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Abstract
Recently, Gao and Yao established the global existence and temporal decay rates of
solutions for a system of compressible Hall-magnetohydrodynamic fluids (Gao and
Yao in Discrete Contin. Dyn. Syst. 36: 3077–3106, 2016). However, because of the
difficulty of derivative loss in the nonlinear terms, Gao and Yao could not provide the
temporal decay for the highest-order derivatives of classical solutions. In this paper,
motivated by the decomposition technique of both low and high frequencies of
solutions in (Wang and Wen in Sci. China Math. 65: 1199–1228 2022), we further
derive the temporal decay for the highest-order derivatives of the strong solutions.
Moreover, the decay rate is optimal, since it agrees with the solutions of the linearized
system.
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1 Introduction
In this paper, we investigate the temporal decay of the highest-order derivatives of solu-
tions to the Cauchy problem of a compressible Hall-magnetohydrodynamic system, which
can be described as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tρ + div(ρu) = 0,

∂t(ρu) + div(ρu ⊗ u) – μ�u – (μ + ν)∇ div u + ∇P(ρ) = curl B × B,

∂tB – (B · ∇)u + (u · ∇)B + B div u + curl[ (curlB)×B
ρ

] = �B,

div B = 0,

(1.1)

with initial condition

(ρ, u, B)|t=0 = (ρ0, u0, B0). (1.2)

Lets us explain the notations appearing in system (1.1). The functions ρ = ρ(t, x), u =
u(t, x), and B = B(t, x) represent the density, velocity, and magnetic field of a Hall-
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magnetohydrodynamic fluid, respectively. The pressure function of the fluid P(ρ) depend-
ing on the density ρ is a smooth function. The constants μ and ν represent the viscosity
coefficients of the fluid and satisfy the following physical conditions

μ > 0, 2μ + 3ν ≥ 0.

Hall-magnetohydrodynamics fluids have attracted more and more attention from
plasma physicists. It is thought to be the key to understanding the magnetic reconnection
problem. Acheritogaray et al. [1]provided a derivation of the Hall-magnetohydrodynamics
system through a set of scale limits in the Euler–Maxwell system of ions and electrons
and stated system (1.1) for the Hall-magnetohydrodynamics fluids. The interested read-
ers may further refer to [3, 9, 12, 36, 39, 47] and the referencestherein for the relevant
physical progress. When the Hall effect term curl(ρ–1(curl B) × B)) is neglected in (1.1),
the Hall-MHD system reduces to the well-known MHD system. At present the MHD sys-
tem has been extensively investigated from mathematical, physical and numerical aspects;
see [6, 7, 13–27, 31, 33, 41, 46, 53] and the references cited therein.

The well-posedness problem for the Hall-MHD system has also been widely investi-
gated; see [4, 42] and the references cited therein. Since we are interested in the temporal
decay for the solutions of the compressible system (1.1), we briefly introduce relevant re-
sults. The interested readers can refer to [5, 49] and the references therein for the temporal
decay of solutions to the incompressible Hall-MHD system.

Fan et al. proved the local existence of strong solutions with positive initial density and
global-in-time classical solutions around the rest state (1, 0, 0) with small initial perturba-
tion. They also established the optimal time decay rate for classical solutions [8]:

∥
∥(ρ – 1, u, B)(t)

∥
∥

L2(R3) ≤ C(1 + t)– 3
4 .

They required the initial perturbation to be small in H3(R3)-norm and bounded in L1(R3)-
norm. Later, Gao–Yao [11] deduced temporal decay rates for the higher-order spatial
derivatives of classical solutions:

∥
∥∇k(ρ – 1, u)(t)

∥
∥

H3–k (R3) ≤ C(1 + t)– 3+2k
4 , (1.3)

∥
∥∇kB

∥
∥

H3–k (R3) ≤ C(1 + t)– 3+2m
4 ,

where 0 ≤ k ≤ 2 and 0 ≤ m ≤ 3. It is easy to see that these decay rates are the same as for the
heat equation. However, because of the difficulty of derivative loss in the nonlinear terms,
Gao and Yao could not provide the temporal decay for the highest-order derivatives, i.e.,
∇3(ρ – 1, u)(t). In this paper, we establish the temporal decay for the highest-order deriva-
tives.

For simplicity, we consider the existence of unique strong solutions with small perturba-
tion and establish the temporal decay for the highest-order derivatives of strong solutions
by using the decomposition technique of both low and high frequencies of solutions in
[45]. Note that it is easy to verify that (1.3) also holds for k = 3 by following the proof of
our main result.

In addition, recently the temporal decay of solutions to the full compressible Hall-MHD
fluids has been also widely investigated; see [10, 30, 40, 43, 44] for examples. Our main
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result can be easily extended to the full case. Before presenting our main results, we intro-
duce some notations often used throughout this paper.

The letter C > 0 represents a generic constant that varies from line to line, and Ci > 0 is a
fixed constant for i ∈ Z

+; 〈·, ·〉 stands for the inner product in L2(R3), and a � b means that
a ≤ Cb for some constant C > 0. For simplicity, we also denote a ≈ b if a � b and a � b.
The symbol ∇ l with an integer l ≥ 1 represents the spatial derivatives of order l. We set
∂i = ∂xi (i = 1, 2, 3) and ∂α

x = ∂
α1
x1 ∂

α2
x2 ∂

α3
x3 with multiindices α = (α1,α2,α3).

For simplicity, ‖ · ‖Lp := ‖ · ‖Lp(R3) and ‖ · ‖Hs := ‖ · ‖Hs(R3), where 1 ≤ p ≤ ∞ and s ∈ R.
By �s we denote the pseudodifferential operator defined by

�sf = F–1(|ξ |ŝf ) for s ∈R,

where f̂ and F–1(f ) stand for the Fourier and inverse Fourier transforms, respectively.
Let ξ ∈R

3, and let ϕ(ξ ) be a smooth cut-off function satisfying 0 ≤ ϕ(ξ ) ≤ R0 and

ϕ(ξ ) =

⎧
⎨

⎩

1, |ξ | > R0,

0, |ξ | < R0,
(1.4)

where R0 satisfies R0 >
√

8
μ

. Then we can define the frequency distribution for the function
f ∈ L2(R3) as follows:

f L(x) = ϕ(Dx)f (x), f H (x) =
(
I – ϕ(Dx)

)
f (x),

where Dx := 1√
–1 (∂x1 , ∂x2 , ∂x3 ), and ϕ(Dx) is a pseudodifferential operator of ϕ(ξ ). Note that

f (x) can be expressed as follows:

f (x) = f L(x) + f H (x). (1.5)

Now we introduce the main result in this paper.

Theorem 1.1 Suppose that (ρ0 – 1, u0, B0) ∈ H2(R3) satisfies

∥
∥(ρ0 – 1, u0, B0)

∥
∥

H2(R3) ≤ ε (1.6)

for some sufficiently small constant ε. Then the Cauchy problem (1.1)–(1.2) has a unique
global-in-time solution (ρ, u, B), which satisfies

ρ – 1 ∈ C0([0,∞); H2(
R

3))∩ C1([0,∞); H1(
R

3)), (1.7)

u, B ∈ C0([0,∞); H2(
R

3))∩ C1([0,∞); L1(
R

3)). (1.8)

Furthermore, if the initial data (ρ0 –1, u0, B0) is bounded in L1(R3), then the strong solution
(ρ, u, B) enjoys the decay estimates for all t ≥ 0,

∥
∥∇k(ρ – 1, u, B)(t)

∥
∥

L2(R3) ≤ C(1 + t)– 3
4 – k

2 , k = 0, 1, 2. (1.9)
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Now we will introduce our main idea for deriving the optimal time-decay rates in (1.9).
The main difficulty focuses on how to obtain the energy estimates that include only the
highest-order spatial derivative of the solution ∇2(ρ – 1, u), which is essentially caused by
the “degenerate” dissipative structure of the hyperbolic parabolic system. To get the dis-
sipative estimate for ∇2ρ , the usual energy method in [11] is constructing the interaction
energy functional between u and ∇ρ by using the pressure term in linearized momen-
tum equations; see (3.27). It implies that both the first and second orders of the spatial
derivatives of the velocity and the density should be involved in the Lyapunov functional

L(t) = ‖∇ρ‖2
H1 +

∥
∥∇u(t)

∥
∥2

H1 +
∫

R3
∇u · ∇∇ρ dx ∼ ∥

∥∇(ρ, u)(t)
∥
∥2

H1 .

Consequently, the L2-norm of the highest order and the first-order derivative of the solu-
tion have the same time-decay rate.

One of the main goals in this paper is developing a way to capture the optimal time-decay
rates for the highest-order derivative of the solution to the Cauchy problem (1.1)–(1.2) if
the initial perturbation is bounded in L1(R3). Firstly, by using the standard energy method
we establish estimate (3.24) of the energy functional FH (t) in (3.25). Secondly, motivated
by the decomposition technique of both low and high frequencies of solutions in [45], to
get rid of the obstacle from the term

∫

R3 ∇u · ∇ρ dx, we will remove the low-medium-
frequency part of the term from FH (t) (see (4.12)), which requires a new estimate for the
low-medium-frequency term (see Lemma 4.1 for more detail). This method can also be
seen, for example, in [50] for the two-phase flow and in [51] for the MHD system.

The rest of this paper is organized as follows. In Sect. 2, for the convenience of calcu-
lation, we transform the original system (1.1) into a perturbation form (2.5). In Sect. 3,
we establish a priori estimates of solutions and provide the global-in-time existence and
uniqueness of the solutions for the Hall-MHD system. Finally, in Sect. 4, as in [45], we
obtain the optimal time decay rate for the nonhomogeneous system (2.5) by the decom-
position technique of both low and high frequencies of solutions.

2 Reformulation
For the convenience of the subsequent calculations, we rewrite system (1.1) as follows,
Since div B = 0, we have

curl B × B = B · ∇B – B · ∇TB = div(B ⊗ B) –
1
2
∇|B|2, (2.1)

curl curl B = ∇ div B – �B = –�B, (2.2)

where ∇TB denotes the transposed matrix of ∇B, and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tρ + div(ρu) = 0,

∂tu + u · ∇u – μ�u
ρ

– (μ + ν) ∇ div u
ρ

+ P′(ρ)
ρ

∇ρ = B·∇B
ρ

– B·∇TB
ρ

,

∂tB – (B · ∇)u + (u · ∇)B + B(div u) – �B + curl[ (curl B)×B
ρ

] = 0,

div B = 0.

(2.3)

Letting

ω = ρ – 1, u = u, B = B, (2.4)
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we can further rewrite system (1.1)–(1.2) in the perturbation from:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωt + div u = H1,

ut – μ�u – (μ + ν)∇ div u + ∇ω = H2,

Bt – �B = H3,

div B = 0,

(ω, u, B)|t=0 = (ω0, u0, B0) = (ρ0 – 1, u0, B0),

(2.5)

where the nonlinear terms H1–H3 are defined by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

H1 := – div(ωu),

H2 := –u · ∇u – h1(ω)∇ω + g1(ω)(B · ∇B – B · ∇TB)

– g2(ω)[μ�u + (μ + ν)∇divu],

H3 := (B · ∇)u – (u · ∇)B – (div u)B – curl[g1(ω)(B · ∇B – B · ∇TB)],

(2.6)

with the nonlinear functions

g1(ω) :=
1

ω + 1
, (2.7)

g2(ω) :=
ω

ω + 1
, (2.8)

h1(ω) :=
P′(ω + 1)

ω + 1
– 1. (2.9)

3 Global-in-time unique solvability for the nonlinear system
In this section, we focus on the global(-in-time) existence and uniqueness of solutions
for the Hall-MHD equations. The local strong solutions can be extended to the global
solutions by the standard continuity method and global a priori estimates.

3.1 Global existence of solutions
First, we define the work space for system (2.5) by

�(0, T) :=
{

(ω, u, B)|ω ∈ C0((0, T); H2(
R

3))∩ C1((0, T); H1(
R

3)),

u, B ∈ C0((0, T); H2(
R

3))∩ C1((0, T); L2(
R

3)),

∇ω ∈ L2((0, T); H1(
R

3)),∇u,∇B ∈ L2((0, T); H2(
R

3))}

(3.1)

for 0 ≤ T ≤ +∞. Then, motivated by [6, 35], we can obtain the following local existence
result of a unique solutions to system (2.5).

Proposition 3.1 (Local existence) Let (ω0, u0, B0) ∈ H2(R3) and suppose that

inf{ω0 + 1} > 0.

Then there exists a positive constant T0, only depending on ‖(ω0, u0, B0)‖H2(R3). such that
the Cauchy problem (2.5) has a unique solution (ω, u, B) ∈ �(0, T0), which satisfies

inf
x∈R3,0≤t≤T0

{ω + 1} > 0
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and

∥
∥(ω, u, B)(t)

∥
∥

H2 ,
(∫ t

0

∥
∥∇(u, B)(τ )

∥
∥2

H2 dτ

) 1
2 ≤√

C1
∥
∥(ω0, u0, B0)

∥
∥

H2 ,

where C1 is a positive constant.

Proof The statement can be easily obtained by an iterative method and a fixed point the-
orem; we refer to [6, 35] for examples. �

Proposition 3.2 (A priori estimates) Suppose that system (2.5) has a solution (ω, u, B) ∈
�(0, T) with constant T > 0. Then there exists a sufficiently small constant ε0 > 0 such that
if

sup
0≤t≤T

∥
∥(ω, u, B)(t)

∥
∥

H2 ≤ ε0, (3.2)

then for all t ∈ [0, T], we have that

∥
∥(ω, u, B)(t)

∥
∥

H2 +
∫ t

0

(∥
∥∇ω(τ )

∥
∥2

H1 +
∥
∥∇(u, B)(τ )

∥
∥2

H2
)

dτ ≤ C2
∥
∥(ω0, u0, B0)(t)

∥
∥2

H2 , (3.3)

where C2 is a positive constant independent of T .

Proof The proof of the proposition will be given in Sect. 3.2. �

According to Propositions 3.1–3.2, we can derive the following theorem, which implies
the global existence of unique solutions.

Theorem 3.1 (Global existence) Assume that (ω0, u0, B0) ∈ H2(R3). Then there exists a
positive constant ε such that if, additionally,

C0 < min{ε/
√

C1, ε/
√

C1C2} < ∞, (3.4)

then the initial-value problem (2.5) admits a unique solution (ω, u, B), which satisfies the
following estimate for all t > 0:

∥
∥(ω, u, B)(t)

∥
∥

H2 +
∫ t

0

(∥
∥∇ω(τ )

∥
∥2

H1 +
∥
∥∇(u, B)(τ )

∥
∥2

H2
)

dτ ≤ C2C
2
0, (3.5)

where C0 := ‖(ω0, u0, B0)‖H2 .

Proof Since Theorem 3.1 can be deduced from Propositions 3.1–3.2 by a classical method,
we omit the trivial. We refer the interested readers to [35, 38]. �

Remark 3.1 By the Sobolev imbedding inequality we have

1
2

≤ ρ + 1 ≤ 3
2

.
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Therefore, under the assumptions in Proposition 3.2, we obtain, for k ≥ 1,

∣
∣(g1, g2, h1)(ω)

∣
∣≤ C|ω| (3.6)

and

∣
∣
(
g(k)

1 , g(k)
2 , h(k)

1
)
(ω)
∣
∣≤ C, (3.7)

where C is a positive constant.

3.2 Proof of Proposition 3.2
In this section, we complete the proof of Proposition 3.2. The key step is the energy method
used to derive the estimates of the both lower- and highest-order derivatives of the solu-
tion (ω, u, B) for the transformed Cauchy problem (2.5).

Lemma 3.1 We have

d
dt

FL(t) +
γ1

4
‖∇ω‖2

L2 +
1
2
‖∇u‖2

H1 +
1
2
‖div u‖2

H1 +
1
2
‖∇B‖2

H1 ≤ 0, (3.8)

where

FL(t) :=
1
2
(‖ω‖2

H1 + ‖u‖2
H1 + ‖B‖2

H1
)

+ γ1

∫

R3
∇ω · u dx, (3.9)

and γ1 < 1
4 is a positive constant.

Proof Multiplying ∇k(2.5)1, ∇k(2.5)2, and ∇k(2.5)3 by ∇kω, ∇ku, and ∇kB, respectively,
and integrating over R3 by parts, we have

1
2

d
dt
(∥
∥∇kω

∥
∥2

L2 +
∥
∥∇ku

∥
∥2

L2 +
∥
∥∇kB

∥
∥2

L2
)

+ (μ + ν)
∥
∥∇k div u

∥
∥2

L2 + μ
∥
∥∇k∇u

∥
∥2

L2 +
∥
∥∇k∇B

∥
∥2

L2

=
〈∇kω,∇kH1

〉
+
〈∇ku,∇kH2

〉
+
〈∇kB,∇kH3

〉
. (3.10)

By 〈∇(2.5)1, u〉 + 〈(2.5)2,∇ω〉 we get

d
dt

∫

R3
∇ω · u dx + ‖∇ω‖2

L2

= ‖div u‖2
L2 + μ

∫

R3
∇ω · �u dx + (μ + ν)

∫

R3
∇ω · ∇ div u dx

+
∫

R3
∇H1 · u dx +

∫

R3
H2 · ∇ω dx. (3.11)

Then using Young’s inequality, we get the following inequalities for some fixed constant
γ1:

γ1μ

∫

R3
∇ω · �u dx ≤ γ1

4
‖∇ω‖2

L2 + γ1μ
2‖�u‖2

L2 (3.12)
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and

γ1(μ + ν)
∫

R3
∇ω · ∇ div u dx ≤ γ1

4
‖∇ω‖2

L2 + γ1(μ + ν)2‖∇ div u‖2
L2 . (3.13)

Summing up the two identities γ1 × (3.11) and
∑

0≤k≤1 (3.10) and then using (3.12)–
(3.13), we arrive at

1
2

d
dt

{

‖ω‖2
H1 + ‖u‖2

H1 + ‖B‖2
H1 + 2γ1

∫

R3
∇ω · u dx

}

+
γ1

2
‖∇ω‖2

L2 + μ‖∇u‖2
H1 + (μ + ν)‖div u‖2

H1 + ‖∇B‖2
H1

≤ γ1μ
2‖�u‖2

L2 + γ1(μ + ν)2‖∇ div u‖2
L2 + γ1‖div u‖2

L2 +
∫

R3
ω ·H1 dx

+
∫

R3
∇ω · ∇H1 dx +

∫

R3
u ·H2 dx +

∫

R3
∇u · ∇H2 dx +

∫

R3
B ·H3 dx

+
∫

R3
∇B · ∇H3 dx + γ1

∫

R3
u · ∇H1 dx + γ1

∫

R3
∇ω ·H2 dx

:= γ1μ
2‖�u‖2

L2 + γ1(μ + ν)2‖∇ div u‖2
L2 + γ1‖div u‖2

L2 +
8∑

i=1

Ki. (3.14)

The nonlinear terms Ki (1 ≤ i ≤ 8) on the right-hand side of (3.14) can be bounded as
follows. Using Hölder’s inequality, Young’s inequality, Lemmas A.1–A.2, integration by
parts, and (3.2), we get

K1 = –
∫

R3
ω · div(ωu) dx

≤ C‖ω‖L6
∥
∥∇(ωu)

∥
∥

L
6
5

≤ C‖ω‖L6
(‖∇ω‖L2‖u‖L3 + ‖ω‖L3‖∇u‖L2

)

≤ Cε0
∥
∥∇(ω, u)

∥
∥2

L2 (3.15)

and

K2 = –
∫

R3
∇ω · ∇ div(ωu) dx

≤ C
∥
∥∇2ω

∥
∥

L2

∥
∥∇(ωu)

∥
∥

L2

≤ C
∥
∥∇2ω

∥
∥

L2
(‖∇ω‖L2‖u‖L∞ + ‖∇u‖L2‖ω‖L∞

)

≤ Cε0
(∥
∥∇2ω

∥
∥2

L2 +
∥
∥∇(u,ω)

∥
∥2

L2
)
. (3.16)

Then, thanks to Hölder’s inequality, Young’s inequality, (3.6)–(3.7), assumption (3.2),
and the definition of H2, we obtain that

K3 =
∫

R3
u · (–u · ∇u – h1(ω)∇ω

)
dx

+
∫

R3
g1(ω)u · (B · ∇B – B · ∇TB

)
dx
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–
∫

R3
g2(ω)u · (μ�u + (μ + ν)∇ div u

)
dx

≤ C‖u‖L6
(‖u‖L3‖∇u‖L2 +

∥
∥h1(ω)

∥
∥

L3‖∇ω‖L2
)

+ C‖u‖L6
(∥
∥g1(ω)

∥
∥

L3‖B‖L∞‖∇B‖L2
)

+ C‖u‖L6
(∥
∥g2(ω)

∥
∥

L3

∥
∥∇2u

∥
∥

L2
)

≤ Cε0
(∥
∥∇(ω, u, B)

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2
)

(3.17)

and

K4 =
∫

R3
∇u · ∇(–u · ∇u – h1(ω)∇ω

)
dx

+
∫

R3
∇u · ∇(g1(ω)

(
B · ∇B – B · ∇TB

))
dx

–
∫

R3
∇u · ∇(g2(ω)

(
μ�u + (μ + ν)∇ div u

))
dx

≤ C
∥
∥∇2u

∥
∥

L2
(‖∇u‖L2‖u‖L∞ +

∥
∥h1(ω)

∥
∥

L∞‖∇ω‖L2
)

+ C
∥
∥∇2u

∥
∥

L2
(∥
∥g1(ω)

∥
∥

L∞‖B‖L∞‖∇B‖L2
)

+ C
∥
∥∇2u

∥
∥

L2
(∥
∥g2(ω)

∥
∥

L∞
∥
∥∇2u

∥
∥

L2
)

≤ Cε0
(∥
∥∇(ω, u, B)

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2
)
. (3.18)

For the term K5, integrating by parts and using Hölder’s inequality and Sobolev inequal-
ities, we first obtain the estimate

∫

R3
– curl

[
g1(ω)(B · ∇B)

]
B dx

= –
∫

R3
g1(ω)(B · ∇B) curl B dx

≤ ‖∇B‖L2‖B‖L∞
∥
∥g1(ω)

∥
∥

L∞‖ curl B‖L2

≤ Cε0‖∇B‖2
L2 .

Hence from the above we get

K5 =
∫

R3
B · ((B · ∇)u – (u · ∇)B – B div u

)
dx

–
∫

R3
curl

[
g1(ω)(B · ∇B) –

(
B · ∇T B

)]
B dx

≤ C‖B‖L6
(‖B‖L3‖∇u‖L2 + ‖u‖L3‖∇B‖L2

)
+ Cε0‖∇B‖2

L2

≤ Cε0
∥
∥∇(u, B)

∥
∥2

L2 . (3.19)

Similarly to (3.19), we deduce

K6 =
∫

R3
∇B · ∇((B · ∇)u – (u · ∇)B – B div u

)
dx
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–
∫

R3
∇ curl

[
(g1(ω)

(
B · ∇B – B · ∇T B

)]∇B dx

≤ C
∥
∥∇2B

∥
∥

L2
(‖B‖L∞‖∇u‖L2 + ‖u‖L∞‖∇B‖L2

)
+ Cε0

∥
∥∇2B

∥
∥2

L2

≤ Cε0
(∥
∥∇(u, B)

∥
∥2

L2 + ‖∇2B|2L2
)
. (3.20)

For the last two terms, using integration by parts, Lemmas A.1–A.2, and Hölder’s in-
equality, we find that

K7 = –γ1

∫

R3
div u ·H1 dx

≤ Cγ1‖div u‖L2‖H1‖L2

≤ Cγ1‖∇u‖L2
(‖∇u‖L2‖ω‖L∞ + ‖u‖L∞‖∇ω‖L2

)

≤ Cγ1ε0
∥
∥∇(ω, u)

∥
∥2

L2 (3.21)

and

K8 = Cγ1‖∇ω‖L2‖H2‖L2

≤ Cγ1‖∇ω‖L2
(‖u‖L∞‖∇u‖L2 +

∥
∥h1(ω)

∥
∥

L∞‖∇ω‖L2
)

+ Cγ1‖∇ω‖L2
(∥
∥g1(ω)

∥
∥

L∞‖B‖L∞‖∇B‖L2
)

+ Cγ1‖∇ω‖L2
(∥
∥g2(ω)

∥
∥

L∞
∥
∥∇2u

∥
∥

L2
)

≤ Cγ1ε0
(∥
∥∇(ω, u, B)

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2
)
. (3.22)

Putting (3.15)–(3.16) and (3.17)–(3.22) into (3.14) yields

1
2

d
dt

{

‖ω‖2
H1 + ‖u‖2

H1 + ‖B‖2
H1 + 2γ1

∫

R3
∇ω · u dx

}

+
γ1

2
‖∇ω‖2

L2 + μ‖∇u‖2
H1 + (μ + ν)‖div u‖2

H1 + ‖∇B‖2
H1

≤ γ1μ
2‖�u‖2

L2 + γ1(μ + ν)2‖∇ div u‖2
L2 + γ1‖div u‖2

L2

+ C(1 + γ1)ε0
(∥
∥∇(ω, u, B)

∥
∥2

L2 +
∥
∥∇2(ω, u, B)

∥
∥2

L2
)
. (3.23)

Taking a fixed constant 0 < γ1 < 1
4 , we get the desired estimate from (3.23). The proof of

the lemma is complete. �

Now we exploit the energy method to establish an estimate for the highest-order deriva-
tives of the solution (ω, u, B).

Lemma 3.2 We have

d
dt

FH (t) +
γ2

4
‖∇∇ω‖2

L2 +
μ + ν

2
∥
∥∇2 div u

∥
∥2

L2 +
μ

2
∥
∥∇3u

∥
∥2

L2 +
1
2
∥
∥∇3B

∥
∥2

L2

≤ 1
4
‖∇ div u‖2

L2 + Cε0
∥
∥∇2(u, B)

∥
∥2

L2 , (3.24)
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where

FH (t) :=
1
2
(∥
∥∇2ω

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2 +
∥
∥∇2B

∥
∥2

L2
)

+ γ2

∫

3
∇∇ω · ∇u dx, (3.25)

and γ2 ≤ { 1
4 , 1

8μ
, 1

8(μ+ν) } is a given positive constant.

Proof Multiplying ∇2(2.5)1–∇2(2.5)3 by ∇2ω, ∇2u, ∇2B, respectively, and integrating the
three resulting identities over R3, we get

1
2

d
dt
{∥
∥∇2ω

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2 +
∥
∥∇2B

∥
∥2

L2
}

+ μ
∥
∥∇2∇u

∥
∥2

L2 + (μ + ν)
∥
∥∇2 div u

∥
∥2

L2 +
∥
∥∇2∇B

∥
∥2

L2

=
〈∇2ω,∇2H1

〉
+
〈∇2u,∇2H2

〉
+
〈∇2B,∇2H3

〉
. (3.26)

Multiplying ∇(2.5)2 by ∇∇ω and then exploiting ∇2(2.5)1 and Young’s inequality, we
deduce that

d
dt

∫

R3
∇∇ω · ∇u dx +

∫

R3
|∇∇ω|2 dx

= μ

∫

R3
∇∇ω · ∇�u dx + (μ + ν)

∫

R3
∇∇ω · ∇∇ div u dx

+
∫

R3
|∇ div u|2 dx + 〈∇u,∇∇H1〉 + 〈∇∇ω,∇H2〉

≤ 1
2
‖∇∇ω‖2

L2 + μ2‖∇�u‖2
L2 + (μ + ν)2‖∇∇ div u‖2

L2

+ ‖∇ div u‖2
L2 + 〈∇u,∇∇H1〉 + 〈∇∇ω,∇H2〉. (3.27)

Summing up (3.26) and γ2 × (3.27) with fixed constant γ2, we have

1
2

d
dt

{
∥
∥∇2ω

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2 +
∥
∥∇2B

∥
∥2

L2 + 2γ2

∫

R3
∇∇ω · ∇u dx

}

+
γ2

2
‖∇∇ω‖2

L2 + (μ + ν)
∥
∥∇2 div u

∥
∥2

L2 + μ
∥
∥∇2∇u

∥
∥2

L2 +
∥
∥∇2∇B

∥
∥2

L2

≤ γ2μ
2‖∇�u‖2

L2 + γ2(μ + ν)2‖∇∇ div u‖2
L2 + γ2‖∇ div u‖2

L2

+
〈∇2ω,∇2H1

〉
+
〈∇2u,∇2H2

〉
+
〈∇2B,∇2H3

〉

+ 〈∇u,∇∇H1〉 + 〈∇∇ω,∇H2〉. (3.28)

Now we estimate the nonlinear terms on the right-hand side of (3.28). Thanks to integra-
tion by parts, Lemmas A.1–A.2, Lemma A.5, Hölder’s inequality, and Young’s inequality,
we get

〈∇2ω,∇2H1
〉≤ C

∥
∥∇2ω

∥
∥

L2
(‖∇2ω‖L2‖div u‖L∞ +

∥
∥∇2 div u

∥
∥

L2‖ω‖L∞
)

+ C
∥
∥∇2ω

∥
∥2

L2‖div u‖L∞ + C
∥
∥∇2ω

∥
∥

L2

∥
∥∇2(u · ∇ω) – ∇2∇ω · u

∥
∥

L2

≤ C
∥
∥∇2ω

∥
∥2

L2‖div u‖L∞ + C
∥
∥∇2ω

∥
∥

L2‖ω‖H2
∥
∥∇2 div u

∥
∥

L2
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+ C
∥
∥∇2ω

∥
∥

L2
(∥
∥∇2u

∥
∥

L6

∥
∥∇2ω

∥
∥

L3 + ‖∇u‖L∞
∥
∥∇2ω

∥
∥

L2
)

≤ Cε0
(|∇3u‖2

L2 + ‖∇2(ω, u)‖2
L2
)
. (3.29)

Using Young’s inequality, Hölder’s inequality, Lemma A.5, integration by parts, and
(3.6)–(3.7), we get that

〈∇2u,∇2H2
〉≤ C

(∣
∣
〈∇3u,∇(u · ∇u)

〉∣
∣ +
∣
∣
〈∇3u,∇(h1(ω)∇ω

)〉∣
∣
)

+ C
(∣
∣
〈∇3u,∇(g1(ω)B · ∇B

)〉∣
∣ +
∣
∣
〈∇3u,∇(g1(ω)B · ∇T B

)〉∣
∣
)

+ C
(∣
∣
〈∇3u,∇(g2(ω)�u

)〉∣
∣ +
∣
∣
〈∇3u,∇(g2(ω)∇ div u

)〉∣
∣
)

≤ C
∥
∥∇3u

∥
∥

L2
(‖∇u‖L6‖∇u‖L3 + ‖u‖L∞

∥
∥∇2u

∥
∥

L2
)

+ C
∥
∥∇3u

∥
∥

L2
(∥
∥h1(ω)

∥
∥

L∞
∥
∥∇2ω

∥
∥

L2 +
∥
∥∇h1(ω)

∥
∥

L6‖∇ω‖L3
)

+ C
∥
∥∇3u

∥
∥

L2
(∥
∥g1(ω)

∥
∥

L∞
∥
∥∇(B · ∇B)

∥
∥

L2 +
∥
∥∇g1(ω)

∥
∥

L6‖B · ∇B‖L3
)

+ C
∥
∥∇3u

∥
∥

L2
(∥
∥g2(ω)

∥
∥

L∞
∥
∥∇3u

∥
∥

L2 +
∥
∥∇g2(ω)

∥
∥

L∞
∥
∥∇2u

∥
∥

L2
)

≤ Cε0
(∥
∥∇2(ω, u, B)

∥
∥2

L2 +
∥
∥∇3u

∥
∥2

L2
)
. (3.30)

By similar estimates we easily get

〈∇2B,∇2H3
〉≤ C

∣
∣
〈∇3B,∇(B · ∇)u

〉∣
∣ + C

∣
∣
〈∇3B,∇(u · ∇)B

〉∣
∣

+ C
∣
∣
〈∇3B,∇(B div u)

〉∣
∣ + C

∣
∣
〈∇2B,∇2 curl

[
g1(ω)

(
B · ∇B – B · ∇T B

)]〉∣
∣

≤ C
∥
∥∇3B

∥
∥

L2
(‖∇B‖L6‖∇u‖L3 + ‖B‖L∞

∥
∥∇2u

∥
∥

L2
)

+ C
∥
∥∇3B

∥
∥

L2
(‖∇u‖L6‖∇B‖L3 + ‖u‖L∞

∥
∥∇2B

∥
∥

L2
)

+ Cε0
(∥
∥∇3B

∥
∥2

L2 +
∥
∥∇2ω

∥
∥2

L2
)

≤ Cε0
(∥
∥∇3B

∥
∥2

L2 +
∥
∥∇2(u, B,ω)

∥
∥2

L2
)
, (3.31)

where
∫

R3
–∇2 curl

[
g1(ω)(B · ∇)B

]∇2B dx

= –
∫

R3
∇2[g1(ω)(B · ∇)B

]∇2 curl B dx

≤ (∥
∥∇2g1(ω)

∥
∥

L2‖B‖L∞
∥
∥∇2B

∥
∥

L∞ +
∥
∥∇g1(ω)

∥
∥

L6‖∇B‖L6‖∇B‖L6
)∥
∥∇2 curl B

∥
∥

L2

+
(∥
∥∇g1(ω)

∥
∥

L6‖B‖L6
∥
∥∇2B

∥
∥

L6 +
∥
∥g1(ω)

∥
∥

L∞‖∇B‖L3
∥
∥∇2B

∥
∥

L6
)∥
∥∇2 curl B

∥
∥

L2

+
∥
∥g1(ω)

∥
∥

L∞‖B‖L∞
∥
∥∇3B

∥
∥

L2

∥
∥∇2 curl B

∥
∥

L2

≤ Cε0
(∥
∥∇3B

∥
∥2

L2 +
∥
∥∇2ω

∥
∥2

L2
)

and

〈∇u,∇∇H1〉 ≤ –γ2

∫

3
∇ div u·∇H1 dx

≤ Cγ2‖∇ div u‖L2‖∇H1‖L2
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≤ Cγ2
∥
∥∇2u

∥
∥

L2
(∥
∥∇2u

∥
∥

L2‖ω‖L∞ +
∥
∥∇2ω

∥
∥

L2‖u‖L∞
)

≤ Cγ2ε0
∥
∥∇2(ω, u)

∥
∥2

L2 . (3.32)

For the last term on the right-hand side of (3.28), using Hölder’s inequality, integration
by parts, Young’s inequality, Lemma A.5, and (3.6)–(3.7), we obtain

〈∇∇ω,∇H2〉 ≤ Cγ2‖∇∇ω‖L2‖∇H2‖L2

≤ Cγ2
∥
∥∇2ω

∥
∥

L2
(‖u‖L∞

∥
∥∇2u

∥
∥

L2 + ‖∇u‖L6‖∇u‖L3
)

+ Cγ2
∥
∥∇2ω

∥
∥

L2
(∥
∥h1(ω)

∥
∥

L∞
∥
∥∇2ω

∥
∥

L3 +
∥
∥∇h1(ω)

∥
∥

L∞‖∇ω‖L2
)

+ Cγ2
∥
∥∇2ω

∥
∥

L2

∥
∥g1(ω)

∥
∥

L∞
(‖B‖L∞

∥
∥∇2B

∥
∥

L2 + ‖∇B‖L6‖∇B‖L3
)

+ Cγ2
∥
∥∇2ω

∥
∥

L2
(∥
∥g2(ω)

∥
∥

L∞
∥
∥∇3u

∥
∥

L2 +
∥
∥∇g2(ω)

∥
∥

L3

∥
∥∇2u

∥
∥

L6
)

≤ Cγ2ε0
(∥
∥∇2(ω, u, B)

∥
∥2

L2 +
∥
∥∇3u

∥
∥2

L2
)
. (3.33)

Putting (3.29)–(3.33) into (3.28), we derive that

1
2

d
dt

{
∥
∥∇2ω

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2 +
∥
∥∇2B

∥
∥2

L2 + 2γ2

∫

R3
∇∇ω · ∇u dx

}

+
γ2

4
‖∇∇ω‖2

L2 +
(μ + ν)

2
∥
∥∇2 div u

∥
∥2

L2 +
μ

2
∥
∥∇2∇u

∥
∥2

L2 +
1
2
∥
∥∇2∇B

∥
∥2

L2

≤ 1
4
‖∇ div u‖2

L2 + Cε0
∥
∥∇2(u, B)

∥
∥2

L2 , (3.34)

where 0 < γ2 ≤ { 1
4 , 1

8μ
, 1

8(μ+ν) } is a fixed positive constant. Consequently, we complete the
proof of (3.24). �

With Lemmas 3.1–3.2 in hand, it is easy to further obtain Proposition 3.2. As a matter
of fact, keeping in mind the definitions of FL and FH and Young’s inequality, we have

1
C4

∥
∥(ω, u, B)

∥
∥2

H2 ≤FL(t) + FH (t) ≤ C4
∥
∥(ω, u, B)

∥
∥2

H2 , (3.35)

which yields

FL(t) + FH (t) ≈ ∥
∥(ω, u, B)

∥
∥2

H2 , (3.36)

where C4 > 0 is a constant. Thus integrating the two inequalities in the two above lemmas
over [0, t], we obtain (3.3) for the smallness of ε0. This completes the proof of Proposi-
tion 3.2.

4 Decay-in-time rates of the solution
In this section, we derive the decay-in-time rates for the solution in the previous section.
We divide the proof into two subsections.

4.1 Cancelation of the low-frequency part
Inspired by the observation of canceling the low-frequency part of the solution in [45], we
have the following conclusion.
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Lemma 4.1 We have

∥
∥∇2(ω, u, B)

∥
∥2

L2 ≤ Ce–C3t∥∥∇2(ω0, u0, B0)
∥
∥2

L2

+ C
∫ t

0
e–C3(t–τ )∥∥∇2(ωL, uL, BL)(τ )

∥
∥2

L2 dτ , (4.1)

where C > 0 is a constant.

Proof Multiplying ∇(2.5)2 by ∇∇ωL in L2 and then integration by parts and (2.5)1, we get

d
dt

∫

R3
∇∇ωL · ∇u dx

= μ

∫

R3
∇∇ωL · ∇�u dx + (μ + ν)

∫

R3
∇∇ωL · ∇∇ div u dx

+
∫

R3

(∇ div u · ∇ div uL – ∇∇ωL∇∇ω
)

dx

–
∫

R3

(∇HL
1 · ∇ div u – ∇∇ωL · ∇H2

)
dx. (4.2)

Similarly to (3.12)–(3.13), using Young’s inequality, we find that

–
d
dt

∫

R3
∇∇ωL · ∇u dx

≤ μ

2
‖∇�u‖2

L2 +
(μ + ν)

2
‖∇∇ div u‖2

L2 + ‖∇ div u‖2
L2

+
1
2
∥
∥∇ div uL∥∥2

L2 +
(

2 +
1 + 2μ + ν

2

)
∥
∥∇∇ωL∥∥2

L2

+
1
8
‖∇∇ω‖2

L2 +
1
2
∥
∥∇HL

1
∥
∥2

L2 +
1
2
‖∇H2‖2

L2 . (4.3)

By the Plancherel theorem, Lemma A.2, and (3.33) we obtain

∥
∥∇HL

1
∥
∥2

L2 + ‖∇H2‖2
L2 ≤ Cε0

(∥
∥∇2(ω, u, B)

∥
∥2

L2 +
∥
∥∇3u

∥
∥2

L2
)
. (4.4)

Adding up γ2 × (4.3) and (3.24) in Lemma 3.2 and then using (4.4) and Lemma A.3, we get

d
dt

(

FH (t) – γ2

∫

R3
∇∇ωL · ∇u dx

)

+
γ2

8
∥
∥∇2ω

∥
∥2

L2

+
μ

4
∥
∥∇2uH∥∥2

L2 +
μ

4
∥
∥∇2∇u

∥
∥2

L2 +
μ + ν

2
∥
∥∇2 div u

∥
∥2

L2

+
1
4

R2
0
∥
∥∇2BH∥∥2

L2 +
1
4
∥
∥∇3B

∥
∥2

L2

≤
(

1
4

+ γ2

)

‖∇ div u‖2
L2 +

γ2μ

2
‖∇�u‖2

L2 +
γ2(μ + ν)

2
‖∇∇ div u‖2

L2

+ Cγ2
(∥
∥∇∇ωL∥∥2

L2 +
∥
∥∇ div uL∥∥2

L2
)

+ Cε0(1 + γ2)
∥
∥∇2(ω, u, B)

∥
∥2

L2 . (4.5)
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In addition, using decomposition (1.5), we further put μ

4 R2
0‖∇2uL‖2

L2 + 1
4 R2

0‖∇2BL‖2
L2 on

the both sides of (4.5) to get

d
dt

(

FH (t) – γ2

∫

R3
∇∇ωL · ∇u dx

)

+
γ2

8
∥
∥∇2ω

∥
∥2

L2 +
μ

8
R2

0
∥
∥∇2u

∥
∥2

L2

+
μ

4
∥
∥∇2∇u

∥
∥2

L2 +
μ + ν

2
∥
∥∇2 div u

∥
∥2

L2 +
1
4

R2
0
∥
∥∇2B

∥
∥2

L2 +
1
4
∥
∥∇3B

∥
∥2

L2

≤
(

1
4

+ γ2

)

‖∇ div u‖2
L2 +

γ2μ

2
‖∇�u‖2

L2 +
γ2(μ + ν)

2
‖∇∇ div u‖2

L2

+ Cγ2
∥
∥∇∇ωL∥∥2

L2 +
(

1
4

R2
0 + Cγ2

)
∥
∥∇2uL∥∥2

L2

+
1
4

R2
0
∥
∥∇2BL∥∥2

L2 + Cε0(1 + γ2)
∥
∥∇2(ω, u, B)

∥
∥2

L2 . (4.6)

Moreover, noting that γ2 < 1
4 and R2

0 > 8
μ

and using the smallness of ε0, we obviously get

d
dt

(

FH (t) – γ2

∫

R3
∇∇ωL · ∇u dx

)

+
γ2

16
∥
∥∇2ω

∥
∥2

L2 +
μ

16
R2

0
∥
∥∇2u

∥
∥2

L2

+
μ

8
∥
∥∇3u

∥
∥2

L2 +
μ + ν

8
∥
∥∇2 div u

∥
∥2

L2 +
1

16
R2

0
∥
∥∇2B

∥
∥2

L2 +
1
4
∥
∥∇3B

∥
∥2

L2

≤ C
∥
∥∇2(ωL, uL, BL)∥∥2

L2 . (4.7)

Recalling the frequency decomposition (1.5), we have

FH (t) – γ2

∫

R3
∇∇ωL · ∇u dx

=
1
2
(∥
∥∇2ω

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2 +
∥
∥∇2B

∥
∥2

L2
)

+ γ2

∫

R3
∇∇ωH · ∇u dx. (4.8)

For the term of γ2
∫

R3 ∇∇ωH · ∇u dx, exploiting Lemma A.3, Young’s inequality, and inte-
gration by parts, we deduce that

–γ2

∫

R3
∇∇ωH · ∇u dx = γ2

∫

R3
∇ωH · ∇2u dx

≤ γ2

2
∥
∥∇ωH∥∥2

L2 +
γ2

2
‖∇ div u‖2

L2

≤ γ2

2
‖∇ω‖2

L2 +
γ2

2
∥
∥∇2u

∥
∥2

L2 , (4.9)

where we have used the fact that 0 < γ2 < 1
8 .

Now combining (4.8) with (4.9) yields

FH (t) – γ2

∫

R3
∇∇ωL · ∇u dx ≈ ∥

∥∇2(ω, u, B)
∥
∥2

L2 . (4.10)
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Thanks (4.10), we derive from (4.7) that

d
dt

(

FH (t) – γ2

∫

R3
∇∇ωL · ∇u dx

)

+ C3

(

FH(t) – γ2

∫

R3
∇∇ωL · ∇u dx

)

≤ C
∥
∥∇2(ωL, uL, BL)∥∥2

L2 . (4.11)

Consequently, using Gronwall’s inequality, we conclude that

FH (t) – γ2

∫

R3
∇∇ωL · ∇u dx

≤ Ce–C3t
(

FH (0) – γ2

∫

3
∇∇ωL

0 · ∇u0 dx
)

+ C
∫ t

0
e–C3(t–τ )∥∥∇2(ωL, uL, BL)(τ )

∥
∥2

L2 dτ . (4.12)

This completes the proof of the lemma. �

4.2 Decay estimate of the low-frequency part
We will give an estimate of the low-frequency part of the solution by analyzing the struc-
ture of the semigroup of the Cauchy problem (2.5). To this end, by the Hausdorff decom-
position in [2] we first adopt the following notations:

m = �–1 div u, M = �–1 curl u,

where (curl u)ij = ∂jui – ∂iuj. Then decoupling the Cauchy problem (2.5), we obtain the
following two systems:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ωt + �m = H1,

mt – (2μ + ν)�m – �ω = I2,

Bt – �B = H3,

(ω, m, B)|t=0 = (ω0, m0, B0)(x),

(4.13)

and

⎧
⎨

⎩

Mt – μ�M = �–1 curlH2,

M(0, x) = M0(x),
(4.14)

where I2 := �–1 divH2, m0 := �–1 div u0, and M0 := �–1 curl u0. Then we can directly ob-
tain the following lemma by a simple calculation; see [45, 54] for examples.

Lemma 4.2 Let B(t, x) and M(t, x) be the solutions to linearized equations of (4.13)3 and
(4.14), respectively. Then, for all |ξ |2 ≥ 0, we have that

∣
∣B̂(t, ξ )

∣
∣2 ≤ Ce–|ξ |2t∣∣B̂(0, ξ )

∣
∣2 (4.15)
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and

∣
∣M̂(t, ξ )

∣
∣2 ≤ Ce–μ|ξ |2t∣∣M̂(0, ξ )

∣
∣2, (4.16)

where C > 0 is a constant, and B̂ and M̂ are the Fourier transforms of B and M, respectively.

From the linearized system (4.13)1–(4.13)2, by the Fourier transform we can easily ob-
tain the following system:

⎧
⎨

⎩

ω̂t = –|ξ |m̂,

m̂t = |ξ |ω̂ – (2μ + ν)|ξ |2m̂,
(4.17)

which can be rewritten as

Ût = Â
(|ξ |)Û, (4.18)

where Û := (ω̂, m̂) and

Â
(|ξ |) :=

[
0 –|ξ |
|ξ | –(2μ + ν)|ξ |2

]

. (4.19)

According to the theory of ODEs, there exists a solution of system (4.17), which can be
expressed by

Û = etÂ(|ξ |)Û(0). (4.20)

Taking the inverse Fourier transform on the both sides of (4.20), we obtain the solution

U = A(t)U(0), (4.21)

where A(t)U := F–1(etÂ(|ξ |)Û(ξ )).
We easily compute the characteristic polynomial of the matrix Â(|ξ |):

det
(
Â
(|ξ |) – λI

)
=

∣
∣
∣
∣
∣

–λ –|ξ |
|ξ | –(2μ + ν)|ξ |2 – λ

∣
∣
∣
∣
∣

= λ2 + (2μ + ν)|ξ |2λ + |ξ |2; (4.22)

The eigenvalues λi(ξ ) (i = 1, 2) of Â(|ξ |) can be calculated by (4.22) as follows:

⎧
⎨

⎩

λ1(|ξ |) = –(μ + 1
2ν)|ξ |2 + i|ξ |

√
(2μ+ν)2

4 |ξ |2 – 1,

λ2(|ξ |) = –(μ + 1
2ν)|ξ |2 – i|ξ |

√
(2μ+ν)2

4 |ξ |2 – 1.
(4.23)

Based on the semigroup decomposition theory proposed in [32], we get

etÂ(|ξ |) = eλ1tP1(ξ ) + eλ2tP2(ξ ), (4.24)
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where

Pi(ξ ) =
∏

j �=i

A(|ξ |) – λjI
λi – λj

(i, j = 1, 2) (4.25)

is a set of projection operators.
Then we get asymptotic expansions of λi(ξ ) (i = 1, 2), Pi(ξ ) (i = 1, 2), and etÂ(|ξ |) in the

case of different frequency situations. More precisely, we have the following:

Lemma 4.3 For any |ξ | ≤ 1, λi(ξ ) (i = 1, 2) has the Taylor series expansion

⎧
⎨

⎩

λ1 = –b|ξ |2 + i(|ξ | + O(|ξ |3)),

λ2 = –b|ξ |2 – i(|ξ | + O(|ξ |3)),
(4.26)

where b is a constant.

Proof We refer to [29] for the proof. �

According to the lemma, we can obtain a time-decay estimate of the low-frequency part
of the solution of the linear system (4.17).

Lemma 4.4 For 1 ≤ p ≤ 2, we have

∥
∥∇k(ωL, mL)(t)

∥
∥

L2 ≤ C(1 + t)– 3
2 ( 1

p – 1
2 )– k

2
∥
∥(ω0, m0)

∥
∥

Lp (4.27)

for any integer k ≥ 0.

Proof Thanks to expressions (4.23)–(4.24) and the Fourier transform, we can obtain the
following specific expression of the Green matrix etA:

D̂
(|ξ |) = etÂ(ξ ) =

(
f1(λ1,λ2) –|ξ |f2(λ1,λ2)

|ξ |f2(λ1,λ2) f1(λ1,λ2) – 2b|ξ |2f2(λ1,λ2)

)

, (4.28)

where
⎧
⎨

⎩

f1(λ1,λ2) = λ1eλ2t–λ2eλ1t

λ1–λ2
,

f2(λ1,λ2) = eλ1t–eλ2t

λ1–λ2
.

(4.29)

For any |ξ | ≤ R0, by simple calculation we have

∣
∣f1(λ1,λ2)

∣
∣ = eλ2t +

λ2

λ1 – λ2

(
eλ2t – eλ1t)

= e–b|ξ |2t cos
((|ξ | + O

(|ξ |3))t)

– e–b|ξ |2t
[(

–b|ξ |2
|ξ | + O(|ξ |3)

)

sin
((|ξ | + O

(|ξ |3))t)
]

� e–b|ξ |2t . (4.30)
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Similarly, we obtain

∣
∣f2(λ1,λ2)

∣
∣ =

eλ1t – eλ2t

λ1 – λ2

=
e–b|ξ |2t

|ξ | + O(|ξ |3)
sin
((|ξ | + O

(|ξ |3))t)� |ξ |–1e–b|ξ |2t . (4.31)

From these two estimates we can derive that

∣
∣f1(λ1,λ2) – 2b|ξ |2f2(λ1,λ2)

∣
∣� e–b|ξ |2t . (4.32)

For any |ξ | ≤ 1, we combine (4.20) and (4.30)–(4.32) to get

|ω̂| � |D̂11| · |ω̂0| + |D̂12| · |m̂0|
�
∣
∣f1(λ1,λ2)

∣
∣
∣
∣ω̂0| + |∣∣ξ ∣∣f2(λ1,λ2)

∣
∣|m̂0|

� e–b|ξ |2t(|ω̂0| + |m̂0|
)

(4.33)

and

|m̂| � |D̂21| · |ω̂0| + |D̂22| · |m̂0|
�
∣
∣|ξ |g2(λ1,λ2)

∣
∣|ω̂0| +

∣
∣|ξ |g2(λ1,λ2)

∣
∣|m̂0|

� e–b|ξ |2t(|ω̂0| + |m̂0|
)
. (4.34)

Thanks to the Plancherel theorem, (4.20), (4.33), and (4.34), we obtain

∥
∥∇k(ωL, mL)(t)

∥
∥

L2 =
∥
∥(iξ )k(ω̂L, m̂L

)∥
∥

L2
ξ

=
(∫

R3

∣
∣(iξ )k(ω̂L, m̂L

)
(t, ξ )

∣
∣2 dξ

) 1
2

≤ C
(∫

|ξ |≤R0

|ξ |2k∣∣(ω̂, m̂)(t, ξ )
∣
∣2 dξ

) 1
2

≤ C
(∫

|ξ |≤R0

|ξ |2ke–b|ξ |2t∣∣
(
ω̂L, m̂L

)
(0, ξ )

∣
∣2 dξ

) 1
2

. (4.35)

Applying Hausdorff–Young’s and Hölder’s inequalities to (4.35), we have

∥
∥∇k(ωL, mL)(t)

∥
∥

L2 ≤ C(1 + t)– 3
2 ( 1

2 – 1
q )– k

2
∥
∥(ω̂, m̂)(0, ξ )

∥
∥

Lq
ξ

≤ C(1 + t)– 3
2 ( 1

p – 1
2 )– k

2
∥
∥(ω0, m0)

∥
∥

Lp , (4.36)

which ends the proof of Lemma 4.4. �

Based on Lemmas 4.2 and 4.4, we get the following estimates.
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Proposition 4.1 Let 1 ≤ p ≤ 2. For any integer k ≥ 0, we have

∥
∥∇k(ωL, uL, BL)(t)

∥
∥

L2 ≤ C(1 + t)– 3
2 ( 1

p – 1
2 )– k

2
∥
∥(ω0, m0, B0)

∥
∥

Lp .

Proof Thanks to the two estimates in Lemma 4.2, we can follow the arguments of (4.35)
and (4.36) to get

∥
∥∇kBL(t)

∥
∥

L2 ≤ C(1 + t)– 3
2 ( 1

p – 1
2 )– k

2 ‖B0‖Lp (4.37)

and

∥
∥∇kML(t)

∥
∥

L2 ≤ C(1 + t)– 3
2 ( 1

p – 1
2 )– k

2 ‖M0‖Lp . (4.38)

Recalling that

u = �–1(∇ div u – curl curl u) = –�–1∇m + �–1 curl M,

we have

∥
∥∇kuL(t)

∥
∥

L2 =
∥
∥∇k(mL, ML)(t)

∥
∥

L2 ,

which, together with (4.27) and (4.38), implies that

∥
∥∇kuL(t)

∥
∥

L2 ≤ C(1 + t)– 3
2 ( 1

p – 1
2 )– k

2 ‖u0‖Lp . (4.39)

The combination of (4.27), (4.37), and (4.39) ends the proof of Proposition 4.1. �

4.3 Decay rates for the nonlinear system
Now we are in the position to derive the optimal time-decay rate of the solution of non-
linear system (2.5). Let us redefine

D(t) :=
(
ω(t), u(t), B(t)

)T

and

K =

⎛

⎜
⎝

0 div 0
∇ –μ� – (μ + ν)∇ div 0
0 0 –�

⎞

⎟
⎠ .

In other words, system (2.5) can be expressed as follows:

Dt + KD = H(D) (4.40)

with the initial data

D|t=0 = D(0), (4.41)
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where H(V ) is defined by

H(D) := (H1,H2,H3)T .

Thanks to Duhamel’s principle and the initial data K(0)D(0) of the solution to the lin-
earized system of (2.5), we can express the solution of the ordinary differential equation
as

D(t) = K(0)D(0) +
∫ t

0
K(t – τ )H(D)(τ ) dτ . (4.42)

In addition, thanks to Proposition 4.1, we can obtain the following estimate of the low-
frequency part of the solution to the nonlinear problem.

Lemma 4.5 Suppose that 1 ≤ p ≤ 2. Then for any integer k ≥ 0,

∥
∥∇kDL(t)

∥
∥

L2 ≤ C6(1 + t)–( 3
4 + k

2 )∥∥D(0)
∥
∥

L1

+ C6

∫ t
2

0
(1 + t – τ )–( 3

4 + k
2 )∥∥H(D)(τ )

∥
∥

L1 dτ

≤ C6

∫ t

t
2

(1 + t – τ )– k
2
∥
∥H(D)(τ )

∥
∥

L2 dτ , (4.43)

where C6 > 0 is a constant.

With Lemmas 4.1 and 4.5 in hand, we can further establish the optimal time-decay rate
for the solution.

Lemma 4.6 (Optimal time-decay rates) Under the assumptions in Theorem 1.1, we have

∥
∥∇k(ω, u, B)(t)

∥
∥

L2 ≤ C(1 + t)–( 3
4 + k

2 ), k = 0, 1, 2, (4.44)

for any t ∈ [0,∞).

Proof We introduce the nondecreasing Lyapunov function

R(τ ) := sup
0≤τ≤t

2∑

k=0

(1 + τ )
3
4 + k

2
∥
∥∇k(ω, u, B)(τ )

∥
∥

L2 , (4.45)

where, for 0 ≤ k ≤ 2,

∥
∥∇k(ω, u, B)(τ )

∥
∥

L2 ≤ C7(1 + τ )–( 3
4 + k

2 )R(τ ), 0 ≤ τ ≤ t. (4.46)

Here the constant C7 > 0 is independent of ε0.
From Hölder’s inequality and (4.46) we have

∥
∥H(D)(τ )

∥
∥

L1 �
∥
∥(ω, u, B)

∥
∥

L2

∥
∥∇(ω, u, B)

∥
∥

L2

+ ‖ω‖L2
∥
∥∇2u

∥
∥

L2 + ‖∇u‖2
L2 + ‖∇B‖2

L2
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+ ‖ω‖L2
∥
∥∇2B

∥
∥

L2

� ε0R(t)(1 + τ )– 5
4 . (4.47)

Similarly to (4.47), we obtain

∥
∥H(D)(τ )

∥
∥

L2 �
∥
∥(ω, u, B)

∥
∥

L3

∥
∥∇(ω, u, B)

∥
∥

L6

+ ‖ω‖L∞
∥
∥∇2u

∥
∥

L2 +
∥
∥∇(u, B)

∥
∥

L3 +
∥
∥∇(u, B)

∥
∥

L6

�
∥
∥(ω, u, B)

∥
∥

H1

∥
∥∇2(ω, u, B)

∥
∥

L2 + ‖ω‖H2
∥
∥∇2u

∥
∥

L2

+
∥
∥∇(u, B)

∥
∥

H1 +
∥
∥∇2(u, B)

∥
∥

L2

� ε1–ϑ
0 R1+ϑ (t)(1 + τ )–( 7

4 + 3
4 ϑ), (4.48)

where ϑ ∈ (0, 1
2 ) is a given constant. Thanks to (4.43) and Lemma A.6, we get

∥
∥∇kDL(t)

∥
∥

L2 ≤ C(1 + t)–( 3
4 + k

2 )∥∥D(0)
∥
∥

L1

+ C
∫ t

2

0
(1 + t – τ )–( 3

4 + k
2 )ε0R(τ )(1 + τ )– 5

4 dτ

+ C
∫ t

t
2

(1 + t – τ )– k
2 ε1–ϑ

0 R1+ϑ (τ )(1 + τ )–( 7
4 + 3

4 ϑ) dτ

≤ C(1 + t)–( 3
4 + k

2 )(∥∥D(0)
∥
∥

L1 + ε0R(τ ) + ε1–ϑ
0 R1+ϑ (τ )

)
, (4.49)

where 0 ≤ k ≤ 2. Substituting the above two inequalities into (4.1) yields

∥
∥∇2D(t)

∥
∥2

L2 ≤ Ce–C3t∥∥∇2D(0)
∥
∥2

L2

+ C
(∥
∥D(0)

∥
∥2

L1 + ε2
0R2(t)

)
∫ t

0
e–C3(t–τ )(1 + t)– 7

2 dτ

+ Cε
2–2ϑ1
0 R2+2ϑ (t)

∫ t

0
e–C3(t–τ )(1 + t)– 7

2 dτ . (4.50)

By (4.50) and Lemma A.6 we obtain

∥
∥∇2D(t)

∥
∥2

L2 ≤ C(1 + t)– 7
2
(∥
∥D(0)

∥
∥2

H2∩L1 + ε2
0R2(t) + ε2–2ϑ

0 R2+2ϑ (t)
)
. (4.51)

Using Lemma A.3 and (1.5), we have

∥
∥∇kD(t)

∥
∥2

L2 ≤ C
∥
∥∇kDL(t)

∥
∥2

L2 + C
∥
∥∇kDH (t)

∥
∥2

L2

≤ C
∥
∥∇kDL∥∥2

L2 + C
∥
∥∇2D

∥
∥2

L2 . (4.52)

From the above calculation we deduce that for 0 ≤ k ≤ 2,

∥
∥∇kD(t)

∥
∥2

L2 ≤ C(1 + t)–( 3
2 +k)(∥∥D(0)

∥
∥2

H2∩L1 + ε2
0R2(t) + ε2–2ϑ

0 R2+2ϑ (t)
)
. (4.53)
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Then, for a sufficiently small ε0 and a constant C8, which is independent of ε0, we can
derive that

R2(t) ≤ C8

2
(∥
∥(ω, u, B)(0)

∥
∥2

H2∩L1 + ε0
2R2(t) + ε0

2–2ϑR2+2ϑ (t)
)
. (4.54)

By Young’s inequality we obtain

C8ε
2–2ϑR2+2ϑ (t) ≤ 1 – ϑ

2
C

2
1–ϑ

8 +
1 + ϑ

2
ε0

4(1–ϑ)
1+ϑ R4(t). (4.55)

Thus we have

R2(t) ≤ J0 + Cε0R4(t), (4.56)

where Cε0 := 1+ϑ
2 ε0

4(1–ϑ)
1+ϑ and J0 := C8‖(ω, u, B)(0)‖2

H2∩L1 + 1–ϑ
2 C

2
1–ϑ

8 .
Suppose R2(t) > 2J0 for any t ≥ t1 with a positive constant t1. Since R(t) ∈ C0[0, +∞)

and R2(0) is small, we have that

R2(t0) = 2J0 (4.57)

with some t0 ∈ (0, t1). By (4.56) we have R2(t0) ≤ J0 + Cε0R4(t0), which implies

R2(t0) ≤ J0

1 – Cε0R2(t0)
. (4.58)

Assume that the small constant ε0 satisfies Cε0 < 1
4J0

, which leads to Cε0R2(t0) < 1
2 . This

fact, together with (4.58), implies R2(t0) < 2J0, which it contradicts with (4.57). Therefore
we get R2(t) ≤ 2J0 for all t ≥ t1. Keeping in mind that R(t) is nondecreasing, we have
R(t) ≤ C for all t ∈ [0, +∞). This completes this proof. �

Thanks to Lemma 4.6, we complete the proof of Theorem 1.1.

Appendix: Analytic tools
This appendix is devoted to providing some important mathematical results, which have
been used in the previous sections.

Lemma A.1 ([34]) Let f ∈ H2(R3). Then we have
(i) ‖f ‖Lp � ‖f ‖H1 for 2 ≤ p ≤ 6;

(ii) ‖f ‖L∞ � ‖∇f ‖1/2
L2 ‖∇f ‖1/2

H1 � ‖∇f ‖H1 ;
(iii) ‖f ‖L6 � ‖∇f ‖L2 .

Lemma A.2 ([28]) We have

∥
∥∇k(fg)

∥
∥

Lq � ‖f ‖Lq1
∥
∥∇kg

∥
∥

Lq2 +
∥
∥∇kf

∥
∥

Lq3 ‖g‖Lq4 (A.1)

for k ≥ 1, where 1 ≤ qi ≤ +∞, and

1
q

=
1
q1

+
1
q2

=
1
q3

+
1
q4

. (A.2)
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Lemma A.3 ([45]) For any integers r, s, and t, we have

∥
∥∇sf L∥∥

L2 ≤ rs–r
0
∥
∥∇rf L∥∥

L2 ,
∥
∥∇sf H∥∥

L2 ≤ 1
Rt–s

0

∥
∥∇ t f H∥∥

L2 , (A.3)

∥
∥∇sf L∥∥

L2 ≤ ∥
∥∇ t f

∥
∥

L2 and
∥
∥∇sf H∥∥

L2 ≤ ∥
∥∇ t f

∥
∥

L2 , (A.4)

where f ∈ Hn(R3) and r ≤ s ≤ t ≤ n. Moreover,

rs
0
∥
∥f n∥∥

L2 ≤ ∥
∥∇sf n∥∥

L2 ≤ Rs
0
∥
∥f n∥∥

L2 (A.5)

for some constants r0 > 0 and R0 > 0.

Next, we introduce the Gagliardo–Nirenberg inequality.

Lemma A.4 ([48]) Let ψ(ω) be a smooth function of ω with bounded derivatives of any
order. If ‖ω‖L∞(R3) ≤ 1, then for any integer j ≥ 1, we have

∥
∥∇ jψ(ω)

∥
∥

Lq(R3) �
∥
∥∇ jω

∥
∥,

where 1 ≤ q ≤ ∞.

Lemma A.5 ([37]) Suppose 0 ≤ i, j ≤ k. Then we have

∥
∥∇ ih

∥
∥

Lp �
∥
∥∇ jh

∥
∥1–σ

Lp1

∥
∥∇kh

∥
∥σ

Lp2 ,

where 0 ≤ σ ≤ 1, and

i
3

–
1
p

=
(

j
3

–
1
p1

)

(1 – σ ) +
(

k
3

–
1
p2

)

σ .

In particular, if p = ∞, then 0 < σ < 1 is required.

For decay estimates of solutions, we further introduce the following basic inequalities.

Lemma A.6 ([52]) Suppose b1, b2, b3 ∈R
3 and b1 > 0, 0 ≤ b1 ≤ b2, b3 > 0. Then for t ∈R+,

∫ t

0
(1 + t – t)–b1 (1 + t)–b2 dt ≤ C(b1, b2)(1 + t)–b1 ,

and

∫ t

0
(1 + τ )–b1 e–b3(t–τ ) dτ ≤ C(b1, b3)(1 + t)–b1 , (A.6)

where C(b1, b2) > 0 and C(b1, b3) > 0 are constants depending only on b1, b2, b3.
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