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Abstract
The Bénard problem consists in a system that couples the well-known Navier–Stokes
equations and an advection-diffusion equation. In thin varying domains this leads to
the g-Bénard problem, which turns out to be the classical Bénard problem when g is
constant. The main goal of this paper is to, first of all, introduce the g-Bénard problem
with time-fractional derivative of order α ∈ (0, 1). This formulation is new even in the
classical Bénard problem, that is with constant g. The second goal of this paper is to
prove the existence and uniqueness of a weak solution by means of the
Faedo–Galerkin approximation method. Some recent works on time-fractional
Navier–Stokes equations have opened new perspectives in studying variational
aspects in problems involving time-fractional derivatives.
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1 Introduction
Fractional derivatives play a major role in modelling nonlocality, anomalous behaviour and
memory effects, which are common characteristics of natural phenomena [15, 22] arising
from complex systems. For instance, the memory effect results from the fact that fractional
derivatives involve a convolution integral with a power-law memory kernel. This appears
naturally when studying, for instance, viscoelastic materials and viscous fluid dynamics
[22]. For more applications of fractional calculus, see, e.g. [14, 23–26, 30].

The introduction of time-fractional derivative in fluid dynamics goes back to Lions in
[17], but for order less than 1/4 provided the space dimension is not further than 4. In
recent works of Zhou and Peng [35], the question of weak solutions and an optimal con-
trol problem of time-fractional Navier–Stokes equations in fractal media were considered.
Numerical results regarding such problems was treated firstly in [16] and constitute an
emerging field of research.

More recently, a time-fractional g-Navier–Stokes problem has been introduced and
results regarding the existence, uniqueness of solutions and optimal control have been
proved [6]. This suggests, to the authors of the current paper, to consider various vari-
ations of g-Navier–Stokes equations that can be modelled by time-fractional derivatives
instead of integer ones. It is, indeed, a general trend among researchers to try to find more

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13661-022-01649-3
https://crossmark.crossref.org/dialog/?doi=10.1186/s13661-022-01649-3&domain=pdf
https://orcid.org/0000-0003-3800-1693
mailto:k.akhlil@uiz.ac.ma
http://creativecommons.org/licenses/by/4.0/


Aayadi et al. Boundary Value Problems         (2022) 2022:70 Page 2 of 17

applications where one can replace an integer derivative with various non-integer deriva-
tives. In fluid dynamics the fact that fractal media exhibit memory-dependent behaviour
justifies the use of time-fractional derivatives as suggested by Zhou and Peng [35].

It is worth mentioning that the theory of g-Navier–Stokes equations started with the
works of Hale and Raugel [11, 12], Raugel and Sell [27] who studied 3D nonlinear equations
and Navier–Stokes equations in thin domains. J. Roh [28], a student of Sell, generalised the
previous works to thin domains of the form �g = �× (0, g), where g is some smooth scalar
function. The derived equations are called the g-Navier–Stokes equations. This theory has
interested many researchers in recent years, see [4, 5, 13] and the references therein.

On the other hand, heat conduction based on the classical Fourier law, which relates the
heat flux vector and the temperature gradient, has shown its limits. The time-fractional
heat conduction model can be seen as a good alternative (see [9, 18, 29] and the references
therein). Boussinesq (or Bénard) model is a combination of the heat conduction model and
Navier–Stokes equations and is a well-developed subject in modelling heat conducting
fluids [7, 10, 33, 34]. The aim of this paper is to generalise the setting in [20, 21], where
g-Bénard equations were considered, to time-fractional g-Bénard equations.

The novelty of this paper is, first of all, to introduce a new fractional model in fluid
dynamics and then to prove the existence and uniqueness of its solutions. This is a starting
point for more questions to answer, particularly related to numerical analysis, stability and
long-term behaviour. More precisely, let �g = �2 × (0, g), where �2 is a bounded domain
in R

2 and g is some scalar nonnegative function. We introduce time-fractional g-Bénard
equations of the following form:

∂α
t u + (u · ∇)u – ν�u + ∇p = ξθ + f1(t),

∇ · gu = 0,

∂α
t θ + (u · ∇)θ – κ�θ = f2(t),

where u is the fluid velocity, p is the pressure, θ is the temperature, f1 is the external force
function, f2 is the heat source function, ξ ∈ R

3 is a constant vector, ν is the kinematic
viscosity and κ is the thermal diffusivity(ν and κ are positive constants). The derivative
of order α is considered in the Caputo sense. The time-fractional g-Bénard problem con-
sists in a system that couples time-fractional Navier–Stokes equations and time-fractional
advection-diffusion heat equation in order to model a memory-dependent convection in
a fluid considered in a fractal medium.

This paper is organised as follows: In Sect. 2, we recall some concepts and notations
related to fractional calculus. Section 3 is devoted to the problem statement, and Sect. 4 is
dedicated to the proof of the existence and uniqueness of weak solutions to time-fractional
g-Bénard equations. In Sect. 5 we provide a conclusion.

2 Preliminaries on fractional calculus
In this section, we provide some notations and preliminary results concerning fractional
calculus. For this purpose, assume X to be a Banach space. Let α ∈ (0, 1] and let kα denote
the Riemann–Liouville kernel

kα(t) =
tα–1


(α)
.
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For a function v : [0, T] → X, we give the following definitions of derivatives and inte-
grals:

(1) The left Riemann–Liouville integral of v is defined by

Iα
t v(t) =

∫ t

0
kα(t – s)v(s) ds, t > 0,

provided the integral is point-wise defined on [0, +∞[.
(2) The right Riemann–Liouville integral of v is defined by

Iα
t,T v(t) =

∫ T

t
kα(t – s)v(s) ds, t > 0,

provided the integral is point-wise defined on [0, +∞[.
(3) The left Caputo fractional derivative of order α of v is defined by

Dα
t v(t) =

∫ t

0
k1–α(t – s)

d
ds

v(s) ds.

(4) The right Riemann–Liouville fractional derivative of order α of v is defined by

Dα
t,T v(t) = –

d
dt

∫ T

t
k1–α(t – s)v(s) ds.

(5) The Liouville–Weyl fractional integral on the real axis for functions v : R → X is
defined as follows:

Iα
–,tv(t) =

∫ t

–∞
kα(t – s)v(s) ds.

(6) The Caputo fractional derivative on the real axis for functions v : R → X is defined
as follows:

Dα
–,tv(t) = I1–α

–,t
d
dt

v(t).

Note that the notation ∂α
t stands for Caputo fractional partial derivative, i.e. when func-

tions have another argument than time. We have the following fractional integration by
parts formula (see, e.g. [2]):

∫ T

0

(
∂α

t u(t),ψ(t)
)

dt =
∫ T

0

(
u(t), Dα

t,Tψ(t)
)

dt +
(
u(t), I1–α

t,T ψ(t)
)|T0 (2.1)

=
∫ T

0

(
u(t), Dα

t,Tψ(t)
)

dt –
(
u(0), I1–α

T ψ(t)
)
,

since for ψ ∈ C∞
0 ([0, T], X) one has limt→T I1–α

t,T ψ(t) = 0.
To pass from weak convergence to strong convergence, we will need a compactness re-

sult. Let X0, X, X1 be Hilbert spaces with X0 ↪→ X ↪→ X1 being continuous and X0 ↪→ X
being compact. Assume that v : R → X1 and denote by v̂ its Fourier transform:

v̂(τ ) =
∫ +∞

–∞
e–2iπ tτ v(t) dt.
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We have for γ > 0

D̂γ
t v(τ ) = (2iπτ )γ v̂(τ ).

For given 0 < γ < 1, we introduce the following space:

W γ (R, X0, X1) =
{

v ∈ L2(R, X0) : Dγ
t v ∈ L2(R, X1)

}
.

Clearly, it is a Hilbert space for the norm

‖v‖γ =
(‖v‖2

L2(R,X0) +
∥∥|τ |γ v̂

∥∥2
L2(R,X1)

)1/2.

For any set K ⊂R, we associate with it the subspace W γ

K ⊂ W γ defined as

W γ

K (R, X0, X1) =
{

v ∈ W γ (R, X0, X1) : support u ⊂ K
}

.

By similar discussion as in the proof of Theorem 2.2 in Temam [31], it is clear that
W γ

K (R, X0, X1) ↪→ L2(R, X) is compact for any bounded set K and any γ > 0.
As a particular situation of the compactness result discussed above, let H , V be two

Hilbert spaces endowed with the scalar product (·, ·)H and (·, ·)V and the norms | · |H and
‖ · ‖V , respectively. Denote by 〈·, ·〉 the dual pairing between V and V ′, the dual of V .
Moreover assume that V ↪→ H ↪→ V ′ continuously and compactly and note that the space

W γ
(
0, T ; V , V ′) =

{
v ∈ L2(0, T ; V ) : ∂γ

t v ∈ L2(0, T ; V ′)}

is compactly embedded in L2(0, T ; H). It is then well known that

∂
γ
t
(
u(t), v

)
V =

〈
∂

γ
t u(t), v

〉

for u ∈ W γ (0, T ; V , V ′) and v ∈ H . Moreover, for a derivable function v : [0, T] → V , we
have from [3] that

(
v(t), Dγ

t v(t)
)

H ≥ 1
2

Dγ
t
∣∣v(t)

∣∣2.

We end this section by the following important result.

Lemma 2.1 Suppose that a nonnegative function satisfies

C
0 Dγ

t v(t) + c1v(t) ≤ c2(t)

for c1 > 0 and c2 is a nonnegative integrable function for t ∈ [0, T]. Then

v(t) ≤ v(0) +
1


(γ )

∫ t

0
(t – s)γ –1c2(s) ds.

For more details about fractional calculus, we refer to the monograph [14].
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3 Problem statement
We introduce the usual notation used in the context of the mathematical theory of Navier–
Stokes equations [31]. Let �g = �2 × (0, g) = (0, 1) × (0, 1) × (0, g), where g = g(y1, y2) is a
smooth function defined on �2. In addition, we assume that

0 < m0 < g(y1, y2) ≤ M0 for all (y1, y2) ∈ �2,

|∇g|∞ = sup
�2

|∇g| < ∞, g ∈ C∞
per(�2).

(3.1)

Let L2(�, g) denote the Hilbert space, of weighted Sobolev spaces type, with the inner
product

〈u, v〉g =
∫

�

(u · v)g dx

and the induced norm |u|2g = 〈u, u〉g . Similarly, we can define the weighted Sobolev space
H1(�, g) equipped with the norm

|u|2H1(�,g) = 〈u, u〉g +
n∑

i=1

〈
∂u
∂xi

,
∂u
∂xi

〉
g
.

Moreover, we will need the following spaces:

V1 =
{

u ∈ (
C∞

per(�)
)n : ∇ · (gu) = 0,

∫
�

u dx = 0 on �

}
,

Hg = the closure of V1 on L2(�, g),

Vg = the closure of V1 on H1(�, g),

V ′
g = the dual space of Vg ,

V2 =
{
ϕ ∈ C∞

per(�) :
∫

�

ϕ dx = 0
}

,

Wg = the closure of V2 on H1(�, g),

W ′
g = the dual space of Wg ,

Q = the closure of
{∇ϕ : ϕ ∈ C1

per(�, R)
}

in L2(�),

where Hg is endowed with the inner product and the norm in L2(�g). In addition, the
spaces Vg and Wg are endowed with the inner product and the norm in H1(�, g). Let us
also remark that the inclusions

Vg ⊂ Hg = H ′
g ⊂ V ′

g ,

Wg ⊂ L2(�, g) ⊂ W ′
g

are dense and continuous [19, 28]. By the Riesz representation theorem, it is possible to
write

〈f , u〉g = (f , u)g , ∀f ∈ Hg ,∀u ∈ Vg .



Aayadi et al. Boundary Value Problems         (2022) 2022:70 Page 6 of 17

Let us now define the orthogonal projection Pg as Pg : L2
per(�, g) → Hg . It is clear that Q ⊆

H⊥
g . Similarly, we define P̃g as P̃g : L2

per(�, g) → Wg . By taking into account the following
equality [28]:

–
1
g

(∇ · g∇u) = –�u –
1
g

(∇g · ∇)u,

we define the g-Laplace operator and g-Stokes operator as follows:

–�gu = –
1
g

(∇ · g∇u)

and

Agu = Pg[–�gu],

respectively. We have the following result [28].

Proposition 3.1 For the g-Stokes operator Ag , the following hold:
(1) The g-Stokes operator Ag is a positive, self-adjoint operator with compact inverse,

where the domain of Ag is D(Ag) = Vg ∩ H2(�, g).
(2) There exist countable eigenvalues of Ag satisfying

0 <
4π2m0

M0
≤ λ1 ≤ λ2 ≤ λ3 ≤ · · ·,

where λ1 is the smallest eigenvalue of Ag . In addition, there exists the corresponding
collection of eigenfunctions {wi}i∈N that forms an orthonormal basis for Hg .

The operators Ag and Pg are clearly self-adjoint, then by using integration by parts we
have

〈Agu, u〉g =
〈
Pg

[
–

1
g

(∇ · g∇)u
]

, u
〉

g

=
∫

�

(∇u · ∇u)g dx

= 〈∇u · ∇u〉g .

It then follows that for u ∈ Vg we can write |A1/2u|g = |∇u|g = ‖u‖g . On the other hand,
since the functional

τ ∈ Wg → (∇θ ,∇τ )g ∈R

is a continuous linear mapping on Wg , we can define a continuous linear mapping Ãg on
W ′

g such that

∀τ ∈ Wg , 〈Ãg , τ 〉g = (∇θ ,∇τ )g
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for all θ ∈ Wg . For u, v and w laying in an appropriate subspaces of L2
per(�, g), we can define

the bilinear operator

Bg(u, v) = Pg
[
(u · ∇)v

]

and the trilinear form

bg(u, v, w) =
n∑

i,j=1

∫
�

ui
∂vj

∂xi
wjg dx.

As a consequence, one obtains bg(u, v, w) = –bg(u, w, v), which implies that bg(u, v, v) = 0.
Moreover, we have the following inequality on bg (see, e.g. [31, 32]):

∣∣bg(u, v, w)
∣∣
g ≤ c|u|1/2

g ‖u‖1/2
g |v|g |w|1/2

g ‖w‖1/2
g , ∀u, v, w ∈ Vg . (3.2)

Similarly, for u ∈ Vg and θ , τ ∈ Wg , we define B̃g(u, θ ) = P̃g[(u · ∇)θ ] and

b̃g(u, θ , τ ) =
n∑

i,j=1

∫
�

ui(x)
∂θ (x)
∂xj

τ (x)g dx.

We denote the operators Cgu = Pg[ 1
g (∇g · ∇)u] and C̃gθ = P̃g[ 1

g (∇g · ∇)θ ] such that

〈Cgu, v〉g = bg

(∇g
g

, u, v
)

,

〈C̃gθ , τ 〉g = b̃g

(∇g
g

, θ , τ
)

.

Finally, let D̃gθ = P̃g[ ∇g
g θ ] such that

〈D̃gθ , τ 〉g = –̃bg

(∇g
g

, θ , τ
)

– b̃g

(∇g
g

, θ , τ
)

.

We can now rewrite the system of g-Bénard equations in the following abstract time-
fractional evolutionary equations:

∂α
t u + Bg(u, u) + νAgu + νCgu = ξθ + f1,

∂α
t θ + B̃g(u, θ ) + κÃgθ – κC̃gθ – κD̃gθ = f2,

u(x, 0) = u0(x), θ (x, 0) = θ0(x).

(3.3)

The proof of the following two lemmas can be found in [5].

Lemma 3.2 For n = 2, there exists a positive constant c such that

|u|L4(�,g) ≤ c|u|1/2
g |∇u|1/2

g , ∀u ∈ H1(�, g).

Lemma 3.3 For u ∈ L2(0, T , Vg), we have

Bg(u, u)(t) ∈ L1(0, T , V ′
g
)

and Cgu(t) ∈ L2(0, T , Hg).
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4 Existence of weak solutions
In this section we prove the existence and uniqueness of the weak solution. The main tech-
nique is the Faedo–Galerkin approximation method, which allows to exhibit an approxi-
mating sequence that converges to the desired solution. The following gives the definition
of weak solutions, that is, solutions in a variational sense.

Definition 4.1 A pair of functions {u, θ} is called a weak solution of system (3.3) if u ∈
L2(0, T ; Vg) and θ ∈ L2(0, T ; Wg) satisfy the following equations:

∂α
t (u, v)g + bg(u, u, v) + ν(∇u,∇v)g + ν(Cgu, v)g = (ξθ , v)g + (f1, v)g ,

∂α
t (θ , τ )g + b̃g(u, θ , τ ) + κ(∇θ ,∇τ )g + κ b̃g

(∇g
g

, τ , θ
)

= (f2, v)g

(4.1)

for all v2 ∈ Vg and τ ∈ Wg .

The following theorem contains the main result of this paper.

Theorem 4.2 If f1 ∈ L
2
α1 (0, T ; L2(�, g)) and f2 ∈ L

2
α2 (0, T ; L2(�, g)) (α1,α2 < α), u0 ∈ Hg ,

θ0 ∈ L2(�, g) and g is a smooth function satisfying the conditions given in (3.1) defined on
�2, then there exists a unique weak solution {u, θ} of system (3.3) satisfying the periodic
boundary conditions.

Proof Since Vg is separable and V1 is dense in Vg , there exists a sequence {ui}i∈N forming
a complete orthonormal system in Hg and a basis in Vg . Similarly, there exists a sequence
{θi}i∈N forming a complete orthonormal system in L2(�, g) and a basis in Wg . Let m be an
arbitrary but fixed nonnegative integer. For each m, we define the following approximate
solution {u(m)(t), θ (m)(t)} of (3.3):

u(m)(t) =
m∑

j=1

f (m)
j (t)uj, θ (m)(t) =

m∑
j=1

g(m)
j (t)θj, (4.2)

and we consider the following approximate problem (4.3)–(4.5):

∂α
t
(
u(m), uk

)
g + bg

(
u(m), u(m), uk

)
+ ν

((
u(m), uk

))
g + νbg

(∇g
g

, u(m), uk

)

=
(
ξθ (m), uk

)
g + (f1, uk)g ,

(4.3)

∂α
t
(
θ (m), θk

)
g + b̃g

(
u(m), θ (m), θk

)
+ κ

((
θ (m), θk

))
g + κ b̃g

(∇g
g

, θk , θ (m)
)

= (f2, θk)g

(4.4)

and

u(m)(0) = um0 =
m∑

j=1

(a0, uj)uj, θ (m)(0) = θm0 =
m∑

j=1

(τ0, θj)θj. (4.5)

This system forms a nonlinear fractional order system of ordinary differential equations
for the functions f (m)

j (t) and g(m)
j (t) and has a maximal solution on some interval [0, T] (cf.
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[6]). We multiply (4.3) and (4.4) by f (m)
j (t) and g(m)

j (t), respectively, and add these equations
for k = 1, . . . , m. Taking into account bg(u(m), u(m), u(m)) = 0 and b̃g(u(m), θ (m), θ (m)) = 0, we
get

(
Dα

t u(m), u(m))
g + ν

∥∥u(m)(t)
∥∥2

g + νbg

(∇g
g

, u(m)(t), u(m)(t)
)

=
(
ξθ (m), u(m)(t)

)
g +

(
f1, u(m)(t)

) (4.6)

and

(
Dα

t θ (m)(t), θ (m)(t)
)

g + κ
∥∥θ (m)(t)

∥∥2
g + κ b̃g

(∇g
g

, θ (m)(t), θ (m)(t)
)

=
(
f2, θ (m)(t)

)
g . (4.7)

Using Schwarz and Young inequalities in (4.6) and (4.7),

Dα
t
∣∣u(m)(t)

∣∣2
g + ν

∥∥u(m)(t)
∥∥2

g ≤ M0|ξ |2∞
π2m0ν

∣∣θ (m)(t)
∣∣2
g +

4
ν

∥∥f1(t)
∥∥2

V ′
g

+
2ν|∇g|2∞

m2
0

∣∣u(m)(t)
∣∣2
g ,

Dα
t
∣∣θ (m)(t)

∣∣2
g + κ

∥∥θ (m)(t)
∥∥2

g ≤ 2
κ

∥∥f2(t)
∥∥2

W ′
g

+
2κ|∇g|2∞

m2
0

∣∣θ (m)(t)
∣∣2
g .

By using the fact that |∇g|2∞ < π2m3
0

M0
and noting ν ′ = ν(1 – M0|∇g|2∞

2π2m3
0

), κ ′ = κ(1 – M0|∇g|2∞
2π2m3

0
) and

c′ = M2
0‖ξ‖2∞

4π4m2
0

, we get the inequalities

Dα
t
∣∣u(m)(t)

∣∣2
g + ν ′∥∥u(m)(t)

∥∥2
g ≤ c′

ν

∥∥θm(t)
∥∥2

g +
4
ν

∥∥f1(t)
∥∥2

V ′
g

(4.8)

and

Dα
t
∣∣θ (m)(t)

∣∣2
g + κ ′∥∥θ (m)(t)

∥∥2
g ≤ 2

κ

∥∥f2(t)
∥∥2

W ′
g
. (4.9)

Integrating (4.9) from 0 to T , in the fractional sense, we obtain

∣∣θ (m)(t)
∣∣2
g +

κ ′


(α)

∫ t

0
(t – s)α–1∥∥θ (m)(s)

∥∥2
g ds

≤ |θ0m|2g +
2

κ
(α)

∫ t

0
(t – s)α–1∥∥f2(s)

∥∥2
W ′

g
ds

≤ |θ0m|2g +
2

κ
(α)

∫ t

0

∥∥f2(s)
∥∥2/α2

W ′
g

ds +
2

κ
(α)

∫ t

0
(t – s)

α–1
1–α2 ds

≤ |θ0m|2g +
2

κ
(α)

∫ T

0

∥∥f2(s)
∥∥2/α2

W ′
g

ds + C2,

where b2 = α–1
1–α2

and C2 = 2T1+b2
κ(1+b2)
(α) . It follows that

∫ t

0
(t – s)α–1∥∥θ (m)(s)

∥∥2
g ds ≤ 
(α)

κ ′ |θ0m|2g +
2

κκ ′

∫ T

0

∥∥f2(s)
∥∥2/α2

W ′
g

ds +

(α)
κ ′ C2. (4.10)
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On the other hand, integrating (4.8) from 0 to T , in the fractional sense, we obtain

∣∣u(m)(t)
∣∣2
g +

ν ′


(α)

∫ t

0
(t – s)α–1∥∥u(m)(s)

∥∥2
g ds

≤ |u0m|2g +
c′

ν
(α)

∫ t

0
(t – s)α–1∥∥θ (m)(s)

∥∥2
g ds +

4
ν
(α)

∫ t

0
(t – s)α–1∥∥f1(s)

∥∥2
V ′

g
ds

≤ |u0m|2g +
c′

νκ ′ |θ0m|2g +
2c′

νκκ ′
(α)

∫ t

0

∥∥f2(s)
∥∥2/α2

W ′
g

ds +
c′

νκ ′ C2

+
4

ν
(α)

∫ t

0

∥∥f1(s)
∥∥2/α1

V ′
g

ds +
4

ν
(α)

∫ t

0
(t – s)

α–1
1–α1 ds

≤ |u0m|2g +
c′

νκ ′ |θ0m|2g +
2c′

νκκ ′
(α)

∫ t

0

∥∥f2(s)
∥∥2/α2

W ′
g

ds +
4

ν
(α)

∫ t

0

∥∥f1(s)
∥∥2/α1

V ′
g

ds

+ C1,

where b1 = α–1
1–α1

and C1 = c′
νκ ′ C2 + 4T1+b1

ν(1+b1)
(α) . By using the fact that

∫ t

0
(t – s)α–1∥∥u(m)(s)

∥∥2
g ds ≥ Tα–1

∫ t

0

∥∥u(m)(s)
∥∥2

g ds (4.11)

and similarly

∫ t

0
(t – s)α–1∥∥θ (m)(s)

∥∥2
g ds ≥ Tα–1

∫ t

0

∥∥θ (m)(s)
∥∥2

g ds, (4.12)

it follows that

∣∣u(m)(t)
∣∣2
g +

ν ′Tα–1


(α)

∫ t

0

∥∥u(m)(s)
∥∥2

g ds

≤ |u0m|2g +
c′

νκ ′ |θ0m|2g (4.13)

+
2c′

νκκ ′
(α)

∫ T

0

∥∥f2(s)
∥∥2/α2

W ′
g

ds +
4

ν
(α)

∫ T

0

∥∥f1(s)
∥∥2/α1

V ′
g

ds + C1,

∣∣θ (m)(t)
∣∣2
g +

κ ′Tα–1


(α)

∫ t

0

∥∥θ (m)(s)
∥∥2

g ds ≤ |θ0m|2g +
2

κ
(α)

∫ T

0

∥∥f2(s)
∥∥2/α2

V ′
g

ds + C2. (4.14)

Consequently,

sup
t∈[0,T]

∣∣u(m)(t)
∣∣2
g ≤ |u0m|2g +

c′

νκ ′ |θ0m|2g +
2c′

νκκ ′
(α)

∫ T

0

∥∥f2(s)
∥∥2/α2

W ′
g

ds (4.15)

+
4

ν
(α)

∫ T

0

∥∥f1(s)
∥∥2/α1

V ′
g

ds + C1,

sup
t∈[0,T]

∣∣θ (m)(t)
∣∣2
g ≤ |θ0m|2g +

2
κ
(α)

∫ T

0

∥∥f2(s)
∥∥2/α2

V ′
g

ds + C2, (4.16)
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which implies that the sequences {u(m)}m and {θ (m)}m remain in a bounded set of
L∞(0, T ; Hg) and L∞(0, T ; L2(�, g)), respectively. Moreover, for t = T , one obtains

∫ T

0

∥∥u(m)(s)
∥∥2

g ds

≤ 
(α)
ν ′Tα–1 |u0m|2g +

c′

νν ′κ ′Tα–1 |θ0m|2g +
2c′

νν ′κκ ′Tα–1

∫ T

0

∥∥f2(s)
∥∥2/α2

W ′
g

ds (4.17)

+
4

νν ′Tα–1

∫ T

0

∥∥f1(s)
∥∥2/α1

V ′
g

ds +

(α)

ν ′Tα–1 C1,

∫ T

0

∥∥θ (m)(s)
∥∥2

g ds ≤ 
(α)
κ ′Tα–1 |θ0m|2g +

2
κκ ′Tα–1

∫ T

0

∥∥f2(s)
∥∥2/α2

V ′
g

ds +

(α)

κ ′Tα–1 C2, (4.18)

which implies that the sequences {u(m)}m and {θ (m)}m remain in a bounded set of
L2(0, T ; Vg) and L2(0, T ; Wg), respectively. Consequently, we can assert the existence of
elements u ∈ L2(0, T ; Vg) ∩ L∞(0, T ; Hg) and θ ∈ L2(0, T ; Wg) ∩ L∞(0, T ; L2(�, g)) and
the subsequences {u(m)}m and {θ (m)}m such that u(m) → u ∈ L2(0, T ; Vg) and θ (m) → θ ∈
L2(0, T ; Wg) weakly and u(m) → u ∈ L∞(0, T ; Hg) and θ (m) → θ ∈ L∞(0, T ; L2(�, g)) weakly-
star as m → ∞.

Let ũ(m) : R → Vg and θ̃ (m) : R → Wg be defined as

ũ(m)(t) =

⎧⎨
⎩

u(m)(t), 0 ≤ t ≤ T ,

0, otherwise,
and θ̃ (m)(t) =

⎧⎨
⎩

θ (m)(t), 0 ≤ t ≤ T ,

0, otherwise,

and their Fourier transforms be denoted by û(m) and θ̂ (m), respectively. We show that the
sequence {ũ(m)}m remains bounded in W γ (R, Vg , Hg) and the sequence {θ̃ (m)}m remains
bounded in W γ (R, Wg , L2(�, g)). To do so, we need to verify that

∫ +∞

–∞
|τ |2γ

∣∣̂u(m)(τ )
∣∣2 dτ ≤ const. for some γ > 0 (4.19)

and

∫ +∞

–∞
|τ |2γ

∣∣θ̂ (m)(τ )
∣∣2 dτ ≤ const. for some γ > 0. (4.20)

In order to prove (4.19) and (4.20), we observe that

(
Dα

t ũ(m), uk
)

g =
(̃
Fu

m, uk
)

g + (um0, uk)gI1–α
–,t δ0 –

(
u(m)(T), uk

)
gI1–α

–,t δT , (4.21)
(
Dα

t θ̃ (m), θk
)

g =
(̃
Fθ

m, θk
)

g + (θm0, θk)gI1–α
–,t δ0 –

(
θ (m)(T), θk

)
gI1–α

–,t δT , (4.22)

where δ0, δT are Dirac distributions at 0 and T and Fu
m and Fθ

m are defined by

Fu
m = ξθ (m) + f1 – Bg

(
u(m), u(m)) – νAgu(m) – νCgu(m),

Fθ
m = f2 – B̃g

(
u(m), θ (m)) – κÃgθ

(m) + κC̃gθ
(m) + κD̃gθ

(m)
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for k = 1, . . . , m. Here F̃m is defined as usual by

F̃m(t) =

⎧⎨
⎩

Fm(t), 0 ≤ t ≤ T ,

0, otherwise.
(4.23)

Indeed, it is classical that since ũ(m) and θ̃ (m) have two discontinuities at 0 and T , the
Caputo derivative of ũ(m) is given by

Dα
–,tũ

(m) = I1–α
–,t

(
d
dt

ũ(m)
)

(4.24)

= I1–α
–,t

(
d
dt

u(m) + u(m)(0)δ0 – u(m)(T)δT

)
(4.25)

= Dα
t u(m) + I1–α

–,t
(
u(m)(0)δ0 – u(m)(T)δT

)
(4.26)

and the one of θ̃ (m) is given by

Dα
–,t θ̃

(m) = Dα
t θ (m) + I1–α

–,t
(
θ (m)(0)δ0 – θ (m)(T)δT

)
. (4.27)

By the Fourier transform, (4.21) and (4.22) yield

(2iπτ )α
(̂
u(m), uk

)
g =

(̂
Fu

m, uk
)

g + (um0, uk)g(2iπτ )α–1 (4.28)

–
(
u(m)(T), uk

)
g(2iπτ )α–1e–2iπTτ , (4.29)

(2iπτ )α
(
θ̂ (m), θk

)
g =

(̂
Fθ

m, θk
)

g + (θm0, θk)g(2iπτ )α–1 (4.30)

–
(
θ (m)(T), θk

)
g(2iπτ )α–1e–2iπTτ . (4.31)

Here û(m) and F̂m denote the Fourier transforms of ũ(m) and F̃m, respectively. We multiply
(4.28) and (4.30) by f̂ (m)

j and ĝ(m)
j , respectively, and add these equations for k = 1, . . . , m to

get

(2iπτ )α
∣∣̂u(m)(τ )

∣∣2
g =

(̂
Fu

m(τ ), û(m)(τ )
)

g +
(
um0, û(m)(τ )

)
g(2iπτ )α–1 (4.32)

–
(
u(m)(T), û(m)(τ )

)
g(2iπτ )α–1e–2iπTτ , (4.33)

(2iπτ )α
∣∣θ̂ (m)(τ )

∣∣2
g =

(̂
Fθ

m(τ ), θ̂ (m)(τ )
)

g +
(
θm0, θ̂ (m)(τ )

)
g(2iπτ )α–1 (4.34)

–
(
θ (m)(T), θ̂ (m)(τ )

)
g(2iπτ )α–1e–2iπTτ . (4.35)

Since the integrals on the right-hand side of the inequalities

∫ T

0

∥∥Fu
m(t)

∥∥
V ′

g
dt ≤

∫ T

0
c
(|ξ |∞

∥∥θ (m)(t)
∥∥

g +
∥∥f1(t)

∥∥
V ′

g
+

∣∣u(m)(t)
∣∣
g

∥∥u(m)∥∥
g (4.36)

+
∥∥u(m)(t)

∥∥
g + |∇g|∞

∥∥u(m)(t)
∥∥

g

)
dt,

∫ T

0

∥∥Fθ
m(t)

∥∥
W ′

g
dt ≤

∫ T

0
c′(∥∥f2(t)

∥∥
W ′

g
+

∣∣u(m)(T)
∣∣
g

∥∥θ (m)(t)
∥∥

g +
∥∥θ (m)(t)

∥∥
g (4.37)
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+ |∇g|∞
∥∥θ (m)(t)

∥∥
g + |�g|∞

∥∥θ (m)(t)
∥∥

g

)
dt

remain bounded, ‖F1(t)‖V ′
g and ‖F2(t)‖W ′

g are bounded in L1(0, T ; V ′
g) and L1(0, T ; W ′

g),
respectively. Therefore, for all m,

sup
τ∈R

∥∥F̂u
m(τ )

∥∥
V ′

g
≤ c1 and sup

τ∈R

∥∥F̂θ
m(τ )

∥∥
W ′

g
≤ c2.

Moreover, since u(m)(0), u(m)(T), θ (m)(0) and θ (m)(T) are bounded, we get

|τ |α∣∣̃u(m)(τ )
∣∣2
g ≤ c1

∥∥u(m)∥∥
Vg

+ c2|τ |α–1∣∣u(m)∣∣
g

≤ c3
∥∥u(m)∥∥

Vg
,

|τ |α∣∣θ̃ (m)(τ )
∣∣2
g ≤ c′

1
∥∥θ (m)∥∥

Wg
+ c′

2|τ |α–1∣∣θ (m)∣∣
g (4.38)

≤ c3
∥∥θ (m)∥∥

Wg
. (4.39)

For γ fixed, γ < α/4, we observe that

|τ |2γ ≤ c(γ )
1 + |τ |α

1 + |τ |α–2γ
.

Then we can write
∫ +∞

–∞
|τ |2γ

∣∣̂u(m)(τ )
∣∣2
g ≤ c5(γ )

∫ +∞

–∞
1 + |τ |α

1 + |τ |α–2γ

∣∣̂u(m)(τ )
∣∣2
g dτ

≤ c6(γ )
∫ +∞

–∞
1

1 + |τ |α–2γ

∥∥̂u(m)(τ )
∥∥2

Vg
dτ

+ c7(γ )
∫ +∞

–∞
|τ |α–1

1 + |τ |α–2γ

∥∥̂u(m)(τ )
∥∥2

Vg
dτ ,

∫ +∞

–∞
|τ |2γ

∣∣θ̂ (m)(τ )
∣∣2
g ≤ c′

6(γ )
∫ +∞

–∞
1

1 + |τ |α–2γ

∥∥θ̂ (m)(τ )
∥∥2

Wg
dτ

+ c′
7(γ )

∫ +∞

–∞
|τ |α–1

1 + |τ |α–2γ

∥∥θ̂ (m)(τ )
∥∥2

Wg
dτ .

By the Parseval inequality, the first integral is bounded as m → ∞. Applying the Schwarz
inequality, the second integrals yield

∫ +∞

–∞
|τ |α–1

1 + |τ |α–2γ

∥∥û(m)(τ )
∥∥2

g dτ ≤
(∫ +∞

–∞
dτ

(1 + |τ |α–2γ )2

)1/2

(4.40)

×
(∫ +∞

–∞
|τ |2α–2∥∥û(m)(τ )

∥∥2
g dτ

)1/2

, (4.41)

∫ +∞

–∞
|τ |α–1

1 + |τ |α–2γ

∥∥θ̂ (m)(τ )
∥∥2

g dτ ≤
(∫ +∞

–∞
dτ

(1 + |τ |α–2γ )2

)1/2

(4.42)

×
(∫ +∞

–∞
|τ |2α–2∥∥θ̂ (m)(τ )

∥∥2
g dτ

)1/2

. (4.43)
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The first integrals are finite due to γ < α/4. On the other hand, it follows from the Parseval
equality that

∫ +∞

–∞
|τ |2α–2∥∥û(m)(τ )

∥∥2
g dτ =

∫ +∞

–∞
‖–∞I1–α

t ũ(m)(t)‖2
g dt

=
∫ T

0
‖0I1–α

t u(m)(t)‖2
g dt

≤
(

T1–α


(2 – α)

)2 ∫ T

0

∥∥u(m)(t)
∥∥2

Vg
dt,

∫ +∞

–∞
|τ |2α–2∥∥θ̂ (m)(τ )

∥∥2
g dτ ≤

(
T1–α


(2 – α)

)2 ∫ T

0

∥∥θ (m)(t)
∥∥2

Wg
dt,

which implies that (4.19) and (4.20) hold. We know that there exists a subsequence of
{u(m)}m (which we will denote with the same symbols) that converges to some u weakly
in L2(0, T ; Vg) and weakly-star in L∞(0, T ; Hg) with u ∈ L2(0, T ; Vg) ∩ L∞(0, T ; Hg). Sim-
ilarly, there exists a subsequence of {θ (m)}m (which we will denote with the same sym-
bol) that converges to some θ weakly in L2(0, T ; Wg) and weakly-star in L∞(0, T ; L2(�, g))
with θ ∈ L2(0, T ; Wg) ∩ L∞(0, T ; L2(�, g)). As W γ (0, T , Vg ; Hg) is compactly embedded in
L2(0, T ; Hg) and W γ (R, Wg , L2(�, g)) in L2(0, T ; L2(�, g)), then {u(m)}m strongly converges
in L2(0, T ; Hg) and {θ (m)}m in L2(0, T ; L2(�, g)), respectively.

In order to pass to the limit, we consider scalar functions �1(t) and �2(t) that are contin-
uously differentiable on [0, T] and such that �1(T) = �2(T) = 0. We multiply (4.3) and (4.4)
by �1(t) and �2(t), respectively, and then integrate by parts. This leads to the equations

∫ T

0

(
u(m)(t), Dα

t,T�1(t)uk
)

g dt +
∫ T

0
bg

(
u(m)(t), u(m)(t),�1uk

)
dt

+ ν

∫ T

0

((
u(m)(t),�1uk

))
g + ν

∫ T

0
bg

(∇g
g

, u(m)(t),�1uk

)
dt

=
(
u0m, I1–α

0,T �2(t)uk
)

g

+
∫ T

0

(
ξθ (m)(t),�1uk

)
g dt +

∫ T

0

(
f1(t), uk

)
g dt,

∫ T

0

(
θ (m)(t), Dα

t,T�2(t)θk
)

g dt +
∫ T

0
b̃g

(
u(m)(t), θ (m)(t),�2θk

)
dt

+ κ

∫ T

0

((
θ (m)(t),�2θk

))
g dt + κ

∫ T

0
b̃g

(∇g
g

, θk ,�2θ
(m)(t)

)
dt

=
(
θ0m, I1–α

0,T �2(t)θk
)

g

+
∫ T

0

(
f2(t),�2θk

)
g dt.

Following the same lines as in [8, 31], we obtain, as m → ∞,

∫ T

0

(
u(t), Dα

t,T�1(t)uk
)

g dt +
∫ T

0
bg

(
u(t), u(t),�1uk

)
dt + ν

∫ T

0

((
u(t),�1uk

))
g (4.44)

+ ν

∫ T

0
bg

(∇g
g

, u(t),�1uk

)
dt
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=
(
u0, I1–α

0,T �1uk
)

g +
∫ T

0

(
ξθ (t),�1v

)
g dt +

∫ T

0

(
f1(t), uk

)
g dt, (4.45)

∫ T

0

(
θ (t), Dα

t,T�2(t)θk
)

g dt +
∫ T

0
b̃g

(
u(t), θ (t),�2θk

)
dt (4.46)

+ κ

∫ T

0

((
θ (t),�2θk

))
g dt + κ

∫ T

0
b̃g

(∇g
g

, θk ,�2θ (t)
)

dt

=
(
θ0, I1–α

0,T �2(t)θk
)

g

+
∫ T

0

(
f2(t),�2θk

)
g dt.

These equations hold for v and τ that are finite linear combination of uk and θk , respec-
tively (k = 1, . . . , m), and by continuity the equations hold for any v in Vg and τ ∈ Hg . It
then follows that {u, θ} satisfies the two first equations of (3.3). To end the proof, we still
need to check that {u, θ} satisfies the initial conditions u(0) = u0 and θ (0) = θ0. To do so, it
suffices to multiply the two first equations in (3.3) by �1 and �2, respectively, and then to
integrate. By making use of the integration by part and comparing with (4.44) and (4.46),
one can find that

(
u0 – u(0), v

)
gI1–α

0,T �2(t) = 0, and
(
θ0 – θ (0), τ

)
gI1–α

0,T �2(t) = 0,

which leads to the desired result by taking a particular choice of �1 and �2.
For the uniqueness of the weak solutions, let (u1, θ1) and (u2, θ2) be two weak solutions

with the same initial condition. Let w = u1 – u2 and w̃ = θ1 – θ2. Then we have

Dα
t (w, v)g + bg(u1, u1, v) – bg(u2, u2, v) + ν(∇w,∇v)g + ν(Cgw, v)g = (ξ w̃, v)g ,

Dα
t (w̃, τ )g + b̃g(u1, θ1, τ ) – b̃g(u2, θ2, τ ) + κ(∇w̃,∇τ )g + κ b̃g

(∇g
g

, τ , w̃
)

= 0.

Taking v = w(t) and τ = w̃(t), one obtains

Dα
t (w, w)g + bg(w, u2, w) + ν

∣∣A1/2
g w

∣∣2
g + ν(Cgw, w)g = (ξ w̃, w)g,

Dα
t (w̃, w̃)g + b̃g(u1, θ1, w̃) – b̃g(u2, θ2, w̃) + κ

∣∣Ã1/2
g w̃

∣∣2
g + κ b̃g

(∇g
g

, w̃, w̃
)

= 0.

By applying the bounds on the terms bg , b̃g , it then follows by the Cauchy–Schwarz in-
equality and Gronwall-like inequality that w(t) = 0 and w̃(t) = 0 for all t ≥ 0, since we have
w(0) = 0 and w̃(0) = 0. Thus the theorem is proved. �

5 Conclusion
In this paper, we have introduced a new variation of Navier–Stokes equations. It consists
in time-fractional Bénard equations in fractal thin media. The main technique to prove
the existence of solutions to this problem is the Faedo–Galerkin approximation method.
The deduced estimates allow us to get a (sub)sequence that converges to a solution. The
uniqueness follows immediately from a Gronwall type inequality.

There is still a lot to do with this subject, namely a numerical study should be conducted
in future works. Moreover, the analysis of the stochastic version, the attractors and the
long-term behaviour should be of great interest.
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