + C‖V‖2
H2 + C (5.48)

and

–
∫

�

∇�W∇�(ṽW ) dx

= –
∫

�

∇�W (∇�ṽW + 3�ṽW + 3∇ ṽ�W + ṽ∇�W )

≤ ‖∇�W‖L2‖∇�ṽ‖L2‖W‖L∞ + 3‖∇�W‖L2‖�ṽ‖L4‖W‖L4

+
3
2
‖�W‖2

L4‖�ṽ‖L2 + ‖∇�W‖2
L2‖ṽ‖L∞

≤ C‖W‖H3‖ṽ‖H3‖W‖H2 + C‖W‖H3‖ṽ‖H3‖W‖H1

+ C‖W‖H2‖W‖H3‖ṽ‖H2 + ‖W‖2
H3‖ṽ‖H2 . (5.49)

Then collecting (5.35) and ‖ṽ‖H2 ≤ C, we arrive at

–
∫

�

∇�W∇�(ṽW ) dx ≤ C‖W‖2
H3 + C‖ṽ‖2

H3 + C. (5.50)

Applying the Hölder and Young inequalities, we obtain

∫

�

∇�W∇�gw dx ≤ C‖W‖2
H3 +

1
2
‖gw‖2

H3 . (5.51)

Thus, in light of (5.46)–(5.51), we arrive at

d
dt

∫

�

|∇�W |2 dx ≤ C‖W‖2
H3 + δ‖V‖2

H3 + C‖ṽ‖2
H3

+ C‖V‖2
H2 + ‖gw‖2

H3 + C. (5.52)
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We invoke (5.34), (5.42), (5.45), and (5.52) to obtain

d
dt

(‖U‖2
H1 + |V |2H2 + |W |2H3

)
dx + ‖U‖2

H2 + |V |2H3

≤ C‖U‖2
H1

(‖ṽ‖2
H3 + ‖w̃‖2

H3 + 1
)

+ C
(‖ũ‖2

H2 + 1
)‖V‖2

H2 + C‖W‖2
H3

+ C‖ũ‖2
H2 + C‖ṽ‖2

H3 + C
(‖gu‖2

L2 + ‖∇gv‖2
L2 + ‖∇�gw‖2

L2
)

+ C. (5.53)

By utilizing the Gronwall inequality and ṽ ∈ L2(0, T ; H3(�)), w̃ ∈ L∞(0, T ; H3(�)) ũ ∈
L2(0, T ; H2(�)), we have

‖U‖2
H1 + |V |2H2 + |W |2H3 +

∫ t

0
‖U‖2

H2 dτ +
∫ t

0
|V |2H3 dτ ≤ C, t ∈ [0, T]. (5.54)

Thus, we conclude the proof. �

Now we show the existence of Lagrange multipliers.

Theorem 5.2 Let s̃ = (ũ, ṽ, w̃, f̃ ) ∈ Sad be a local optimal solution for the control problem
(5.9). Then, there exist Lagrange multipliers (λ,η,ρ,ϕ,φ,ψ) ∈ L2(Q) × (L2(0, T ; H1(�)))′ ×
(L∞(0, T ; H3(�)))′ × (H1(�))′ × (H2(�))′ × (H3(�))′ such that for all (U , V , W , F) ∈Wu ×
Wv ×Ww × C(f̃ ) one has

β1

∫ T

0

∫

�d

(ũ – ud)U dx dt + β2

∫ T

0

∫

�d

(ṽ – vd)V dx dt

+ β3

∫ T

0

∫

�d

(w̃ – wd)W dx dt + β4

∫ T

0

∫

�c

f̃ F dx dt +
∫ T

0

∫

�c

Fη dx dt

–
∫ T

0

∫

�

(
∂tU – �U + χ∇ · (U∇ ṽ) + χ∇ · (ũ∇V ) + ξ∇ · (U∇w̃) + ξ∇ · (ũ∇W )

– μU + 2μUũ + μUw̃ + μũW
)
λdx dt –

∫ T

0

∫

�

(∂tV – �V + V – U)η dx dt

–
∫ T

0

∫

�

(∂tW + V w̃ + ṽW )ρ dx dt –
∫

�

U(0)ϕ dx –
∫

�

V (0)φ dx

–
∫

�

W (0)ψ dx ≥ 0. (5.55)

Proof From Lemma 5.3, s̃ ∈ Sad is a regular point, so by Theorem 5.1 there exist Lagrange
multipliers

(λ,η,ρ,ϕ,φ,ψ) ∈ L2(Q) × (
L2(0, T ; H1(�)

))′ × (
L∞(

0, T ; H3(�)
))′

× (
H1(�)

)′ × (
H2(�)

)′ × (
H3(�)

)′

such that

J ′(s̄)[r] –
〈
G′

1(s̄)[r],λ
〉
–

〈
G′

2(s̄)[r],η
〉
–

〈
G′

3(s̄)[r],ρ
〉

–
〈
G′

4(s̄)[r],ϕ
〉
–

〈
G′

5(s̄)[r],φ
〉
–

〈
G′

5(s̄)[r],ψ
〉 ≥ 0, (5.56)
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for all r = (U , V , W , F) ∈ Wu ×Wv ×Ww × C(f̃ ). Thus, the proof follows from (5.11) and
(5.10). �

From Theorem 5.2, we derive an optimality system for which we consider the following
spaces:

Wu0 :=
{

u ∈Wu : u(0) = 0
}

, Wv0 :=
{

v ∈Wv : v(0) = 0
}

,

Ww0 :=
{

u ∈Ww : w(0) = 0
}

. (5.57)

Corollary 5.1 Let s̃ = (ũ, ṽ, w̃, f̃ ) be a local optimal solution for the optimal control
problem (5.9). Then the Lagrange multiplier (λ,η,ρ) ∈ L2(Q) × (L2(0, T ; H1(�)))′ ×
(L∞(0, T ; H3(�)))′, provided by Theorem 5.2, satisfies the system

∫ T

0

∫

�

(
∂tU – �U + χ∇ · (U∇ ṽ) + ξ∇ · (U∇w̃) – μU + 2μUũ + μUw̃

)
λdx dt

–
∫ T

0

∫

�

Uη dx dt = β1

∫ T

0

∫

�d

(ũ – ud)U dx dt, ∀U ∈Wu0 , (5.58)

∫ T

0

∫

�

(∂tV – �V + V )η dx dt + χ

∫ T

0

∫

�

∇ · (ũ∇V )λdx dt +
∫ T

0

∫

�

V w̃ρ dx dt

= β2

∫ T

0

∫

�d

(ṽ – vd)V dx dt, ∀V ∈Wv0 , (5.59)

∫ T

0

∫

�

(∂tW + ṽW )ρ dx dt + ξ

∫ T

0

∫

�

∇ · (ũ∇W )λdx dt + μ

∫ T

0

∫

�

ũWλdx dt

= β3

∫ T

0

∫

�d

(w̃ – wd)W dx dt, ∀W ∈Ww0 , (5.60)

which corresponds to the concept of very weak solution of the linear system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tλ + �λ + χ∇λ · ∇ ṽ + ξ∇λ · ∇w̃ + μλ – 2μũλ – μλw̃ – η

= –β1(ũ – ud)ζ�d , in Q,

∂tη + �η – η – χ∇ · (∇λũ) – w̃ρ = –β2(ũ – ud)ζ�d , in Q,

∂tρ – ṽρ – ξ∇ · (ũ∇λ) – μũλ = –β3(ṽ – vd)ζ�d , in Q,

λ(T) = 0, η(T) = 0, ρ(T) = 0, in �,
∂λ
∂ν

= 0, ∂η

∂ν
= 0, ∂ρ

∂ν
= 0, on (0, T) × ∂�,

(5.61)

and the optimality condition

∫ T

0

∫

�c

(β4 f̃ + η)(f – f̄ ) dx dt ≥ 0, ∀f ∈F . (5.62)

Proof From (5.55), taking (V , W , F) = (0, 0, 0), and taking into account that Wu0 is a vector
space, we have (5.58). Similarly, taking (U , W , F) = (0, 0, 0) in (5.55), and considering that
Wv0 is a vector space, we obtain (5.59). Taking (U , V , F) = (0, 0, 0) in (5.55), and considering
that Ww0 is a vector space, we obtain (5.60). Finally, taking (U , V , W ) = (0, 0, 0) in (5.55),
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we have

β4

∫ T

0

∫

�e

f̃ F dx dt +
∫ T

0

∫

�0

ηF dx dt ≥ 0, ∀F ∈ C(f̃ ). (5.63)

Therefore, choosing F = f – f̄ ∈ C(f̄ ) for all f ∈F in the last inequality, we derive (5.62). �

In the following result we show that the Lagrange multiplier (λ,η,ρ), provided by The-
orem 5.2, has some extra regularity.

Theorem 5.3 Under conditions of Theorem 5.2, the system (5.61) has a unique strong so-
lution (λ,η,ψ) such that

λ ∈ H1((0, T); L2(�)
) ∩ L∞(

0, T ; H1(�)
) ∩ L2(0, T ; H2(�)

)
, (5.64)

η ∈ H1((0, T); L2(�)
) ∩ L∞(

0, T ; L2(�)
) ∩ L2(0, T ; H1(�)

)
, (5.65)

ρ ∈ H1((0, T); L2(�)
) ∩ L∞(

0, T ; L2(�)
)
. (5.66)

Proof Let s = T – t, with t ∈ (0, T) and λ̃(s) = λ(t), η̃(s) = η(t), η̃(s) = ψ(t). Then system
(5.61) is equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂sλ̃ – �λ̃ – χ∇λ̃ · ∇ ṽ – ξ∇λ̃ · ∇w̃ – μλ̃ + 2μũλ̃ + μλ̃w̃ + η̃

= β1(ũ – ud)ζ�d , in Q,

∂sη̃ – �η̃ + η̃ + χ∇ · (ũ∇λ̃) + w̃ρ̃ = β2(ṽ – vd)ζ�d , in Q,

∂sρ̃ + ṽρ̃ + χ∇ · (ũ∇λ̃) – μũλ̃ = β3(w̃ – wd)ζ�d , in Q,

λ̃(0) = 0, η̃(0) = 0, ψ̃(0) = 0, in �,
∂λ̃
∂ν

= 0, ∂η̃

∂ν
= 0, ∂ψ̃

∂ν
= 0, on (0, T) × �.

(5.67)

The proof employs a Galerkin approximation. By testing (5.67)1 with –�λ̃, we have

1
2

d
ds

∫

�

|∇λ̃|2 dx +
∫

�

|�λ̃|2 dx

= –χ

∫

�

�λ̃∇λ̃∇ ṽ dx – ξ

∫

�

�λ̃∇λ̃∇w̃ dx + μ

∫

�

|∇λ̃|2 dx + 2μ

∫

�

ũλ̃�λ̃dx

+ μ

∫

�

w̃λ̃�λ̃dx +
∫

�

�λ̃η dx – β1

∫

�

�λ̃(ũ – ud) dx. (5.68)

Applying the Hölder, Young, and Nirenberg inequalities, as well as the boundedness of
‖ṽ‖2

H2 , we obtain

–χ

∫

�

�λ̃∇λ̃∇ ṽ dx =
χ

2

∫

�

|∇λ̃|2�ṽ dx ≤ χ

2
‖∇λ̃‖2

L4‖�ṽ‖L2

≤ C‖∇λ̃‖L2‖�λ̃‖L2‖�ṽ‖L2 ≤ C‖∇λ̃‖2
L2 +

δ

8
‖�λ̃‖2

L2 . (5.69)

Then, utilizing the same procedure gives

–ξ

∫

�

�λ̃∇λ̃∇w̃ dx ≤ C‖∇λ̃‖2
L2 +

δ

8
‖�λ̃‖2

L2 . (5.70)
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In light of the boundedness of ũ, w̃, we see that

2μ

∫

�

ũλ̃�λ̃dx + μ

∫

�

w̃λ̃�λ̃dx +
∫

�

�λ̃η̃ dx – β1

∫

�

�λ̃(ũ – ud) dx

≤ μ
(
2‖ũ‖L4 + ‖w̃‖L4

)‖λ̃‖L4‖�λ̃‖L2 + ‖η̃‖L2‖�λ̃‖L2 – β1‖�λ̃‖L2‖ũ – ud‖L2

≤ C
(‖ũ‖H1 + ‖w̃‖H1

)‖∇λ̃‖L2‖�λ̃‖L2 +
δ

8
‖�λ̃‖2

L2 + C
(‖η̃‖2

L2 + ‖ũ – ud‖2
L2

)

≤ C‖∇λ̃‖2
L2 +

δ

4
‖�λ̃‖2

L2 + C
(‖η̃‖2

L2 + ‖ũ – ud‖2
L2

)
. (5.71)

In the light of (5.68)–(5.71), we have

d
ds

∫

�

|∇λ̃|2 dx + 2
∫

�

|�λ̃|2 dx

≤ C‖∇λ̃‖2
L2 + δ‖�λ̃‖2

L2 + C
(‖η̃‖2

L2 + ‖ũ – ud‖2
L2

)
. (5.72)

Similarly, testing (5.67)1 with λ̃ yields

d
ds

∫

�

|λ̃|2 dx + 2
∫

�

|∇λ̃|2 dx ≤ C‖λ̃‖2
H1 + C

(‖η̃‖2
L2 + ‖ũ – ud‖2

L2
)
. (5.73)

By testing (5.67)2 with η̃, we conclude

1
2

d
ds

∫

�

η̃2 dx +
∫

�

|∇η̃|2 dx +
∫

�

η̃2 dx

= χ

∫

�

∇η̃ũ∇λ̃dx –
∫

�

η̃w̃ρ̃ dx + β2

∫

�

η̃(ṽ – vd) dx. (5.74)

Using the Hölder, Young, and Nirenberg inequalities, we obtain

χ

∫

�

∇η̃ũ∇λ̃dx ≤ χ‖∇η̃‖L2‖ũ‖L∞‖∇λ̃‖L2 ≤ C‖∇η̃‖L2‖ũ‖H2‖∇λ̃‖L2

≤ δ

2
‖∇η̃‖L2 + C‖ũ‖2

H2‖∇λ̃‖2
L2 . (5.75)

Applying the Hölder and Young inequalities, as well as the boundedness of w̃, we get

∫

�

η̃w̃ρ̃ dx ≤ ‖η̃‖L2‖w̃‖L∞‖ρ̃‖L2 ≤ C‖η̃‖L2 +
1
2
‖ρ̃‖L2 , (5.76)

β2

∫

�

η̃(ṽ – vd) dx ≤ C‖η̃‖L2 +
1
2
‖ṽ – vd‖2

L2 . (5.77)

Then collecting (5.74)–(5.77), we see

d
ds

∫

�

η̃2 dx + 2
∫

�

|∇η̃|2 dx + 2
∫

�

η̃2 dx

≤ C‖η̃‖L2 + δ‖∇η̃‖L2 + C‖ũ‖2
H2‖∇λ̃‖2

L2 + ‖ρ̃‖L2 + ‖ṽ – vd‖2
L2 . (5.78)
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Testing (5.67)3 with ρ̃ , we have

1
2

d
ds

∫

�

ρ̃2 dx = –
∫

�

ṽρ̃2 dx – χ

∫

�

ρ̃∇(ũ∇λ̃) dx

+ μ

∫

�

ũλ̃ρ̃ dx + β3

∫

�

ρ̃(w̃ – wd) dx. (5.79)

First, we see that

–
∫

�

ṽρ̃2 dx ≤ ‖ṽ‖L∞‖ρ̃‖2
L2 . (5.80)

Similarly, we know that

–χ

∫

�

ρ̃∇(ũ∇λ̃) dx = –χ

∫

�

ρ̃(∇ũ∇λ̃ + ũ�λ̃) dx

≤ χ‖ρ̃‖L2‖∇ũ‖L4‖∇λ̃‖L4 + χ‖ρ̃‖L2‖ũ‖L∞‖�λ̃‖L2

≤ C‖ρ̃‖L2‖ũ‖H2‖λ̃‖H2 ≤ C‖ρ̃‖2
L2‖ũ‖2

H2 + δ‖λ̃‖2
H2 , (5.81)

μ

∫

�

ũλ̃ρ̃ dx ≤ μ‖λ̃‖L4‖ũ‖L4‖ρ̃‖L2 ≤ C‖λ̃‖H1‖ũ‖H1‖ρ̃‖L2

≤ C‖λ̃‖2
H1 + ‖ρ̃‖2

L2 , (5.82)

and

β3

∫

�

ρ̃(w̃ – wd) dx ≤ ‖ρ̃‖2
L2 + C‖w̃ – wd‖2

L2 . (5.83)

Then collecting (5.79)–(5.83), we get

d
ds

∫

�

ρ̃2 dx ≤C‖ρ̃‖2
L2

(‖ũ‖2
H2 + 1

)
+ C‖λ̃‖2

H1 + δ‖λ̃‖2
H2 + C‖w̃ – wd‖2

L2 . (5.84)

Accordingly, we invoke (5.72), (5.73), (5.78), and (5.84) to obtain

d
ds

(‖λ̃‖2
H1 + ‖η̃‖2

L2 + ‖ρ̃‖2
L2

)
dx + ‖λ̃‖2

H2 + ‖η̃‖2
H1

≤ 2δ‖λ̃‖2
H2 + C

(‖ũ‖2
H2 + 1

)‖λ̃‖2
H1 + C‖η̃‖2

L2 + δ‖η̃‖2
H1

+ C‖ρ̃‖2
L2

(‖ũ‖2
H2 + 1

)
+ C

(‖ṽ – vd‖2
L2 + ‖w̃ – wd‖2

L2 + ‖ũ – ud‖2
L2

)
. (5.85)

By taking δ small enough, a Gronwall argument leads to

‖λ̃‖2
H1 + ‖η̃‖2

L2 + ‖ρ̃‖2
L2 +

∫ s

0
‖λ̃‖2

H2 dτ +
∫ s

0
‖η̃‖2

H1 dτ ≤ C. (5.86)

Testing the first equation of (5.67) with λ̃s, integrating over �× (0, T), and using the above
inequality, we have

∫ T

0

∫

�

‖λ̃s‖2
L2 dt ≤ 1

2

∫ T

0

∫

�

‖λ̃s‖2
L2 dt + C.
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Similarly, we obtain

∫ T

0

∫

�

‖η̃s‖2
L2 dt ≤ C,

∫ T

0

∫

�

‖ρ̃s‖2
L2 dt ≤ C.

The proof is complete. �

Corollary 5.2 (Optimality System) Let s̃ = (ũ, ṽ, w̃, f̃ ) ∈ Sad be a local optimal solution for
the control problem (5.9). Then, the Lagrange multiplier (λ,η,ρ) has the regularity as in
(5.67) and satisfies the following optimality system:

∂tλ + �λ + χ∇λ · ∇ ṽ + ξ∇λ · ∇w̃ + μλ – 2μũλ – μλw̃ – η

= –β1(ũ – ud)ζ�d , in Q,

∂tη + �η – η – χ∇ · (∇λũ) – w̃ρ = –β2(ũ – ud)ζ�d , in Q,

∂tρ – ṽρ – ξ∇ · (ũ∇λ) – μũλ = –β3(ṽ – vd)ζ�d , in Q,

λ(T) = 0, η(T) = 0, ρ(T) = 0, in �,

∂λ

∂ν
= 0,

∂η

∂ν
= 0,

∂ρ

∂ν
= 0, on (0, T) × ∂�,

∫ T

0

∫

�c

(β4 f̃ + η)(f – f̄ ) dx dt ≥ 0, ∀f ∈F .

Remark 5.2 The first-order necessary optimality conditions for chemotaxis models have
been intensively studied [10, 12, 23]. Recently, Colli, Signori and Sprekels [9] established
both first-order necessary and second-order sufficient conditions for a tumor growth
model of Cahn–Hilliard type, including chemotaxis with possibly singular potentials.

Remark 5.3 For the numerical analysis of the optimal control problem, the ringlike diffu-
sion and aggregation patterns and the dynamics of tumor invasion, as well as the optimal
control strategies, are presented numerically in Dai and Liu [10] for a haptotaxis model.
Khajanchi and Ghosh [18] studied the numerical aspect of the optimal control problem
for the immunogenic tumors model. They demonstrated the numerical illustrations that
the optimal regimens reduce the tumor burden under different scenarios.
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