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Abstract
This paper deals with the linear theory of thermoelastic Cosserat bodies. At the
beginning, we formulate the mixed initial-boundary value problem in this context
and obtain new theorems of reciprocity in the thermodynamics theory of these
media. Then we prove that these new reciprocity relations imply the uniqueness of
solution of the mixed problem. Based on the same reciprocal relations, we establish a
minimum variational principle, which generalizes those from the theory of classical
thermoelasticity.

1 Introduction
The goal of this study is formulating the mixed initial-boundary value problem within the
thermodynamics theory of Cosserat bodies and obtaining some qualitative results for the
solutions of the formulated problem. One of the reasons why the theory of Cosserat ther-
moelastic bodies captured the interest of many specialists was that this theory predicts
the finite speed of heat signals, as they did most of the nonclassical theories of thermoe-
lasticity. This theory, initiated by the French brothers E. and F. Cosserat [1], introduced
a mechanics of continuous solids based on the principle that each point of the body has
six degrees of freedom, just like a rigid body. Since the appearance of this theory, but es-
pecially in the last period, a lot of works have been published that highlight its advantage
over the classical theory of thermoelasticity and also its practical importance. An enumer-
ation of many studies dedicated to the theory, as well as highlighting the contributions of
these works, can be discovered in the monographs of Nowacki [2] and Eringen [3]. From
the long list of these studies, we list the works [4–20]. Specialists appreciate that a natural
fibrous composite such as a human or animal bone has a torsional and bending behavior,
which is more faithfully described by the Cosserat elasticity than by the classical elastic-
ity. Results similar to those in this paper were obtained for classical thermoelastic media.
In some situations, they were based on the Laplace transform. In other works, these re-
sults were possible due to the reformulation of the initial mixed problem so that the initial
data are included into the motion and energy equations. Neither of the two procedures
is used in our study. The plan of this paper is as follows. In Sect. 2, we synthesize the
main equations and conditions that characterize the mixed problem in the theory of the
thermodynamics of Cosserat, namely the equations of movement, energy equation, ini-
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tial data, and boundary conditions. We also specify the regular conditions imposed on
the functions we work with, which allow us to obtain the proposed results. In Sect. 3, we
formulate and prove the main results of our study. Here we present two results of reci-
procity, a uniqueness result, and a variational principle, which extends similar principles
from classical thermoelasticity. See [21–26]. Some similar techniques are used in [27–30].

2 Formulation of the problem
We consider an inhomogeneous anisotropic Cosserat body that, beginning at time t = 0,
occupies the regular domain D of the Euclidian three-dimensional space whose associated
vector space is R3. The domain D is bounded by a piecewise smooth closed surface ∂D. We
use both scalar and vector and tensor functions, and these depend on points x = (xm) of
D and temporal variable t ∈ [0,∞). A superimposed dot designates partial differentiation
with respect to t, whereas the subscript m preceded by a comma designates partial differ-
entiation with respect to the corresponding coordinate xm. When there is no likelihood of
confusion, we can omit writing the space argument and/or time argument of a function.

We will characterize the deformation of a thermoelastic Cosserat body with the help of
the following independent variables:

– the displacement vector with components vm;
– the couple displacement vector with components φm.
With the help of the independent variables vm and φm, we can define the strain tensors

with components emn and εmn by means of the following kinematic relations:

emn = vn,m + εmnkφk ,

εmn = φn,m. (1)

Using a procedure similar to that of Green and Lindsay [31] and Eringen [32], we obtain the
basic system of field partial differential equations in the linear thermoelasticity of Cosserat
bodies (see [32]):

– the motion equations

τmn,n + fm = �v̈m,

σmn,n + εmjkτjk + gm = Imnφ̈n; (2)

– the equation of energy

qm,m + S = ϑ0η̇; (3)

– the constitutive relations

τmn = Cklmnekl + Bklmnεkl – amn(ϑ + αϑ̇),

σmn = Bmnklekl + Aklmnεkl – bmn(ϑ + αϑ̇),

qm = ϑ0Kmnϑ,n, (4)

η = a + dϑ + hϑ̇ + amnemn + bmnεmn.

All these relations hold for (t, x) ∈ [0,∞) × D.



Marin et al. Boundary Value Problems         (2022) 2022:69 Page 3 of 15

Also, in equations (2)–(4) we used the following notations: vm – the components of
displacement, φm – the components of microrotation, fm – the body force, gm – the body
couple force, τmn – the components of the stress tensor, σmn – the components of the
couple stress tensor, qm – the components of the heat conduction vector, η – the specific
entropy, ϑ0 – the constant reference temperature, Imn – the components of inertia, and
εmjk – the alternating symbol.

A superposed dot over a function denotes the differentiation of the function with respect
to time t, and a subscript preceded by a comma denotes the differentiation of the function
with respect to the corresponding spatial variable.

To obtain relations (4), we used the additional assumption that the reference solid has a
center of symmetry at each point; otherwise, it is anisotropic.

The thermoelastic coefficients in (4) are constants, and we have the following symmetry
relations satisfied:

Cklmn = Cmnkl, Aklmn = Amnkl, Kmn = Knm. (5)

The coefficients of inertia Imn and temperature ϑ0 are given constants satisfying the con-
ditions

Imn > 0, ϑ0 > 0. (6)

According to the thermodynamics second law (the entropy production inequality), we
obtain the following conditions:

dα – h ≥ 0, Kmnxmxn ≥ 0, ∀xm. (7)

Taking into account conditions (7), we can suppose that Cklmn, Aklmn, and Kmn are positive
definite tensors, i.e.,

Aklmnxklxmn ≥ k0xknxkn, k0 > 0,∀xmn = xnm,

Cklmnxklxmn ≥ k1xknxkn, k1 > 0,∀xmn = xnm,

Kmnxmxn ≥ k2xmxm, k2 > 0,∀xm. (8)

Moreover, according to Green and Lindsay [31], we can assume that

α > 0, h > 0, dα – h > 0. (9)

To construct a mixed initial-boundary value problem in our context, we adjoin the follow-
ing initial data:

vm(0, x) = v0
m(x), v̇m(0, x) = v1

m(x),

φm(0, x) = φ0
m(x), φ̇m(0, x) = φ1

m(x), (10)

ϑ(0, x) = ϑ0(x), η(0, x) = η0(x), x ∈ D̄.
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Now we intend to adjoin some boundary conditions. To this end, we must define the heat
flux and surface tractions tk and mk in any regular point of [0,∞) × ∂D:

q = qknk , tk = τklnl, mk = σklnl, (11)

where n = (nl) is the normal vector to the border ∂D oriented toward its exterior.
Also, the following share of the surface ∂D is needed:

∂D = �1 ∪ �c
1 = �2 ∪ �c

2 = �3 ∪ �c
3,

�1 ∩ �c
1 = �2 ∩ �c

2 = �3 ∩ �c
3 = ∅,

where, clearly, the surfaces �c
1, �c

2, and �c
3 are the complements of the surfaces �1, �2,

and �3, respectively.
Now we can prescribe the following boundary boundary relations:

vm = ṽm on [0,∞) × �1, tm = t̃m on [0,∞) × �c
1,

φk = φ̃k on [0,∞) × �2, mk = m̃k on [0,∞) × �c
2, (12)

ϑ = ϑ̃ on [0,∞) × �3, q = q̃ on [0,∞) × �c
3.

Taking into account the constitutive equations (4), from equations (2) and (3) we obtain
the following system of partial differential equations:

�v̈m = Cklmnekl,n + Bklmnεkl,n + amn(ϑ,n + αϑ̇,n),

Imnφ̈n = Bmnklekl,n + Aklmnεkl,n + bmn(ϑ,n + αϑ̇,n)

+ εmjk
(
Ajklneln + Bjklnεln + ajk(ϑ + αϑ̇)

)
, (13)

hϑ̈ = –dϑ̇ + amnėmn + bmnε̇mn + Kmnϑ,mn

for (t, x) ∈ [0,∞) × D.
We denote by P the mixed initial-boundary value problem in the context of thermody-

namics of Cosserat bodies, consisting of equations (13), initial conditions (11), and bound-
ary relations (12). The qualitative results that we will address next refer to the solutions of
the P problem. The regularity conditions under which we will obtain these results on the
solutions are not at all restrictive; they are in fact common in the mechanics of continuous
solids.

So the given functions v = (vm), φ = (φm), η0, and ϑ0 are continuous on the domain D,
the functions t̃ = (t̄m), m̃ = (m̄k), ϑ̄ , and q̄ are prescribed and piecewise regular on their
domain of definition and continuous in time and on the domain D.

As in [33], a function u is considered to be of class CN ,M on cylinder [0,∞) × D if u is a
continuous function on [0,∞) × D and the derivatives

∂n

∂xk∂xl · · · ∂xr

(
∂mu
∂tm

)
, n ∈ {0, 1, 2, . . . , N}, m ∈ {0, 1, 2, . . . , M},

are defined and continuous on [0,∞) × D. Here N and M are positive integers, and the
condition n + m ≤ max{N , M} is fulfilled. In the particular case M = N , we will write CN

instead of CN ,N . For details, see [33].
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3 Results
Our first result is a reciprocity one. To this end, we need the convolution product for two
continuous functions. So, if ϕ and ψ are two scalar functions on [0,∞) × D continuous in
time, then their convolution product, denoted by ∗, is defined by

(ϕ ∗ ψ)(t, x) =
∫ t

0
ϕ(t – τ , x)ψ(τ , x) dτ .

Now we introduce the functions p(t) and r(t), useful in the following, defined by

p(t) = 1, r(t) = (p ∗ p)(t) = t, t ∈ [0,∞), (14)

and we consider the following writing convention:

ϕ̂(t, x) =
∫ t

0
ϕ(τ , x) dτ = (p ∗ ϕ)(t, x). (15)

To obtain a more accessible form of the energy equation (3), we consider the function ω

defined on [0,∞) × D by the relation

ω = Ŝ + ϑ0(η0 – a), (16)

where Ŝ is defined as in (15).
Also, for a function u of class C0,1 on [0,∞) × D, we define the functions β and γ by

βu = u + αu, γ u = p ∗ u + αu, (17)

where α is from Eqs. (4).
In the following proposition, we formulate the energy equation from (3) in a different

manner.

Proposition 1 If the functions qm ∈ C1,0 and η ∈ C0,1 satisfy the equation of energy (3) and
the initial condition η(0, x) = η0(x), x ∈ D, then they satisfy the equation

q̂m,m + ω = ϑ0(η – a) ∀(t, x) ∈ [0,∞) × D. (18)

The reciprocal statement is also true.

Proof Both statements are easy to prove; just have to take into account the writing con-
vention (15). �

A reciprocity relation refers to the connection between two external data systems

D(ν) =
{

f (ν)
m , g(ν)

m , S(ν), v̄(ν)
m , φ̄(ν)

m , t̄(ν)
m , m̄(ν)

k , ϑ̄ (ν), q̄(ν), v0,(ν)
m , v1,(ν)

m ,φ0,(ν)
m ,φ1,(ν)

m ,η0,(ν),ϑ0,(ν)},

and the solutions corresponding to these data systems

S (ν) =
{

v(ν)
m ,φ(ν)

m ,ϑ (ν), τ (ν)
mn,σ (ν)

mn,η(ν), q(ν)
m

}
.

In both systems, ν = 1, 2.
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To simplify the writing of reciprocity relations, we need the following notations:

�νμ(s, r) =
∫

∂D

[
t(ν)
m (s, x)v(μ)

m (r, x) + m(ν)
k (s, x)φ(μ)

m (r, x) –
1
ϑ0

βq̄(ν)
m (s, x)ϑ (μ)(r, x)

]
dA

+
∫

D

[
f (ν)
m (s, x)v(μ)

m (r, x) + g(ν)
m (s, x)φ(μ)

m (r, x) –
1
ϑ0

βω(ν)(s, x)ϑ (μ)(r, x)
]

dV

+
∫

D

[
�v̈(ν)

m (s, x)v(μ)
m (r, x) + Imnφ̈

(ν)
m (s, x)φ(μ)

n (r, x) (19)

– hϑ̇ (ν)(s, x)ϑ (μ)(r, x) – αdϑ (ν)(s, x)ϑ̇ (μ)(r, x)
]

dV

+
1
ϑ0

∫

D
βq̄(ν)

m (s, x)ϑ (μ)
,m (r, x) dV , ν,μ = 1, 2,

where we used the following convention:

t(ν)
m = τ

(ν)
mknk , m(ν)

k = σ
(ν)
kl nl,

ω(ν) = S̄(ν) + ϑ0
(
η0,(ν) – a

)
, q(ν) = q(ν)

k nk . (20)

Also, we introduce the following notations:

Jνμ(s, r) = τ (ν)
mn(s)v(μ)

m,n(r) + σ (ν)
mn(s)φ(μ)

m,n(r)

– β
[
η(ν)(s) – a

]
ϑ (μ)(r), ν,μ = 1, 2, (21)

and

Iνμ(s, r) = Jνμ(s, r) + hϑ̇ (ν)(s)ϑ (μ)(r) + α dϑ (ν)(s)ϑ̇ (μ)(r), ν,μ = 1, 2, (22)

where we suppressed the variable x.
Now we formulate and prove the first reciprocity result.

Theorem 1 If the symmetry relations (5) are satisfied, then for any s, r ∈ [0,∞), we have
the equality

�νμ(s, r) = �μν(r, s), ν,μ = 1, 2. (23)

Proof Taking into account the constitutive relations (4) and notations (21), we deduce

Jνμ(s, r) = Cklmnv(ν)
m,n(s)v(μ)

k,l (r)

+ Bklmn
[
v(ν)

m,n(s)φ(μ)
k,l (r) + v(μ)

m,n(s)φ(ν)
k,l (r)

]
+ Aklmnφ

(ν)
m,n(s)φ(ν)

k,l (r)

– amn
[
βv(ν)

m,n(s)ϑ (μ)(r) + βv(μ)
m,n(s)ϑ (ν)(r)

]
(24)

– bmn
[
βφ(ν)

m,n(s)ϑ (μ)(r) + βφ(μ)
m,n(s)ϑ (ν)(r)

]

– αhϑ̇ (ν)(s)ϑ̇ (μ)(r) – dϑ (ν)(s)ϑ (μ)(r)

– hϑ̇ (ν)(s)ϑ (μ)(r) – α dϑ (ν)(s)ϑ̇ (μ)(r).



Marin et al. Boundary Value Problems         (2022) 2022:69 Page 7 of 15

Based on relations (5), (24), and (22), we easily deduce that

Iνμ(s, r) = Iμν(r, s). (25)

Now we consider equations (2) and (18) and notation (21), and so we are led to the relation

Jνμ(s, r) =
[
τ (ν)

mn(s)v(μ)
m (r) + σ (ν)

mn(s)φ(μ)
m (r) –

1
ϑ0

βq̄(ν)
n (s)ϑ (μ)(r)

]

,n

+ f (ν)
m (s)v(μ)

m (r) + g(ν)
m (s)φ(μ)

m (r) –
1
ϑ0

βω(ν)(s)ϑ (μ)(r) (26)

– �v̈(ν)
m (s)v(μ)

m (r) – Imnφ̈
(ν)
m (s)φ(μ)

m (r) +
1
ϑ0

βq̄(ν)
m (s)ϑ (μ)

,m (r).

Now we integrate over D equality (22) and then use relation (25) and the theorem of di-
vergence, so that we are led to the equality

∫

D
Iνμ(s, r) dV = �νμ(r, s),

which, together with (25), ensures equality (23). The proof of the theorem is com-
plete. �

To obtain another reciprocity result, we introduce the notations

F (ν)
m = r ∗ [

f (ν)
m (s) + g(ν)

m (s)
]

+ �
[
tv̇1,(ν)

m + v0,(ν)
m

]
,

G(ν)
m = r ∗ [

g(ν)
m (s) + g(ν)

m (s)
]

+ �
[
tv̇1,(ν)

m + v0,(ν)
m

]
, (27)

R(ν) = –tϑ0,(ν), ν = 1, 2.

With the help of Theorem 1 and notations (27), we obtain a new reciprocity result.

Theorem 2 If the symmetry relations (5) are satisfied andS (ν) is the solution corresponding
to the external data system S (ν), ν = 1, 2, then we have the following equality:

∫

∂D
r ∗

[
t(1)
m (s) ∗ v(2)

m + m(1)
k ∗ φ

(2)
k –

1
ϑ0

q(1) ∗ γϑ (2)
]

dA

+
∫

D

[
F (1)

m ∗ v(2)
m + G(1)

m ∗ φ(2)
m –

1
ϑ0

p ∗ ϑ (2) ∗ γω(1)
]

dV

–
α

ϑ0

∫

∂D
p ∗ q(1) ∗ R(2) dA –

α

ϑ0

∫

D
ω(1) ∗ R(2) dV

+
∫

D

[
(h – αd)R(1) ∗ ϑ (2) + αp ∗ Kmnϑ

(1)
,n ∗ R(2)

,m
]

dV

=
∫

∂D
r ∗

[
t(2)
m (s) ∗ v(1)

m + m(2)
k ∗ φ

(1)
k –

1
ϑ0

q(2) ∗ γϑ (1)
]

dA (28)

+
∫

D

[
F (2)

m ∗ v(1)
m + G(2)

m ∗ φ(1)
m –

1
ϑ0

p ∗ ϑ (1) ∗ γω(2)
]

dV
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–
α

ϑ0

∫

∂D
p ∗ q(2) ∗ R(1) dA –

α

ϑ0

∫

D
ω(2) ∗ R(1) dV

+
∫

D

[
(h – αd)R(2) ∗ ϑ (1) + αp ∗ Kmnϑ

(2)
,n ∗ R(1)

,m
]

dV .

Proof We use the reciprocity relation (23) in which we replace r with τ and s with t –τ , and
then integrate the relation obtained over the interval [0, t], so that we obtain the relation

Fνμ(t) =
∫

∂D

[
t(ν)
m (s) ∗ v(μ)

m + m(ν)
k ∗ φ

(μ)
k –

1
ϑ0

p ∗ q(ν) ∗ βϑ (μ)
]

dA

+
∫

D

[
f (ν)
m ∗ v(μ)

m + g(ν)
m ∗ φ(μ)

m –
1
ϑ0

ω(ν) ∗ βϑ (μ)
]

dV (29)

–
∫

D

[
�v̈(ν)

m ∗ v(μ)
m + Imnφ̈

(ν)
m ∗ φ(μ)

n – hϑ̇ (ν) ∗ ϑ (μ) – αdϑ (ν) ∗ ϑ̇ (μ)]dV

+
1
ϑ0

∫

D
p ∗ q(ν)

m ∗ βϑ (μ)
,m dV ,

where

Fνμ(t) =
∫ t

0
�νμ(s, t – s) ds.

It is no difficult to verify that for arbitrary continuous functions r and p on [0,∞) × D, we
have the following equalities:

r ∗ ϑ̇ (ν) ∗ ϑ (μ) = p ∗ (
p ∗ ϑ̇ (ν)) ∗ ϑ (μ) = p ∗ (

ϑ (ν) – ϑ
(ν)
0

) ∗ ϑ (μ)

= p ∗ ϑ (ν) ∗ ϑ (μ) + R(ν) ∗ ϑ (μ),

r ∗ βϑ (μ) = p ∗ (
γϑ (μ) – αϑ

(μ)
0

)
= p ∗ γϑ (μ) + αR(μ), (30)

r ∗ v̈(ν)
m = v(ν)

m – tv1,(ν)
m – v0,(ν)

m ,

r ∗ φ̈(ν)
m = φ(ν)

m – tφ1,(ν)
m – φ0,(ν)

m ,

l ∗ γ h = l ∗ (p ∗ h + αh) = h ∗ γ l.

Based on (30) and (29), we deduce

r ∗ Fνμ(t) =
∫

∂D
r ∗

[
t(ν)
m (s) ∗ v(μ)

m + m(ν)
k ∗ φ

(μ)
k –

1
ϑ0

q(ν) ∗ γϑ (μ)
]

dA

+
∫

D

[
F (ν)

m ∗ v(μ)
m + G(ν)

m ∗ φ(μ)
m –

1
ϑ0

p ∗ ϑ (μ) ∗ γω(ν)
]

dV

–
∫

D

[
�v(ν)

m ∗ v(μ)
m + Imnφ

(ν)
m ∗ φ(μ)

n – (h + αd)p ∗ ϑ (ν) ∗ ϑ (μ)]dV (31)

+
∫

D
r ∗ Kmnϑ

(ν)
,n ∗ (

p ∗ ϑ (μ)
,m + αϑ (μ)

,m
)

dV

–
α

ϑ0

∫

∂D
p ∗ q(ν) ∗ R(μ) dA –

α

ϑ0

∫

D
ω(ν) ∗ R(μ) dA

+
∫

D

[
hR(ν) ∗ ϑ (μ) + α dR(μ) ∗ ϑ (ν) + αp ∗ Kmnϑ

(ν)
,n ∗ R(μ)

,m
]

dV .

Finally, from relations (5), (23), (29), and (31) we obtain the desired relation (28). �
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To simplify the relations that follow, we will use the notation

G(s, r) =
∫

D

[
fm(s)vm(r) + gm(s)φm(r) –

1
ϑ0

ω(s)βϑ(r)
]

dV

+
∫

∂D

[
tm(s)vm(r) + mk(s)φm(r) –

1
ϑ0

q̄(s)βϑ(r)
]

dA, s, r ∈ [0,∞). (32)

The reciprocity relation (23) is also the basis of the following theorem.

Theorem 3 If the symmetry relations (5) are satisfied andS (ν) is the solution corresponding
to the external data system S (ν), ν = 1, 2, then we have the following equality:

d
dt

{∫

D
[�vmvm + Imnφmφn + αKmnϑ̄,mϑ̄,n] dV

}

+
d
dt

{∫ t

0

∫

D

[
(αd – h)ϑ2 + Kmnϑ̄,nϑ̄,m

]
dV ds

}

=
∫ t

0

[
G(t – τ , t + τ ) – G(t + τ , t – τ )

]
dτ (33)

+
∫

D

[
�
(
v̇m(2t)vm(0) + v̇m(0)vm(2t)

]
+ Imn

[
φ̇m(2t)φm(0) + φ̇m(0)φm(2t)

)]
dV

+
∫

D

[
(αd – h)ϑ(0)ϑ(2t) + αKmnϑ̄,n(2t)ϑ,m(0)

]
dV .

Proof By equality (23) we obtain

∫ t

0
�11(t + τ , t – τ ) dτ =

∫ t

0
�11(t – τ , t + τ ) dτ , (34)

which by relations (23) and (32) results in

∫ t

0
�11(t + τ , t – τ ) dτ

=
∫ t

0
G(t + τ , t – τ ) dτ

–
∫ t

0

∫

D

[
�v̈m(t + τ )vm(t – τ ) + Imnφ̈m(t + τ )φm(t – τ )

]
dV dτ (35)

+
∫ t

0

∫

D

[
hϑ̇(t + τ )ϑ(t – τ ) + αdϑ(t + τ )ϑ̇(t – τ )

]
dV dτ

+
∫ t

0

∫

D
Kmnϑ̄,n(t + s)

[̇
ϑ̄,m(t – τ ) + α̈̄ϑ,m(t – τ )

]
dV dτ .

Analogously, we deduce

∫ t

0
�11(t – τ , t + τ ) dτ

=
∫ t

0
G(t – τ , t + τ ) dτ
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–
∫ t

0

∫

D

[
�v̈m(t – τ )vm(t + τ ) + Imnφ̈m(t – τ )φm(t + τ )

]
dV dτ (36)

+
∫ t

0

∫

D

[
hϑ̇(t – τ )ϑ(t + τ ) + α dϑ(t – τ )ϑ̇(t + τ )

]
dV dτ

+
∫ t

0

∫

D
Kmnϑ̄,n(t – s)

[̇
ϑ̄,m(t + τ ) + α̈̄ϑ,m(t + τ )

]
dV dτ .

After usual integration by parts, we deduce the following formulas:

∫ t

0
ü(t + τ )v(t – τ ) dτ = u̇(2t)v(0) – u̇(t)v(t) +

∫ t

0
v̇((t – τ )u̇(t + τ ) dτ ,

∫ t

0
v̈(t – τ )u(t + τ ) dτ = v̇(t)u(t) – v̇(0)v(2t) +

∫ t

0
v̇((t – τ )u̇(t + τ ) dτ ,

∫ t

0
u(t + τ )v(t – τ ) dτ = –v(0)u(2t) + u(t)v(t) +

∫ t

0
u̇((t + τ )u(t – τ ) dτ .

Taking these formulas into account, from (35) we obtain

∫ t

0
�11(t + τ , t – τ ) dτ

=
∫ t

0
G(t + τ , t – τ ) dτ

–
∫

D

[
�
(
v̇m(2t)vm(0) – v̇m(t)vm(t)

)
+ Imn

(
φ̇m(2t)φn(0) – φ̇m(t)φn(t)

)]
dV dτ

–
∫ t

0

∫

D

[
h
(
ϑ(2t)ϑ(0) – ϑ2(t)

)
+ αd

(
ϑ2(2t) – ϑ(0)ϑ(2t)

)]
dV dτ

–
∫ t

0

∫

D

[
�v̇m(t – τ )v̇m(t + τ ) + Imnφ̇m(t – τ )φ̇n(t + τ )

]
dV dτ (37)

+
∫ t

0

∫

D

[
hϑ(t + τ )ϑ̇(t – τ ) + αdϑ̇(t + τ )ϑ̇(t – τ )

]
dV dτ

+
∫ t

0

∫

D
Kmn

[ ˙̄ϑ,n(t + τ )ϑ̄,m(t – τ ) + αϑ,n(t + τ )ϑ,m(t – τ )
]

dV dτ

+
∫

D
Kmn

[
ϑ̄,n(2t)(ϑ̄,m + α ˙̄ϑ,m)(0) – αϑ̄,n(2t)ϑ,m(0)

]
dV

Similarly, from (36) we have

∫ t

0
�11(t – τ , t + τ ) dτ

=
∫ t

0
G(t – τ , t + τ ) dτ

–
∫

D

[
�
(
v̇m(t)vm(t) – v̇m(0)vm(2t)

)
+ Imn

(
φ̇m(t)φn(t) – φ̇m(0)φn(2t)

)]
dV dτ

–
∫ t

0

∫

D

[
�v̇m(t – τ )v̇m(t + τ ) + Imnφ̇m(t – τ )φn(t + τ )

]
dV dτ

–
∫ t

0

∫

D

[
hϑ̇(t – τ )ϑ(t + τ ) + αdϑ(t – τ )ϑ̇(t + τ )

]
dV dτ (38)
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+
∫ t

0

∫

D
Kmnϑ̄,n(t – τ ) ˙̄ϑ,m(t + τ ) dV dτ –

∫

D
αKmn

˙̄ϑ,mϑ̄,m dV

+
∫ t

0

∫

D
αKmnϑ,m(t + τ )ϑ,n(t – τ ) dV ds.

Clearly, taking into account relations (5), (34), (37), and (38), we arrive at the desired rela-
tion (33). �

Now we can approach the problem of the uniqueness of the solution of problem P .

Theorem 4 We suppose that:
– the symmetry relations (5) are satisfied;
– � and αd – h are strictly positive;
– the tensor Kmn is positive semidefinite;
– α ≥ 0.
Then the mixed problem P admits at most one solution.

Proof We do the proof by reduction to the absurd. Suppose that problemP admits two so-
lutions (v(1)

m ,φ(1)
m ,ϑ (1)) and (v(2)

m ,φ(2)
m ,ϑ (2)). Due to the linearity of problem P , the difference

between the two solutions

(vm,φm,ϑ) =
(
v(1)

m – v(2)
m ,φ(1)

m – φ(2)
m ,ϑ (1) – ϑ (2))

is also the solution of problem P , but corresponding to zero initial data and homogeneous
boundary conditions. In this situation, equality (33) reduces to

∫

D
[�vmvm + Imnφmφn + αKmnϑ̄,mϑ̄,n] dV

+
∫ t

0

∫

D

[
(αd – h)ϑ2 + Kmnϑ̄,nϑ̄,m

]
dV ds = 0, t ∈ [0,∞). (39)

Based on the assumptions of the theorem, we have � > 0, αd – h > 0, and α ≥ 0, and the
tensor Kmn is positive semidefinite, so that inequality (39) implies

vm = 0, φm = 0, ϑ = 0,

which completes the proof of the theorem. �

As the last our main result, we approach a variational principle for a Cosserat ther-
moelastic body. In fact, we extend Lebon’s principle, formulated in the theory of classical
thermoelasticity.

To this aim, we first consider a so-called thermoelastic state of the media with the con-
tent

A = (vm,φm,ϑ , emn, εmn, τmn,σmn, qm, S),

and denote by H the set of states of the media of this form. If we consider the usual ad-
dition and multiplication of states with scalars, then we deduce that H is endowed with a
structure of linear space.
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Now we introduce the functional F on H by

F (t,A) =
∫

D
p ∗

[
Cklmnekl ∗ emn + Bmnklekl ∗ εmn + Aklmnεkl ∗ εmn

– �vm ∗ vm + Imnφm ∗ φn –
1
ϑ0

r ∗ Kmnϑ,m ∗ ϑ,n – r ∗ qm ∗ ϑ,m

+ [�vm – r ∗ τmn,n – Fm] ∗ vm + (Imnφm – p ∗ σmn,n – εmjkτjk – Gm) ∗ φm

+
ϑ0

a
r ∗ (S – amnemn – bmnεmn) ∗ (S – aklekl – bklεkl)

– r ∗ (τmn ∗ emn + σmn ∗ εmn) – (p ∗ S + r ∗ qm,m – R) ∗ ϑ

]
dV (40)

+
∫

�1

r ∗ tm ∗ ṽm dA +
∫

�c
1

r ∗ (tm – t̃m) ∗ vm dA

+
∫

�2

r ∗ mk ∗ φ̃k dA +
∫

�c
2

r ∗ (mk – m̃k) ∗ φk dA

+
∫

�3

r ∗ q ∗ ϑ̃ dA +
∫

�c
3

r ∗ (q – q̃) ∗ ϑ dA, t ∈ [0,∞),

for any A = (vm,φm,ϑ , emn, εmn, τmn,σmn, qm, S) ∈ H .

Theorem 5 Assume that the symmetry relations (5) are satisfied, a �= 0 in the domain
D, and the thermoelastic state A is a solution of the mixed P . Then the variation of the
functional A is zero, i.e.,

δF (t,A) = 0, t ∈ [0,∞). (41)

Proof Let us consider two arbitrary thermoelastic states of the body

A = (vm,φm,ϑ , emn, εmn, τmn,σmn, qm, S),

Ā = (v̄m, φ̄m, ϑ̄ , ēmn, ε̄mn, τ̄mn, σ̄mn, q̄m, S̄).

Since the space H is linear, we can conclude that A + λĀ ∈ H for all λ, which is a real
parameter.

It is no difficult to observe that

δĀF (t,A) =
∫

D

{
r ∗ [

(Cklmnemn + Bmnklεmn) ∗ ēkl

+ (Bklmnemn + Aklmnεmn) ∗ ε̄kl
]

– r ∗ T0

a
(amn ∗ ēmn + bmn ∗ ε̄mn)(�S – amnemn – bmnεmn)

– r ∗ (τmn ∗ ēmn + σmn ∗ ε̄mn) – r ∗
(

qm +
1

T0
Kmnϑ,n

)
∗ ϑ̄,m

+ p ∗
[

–T +
T0

a
p ∗ (�S – amnemn – bmnεmn)

]
∗ �S̄

}
dV

+
∫

D

{
[�vm – r ∗ τmn,n – Fm] ∗ v̄m
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+ (Imnφn – p ∗ εmjkτjk – Gm) ∗ φ̄m (42)

– (p ∗ �S + r ∗ qm,m – R) ∗ ϑ̄
}

dV

–
∫

D

{
h ∗

[
emn –

1
2

(un,m + um,n)
]

∗ τ̄mn

+ r ∗ (εmn – un,m + φm) ∗ σ̄mn + r ∗ (ϑ,m – ϑ,m) ∗ q̄m

}
dV

+
∫

�1

r ∗ (v̄m – vm) ∗ t̄m dA +
∫

�c
1

r ∗ (tm – t̄m) ∗ v̄m dA

+
∫

S2

r ∗ mk ∗ φ̄k dA +
∫

Sc
2

r ∗ (mk – m̄k) ∗ φk dA

+
∫

S3

r ∗ (ϑ̄ – ϑ) ∗ q̄ dA +
∫

Sc
3

r ∗ (q – q̄) ∗ ϑ̄ dA, ∀t ∈ [0,∞).

Taking into account the basic equations (13), relations (27), (33), and (34) and the bound-
ary relations (12), from (42) we deduce that

δĀF (t,A) = 0 ∀Ā ∈ H , (43)

whence it follows that

δF (t,A) = 0, t ≥ 0,

which completes the proof of Theorem 5. �

Remark It is not difficult to show that the statement of Theorem 5 is also valid reciprocally
(see Gurtin [34]). In other words, if identity (41) is true, then the state A for which this
identity holds is the unique solution of our problem. The idea of the proof, which is also
suggested by Gurtin [34], is based on a particular choice of the thermoelastic state Ā. In
our case the thermoelastic state proposed by Lebon [21] can be successfully used.

4 Conclusions
We approached the linear theory of thermoelastic Cosserat bodies. First, we formulate
the mixed initial-boundary value problem in this context and obtain new theorems of
reciprocity in the thermodynamics theory of these media. Then we prove that these new
reciprocity relations imply the uniqueness of solution of the mixed problem. Based on the
same reciprocal relations, we establish a minimum variational principle, which generalizes
those from the theory of classical thermoelasticity. It is important to emphasize that even
if in the context of thermoelastic Cosserat media the basic equations of motion and energy
are more complicated, most of the important results of the mechanics of continuum media
remain valid.
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