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computing numerical solution. In 2003, Wang et al. proposed C-Bézier and H-Bézier
basis functions which are not only a generalization of classical Bernstein basis
functions but also have a free shape parameter bringing a lot of flexibility to
geometrical modeling. In this paper, we adopt C-Bézier and H-Bézier basis functions
to construct test and trial function spaces of finite element method to get numerical
solution of convection-diffusion equations. Compared with Lagrange basis functions,
numerical accuracy is improved by 1 — 3 order-of magnitudes which implies a much
better approximation in simulating convection-diffusion problems. Several examples
are presented to verify the feasibility and effectiveness of our method.
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1 Introduction

Convection-diffusion equation is a kind of partial differential equations (PDEs) widely
used in gas dynamics [1], fluid mechanics [2], environmental science [3], and other phys-
ical fields. Since it is usually difficult to get analytic solutions, numerical analysis plays a
vital role in solving convection-diffusion equations. There are several numerical methods,
such as finite element method (FEM) [4], finite difference method (FDM) [5, 6], finite vol-
ume method (FVM) [7], finite analytic method (FAM) [8], spectral method (SM) [9], etc.
[10, 11].

The finite element method is an important tool for solving PDEs in various fields of sci-
ence and engineering. In 1943, Courant [12] firstly proposed the finite element method
and used piecewise linear functions to construct the Galerkin projection space. In the
1960s, Feng [13] published the paper entitled “Based on The Difference Scheme of Vari-
ational Principle” regarded as the first proof of convergence of finite element method. In
the 1970s, Babuska and Brezzi [14] presented the general theoretical framework of the
mixed finite element method. Subsequently, Falk and Osborn [15] improved the mixed
finite element method.
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Based on the classical finite element method, some scholars have proposed several
new methods to solve convection-diffusion equations numerically. In 2005, Adjerid and
Klauser [16] constructed a local discontinuous Galerkin method for dimensional-one
transient convection-diffusion problems and gave an asymptotically posterior error es-
timation. Maleknejad [17] gave stable numerical algorithms for heat convection and in-
tegral equations. In 2008, Liu et al. [18] studied a mixed time discontinuous space-time
finite element method for convection-diffusion equation; this method lowered the order
of equations. In 2016, Jin et al. [19] proposed a Petrov-Galerkin finite element method,
which combined “shifted” fractional powers with continuous piecewise linear elements
to construct the test and trial function spaces. To solve convection-diffusion problems in
convective dominance, Baumann and Oden [20] presented a discontinuous /p finite el-
ement method; it was appropriate for unrestricted mesh composed of arbitrary convex
polygons. This new method has the features of finite element and finite volume method;
numerical simulations show that it is robust and capable of providing high accuracy. In
2020, Mirzaee proposed a new meshless method to solve 2D time fractional Tricomi equa-
tions and stochastic time-fractional sine-Gordon equations [21, 22].

Scholars have focused considerable attention on spline functions with excellent geomet-
rical properties [23-25]. For instance, Qin et al. [26] constructed a class of new polynomial
basis functions with #n local shape parameters in 2013. These spline functions satisfy the
conditions required for Gy, G1, G, continuity. Many kinds of spline basis functions can
be used to construct function spaces of finite element method. In 1979, Shi [27] intro-
duced spline finite element method to solve the equilibrium problem of the plate-beam
composite elastic structures in regular regions and derived a unified computation scheme
for various boundary conditions. In 2005, inspired by CAD, Hughes [28], Academician of
The American Academy of Sciences, proposed a new spline finite element method which
applies NURBS basis functions in finite element analysis for isometric analysis. In 2007,
Bhatti and Bracken [29] suggested that the method combining Bernstein basis function
and Galerkin method can achieve better results in solving partial differential equations.

The spline basis functions are widely applied in finite element method to get better
numerical solutions, such as Bernstein, B-spline, and NURBS functions. Bernstein basis
functions form bases of polynomial space, which can be used to construct function spaces
of finite element method, but they fail to express transcendental curves, for instance, the
cycloid and helix. In addition, NURBS model also has several weaknesses. On the one
hand, the rational form is unstable. On the other hand, it increases the complexity for
computing integrals and derivatives. For overcoming the disadvantages of rational Bern-
stein basis functions, scholars made a lot of efforts to construct basis functions. In 2003,
Wang et al. [30, 31] applied an integral approach to construct C-Bézier basis functions for
the space T = span{1,¢,...,""2,sin¢,cos ¢} that extended the spaces of mixed algebra and
trigonometric polynomial. After that, Wang developed H-Bézier basis functions for the
space T = span{sinht,cosht, 52, t53, .. t,1}.

C-Bézier and H-Bézier basis functions are one kind of spline functions that have a non-
rational form and are capable of expressing circular arc and polynomial curves of high
order exactly. Furthermore, C-Bézier and H-Bézier basis functions are generalization of
classical Bézier basis and keep their excellent properties. In addition, the free variable «
can be utilized to change the shape and geometry of curves. In previous work, scholars ob-
tained good approximate solutions by combining spline functions with the finite element
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method [32—34]. Therefore, we consider using spline functions C-Bézier and H-Bézier ba-
sis to construct function spaces in the finite element method and expect the approximate
solutions to be more accurate than the classical Lagrange basis function.

In this paper, we combine the Galerkin finite element method with C-Bézier and H-
Bézier basis functions to solve convection-diffusion equation. C-Bézier and H-Bézier basis
functions are selected to construct trial and test function spaces. The error analysis and
numerical examples are given, and the numerical results indicate that our method has
much better precision in solving convection-diffusion equations. The numerical solutions
in this paper are generated in Matlab 2018a.

The rest of the paper is organized as follows. In Sect. 2, we recall the definitions and
properties of C-Bézier and H-Bézier basis functions. In Sect. 3, we use C-Bézier and H-
Bézier basis functions to construct the test and trial function spaces. Furthermore, the
framework of the finite element method to solve convection-diffusion equations is pre-
sented. In Sect. 4, we discuss the stability of the difference scheme. In addition, error es-
timation of the finite element method with C-Bézier and H-Bézier basis functions is pro-
vided. In Sect. 5, several numerical examples are given to illustrate the theoretical results.
In the final section, we not only summarize some comments on the overall work but also
touch upon some avenues of future research.

2 C-Bézier basis and H-Bézier basis functions

In this section, we recall C-Bézier and H-Bézier basis functions proposed by Wang et al.
A free shape parameter is introduced in these basis functions to portray polynomial and
circular curves of high degree precisely.

Definition 1 The C-Bézier basis function {C/'(£)}7, for the space T = span{l,t,...,£" 2,
sint,cost} of degrees n is defined as follows

t
Ci(t)=1- / sytCu(s) ds,
0
t t
o) - / 57-1Cr(s) ds — / s ) ds, i=1,2,...,m—1, (1)
0 0
t
i) - / 5111 (5) s,
0

where n> 2, t € [0,a], @ € (0,7], C(t) = S Cl(y) = St g = ([ CA(t)dt)™", o s

sinor sina
referred as shape parameter [31].

While n = 2, C-Bézier basis function is expressed as follows.

1 —cos(a —t)

C2(¢) =
o) 1-cosa
1—-cost+cosa —cos(o —t
)= - @0 )
1-cosa
1—cost
CG)=—y,
2() 1-cosa

where ¢ € [0,a], a € (0,7]. Figure 1(a) shows the quadratic C-Bézier basis function at
o = 7. Figure 1(b) presents the quadratic C-Bézier basis function at & = 37”.
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Figure 2 C-Bézier curves

C-Bézier basis functions are a generalization of classical Bernstein basis functions that
pose a lot of common properties, such as affine invariance, endpoints interpolation, con-
vex hull property. From the graph above, we can see that the C-Bézier basis functions have

symmetry written by the mathematical formula as
C't)=C,_(a—t) forte[0,a],i=0,1,...,n.

Definition 2 A C-Bézier curve p(¢) is defined by

p®) =) PCl®), teloal

i=0

here, P; (i =0,1,...,n) is called control point, C/(¢) is the C-Bézier basis function for the

space T =span{l,¢,..., £"~2,sint,cos t}, « is the shape parameter.

Figure 2(a) provides the picture of quadratic curve with control points (0,0), (1,5), (3,2)
and a = 7. Figure 2(b) displays a cubic C-Bézier curve with « = 7, it’s control points are
(0,0), (2,5), (3,1), (4,4). Figure 2(c) presents the figure of a quadratic C-Bézier curve with
control points (0, 8), (2,4), (4,2), (6,3), (8,8) and « = 2.

Page 4 of 16
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Definition 3 The H-Bézier basis function {H(¢)}", for the space T = span{1,t,..., "2,

sinh ¢, cosht} of n degrees is defined by
t
Hi@) =1 —/ 86’_1H6‘_1(s) ds,
0
t t
H!t) = / SITH! S (s) ds — / SIH Y (s)ds, i=1,2,...,n—1,
0 0

t
w0 - [ aods
0

®3)

in which 7> 2, ¢t € [0,a], @ € (0, +00), H}(¢) = ¥t pyl(y) = SIhL g — ([ 7 (¢) dt) ™,

sinho sinha?

« is called shape parameter [30].

While # = 2, the H-Bézier basis function is expressed by Eq. (4).

1 — cosh(a —t)
Hi(t)= —————
1 -cosha
1 —cosht h h(a — ¢
H2(0) = cosht + cosha +cos (a )’
1 -cosha 1 -cosha
1 —cosht
Hy(t)= ———,
2() 1 -cosha

here, t € [0,a], @ € (0, +00). The quadratic H-Bézier basis functions at @ = 7w and « = 8 are

shown in Fig. 3. Basis functions at « = 7 and « = 8 are also shown in Fig. 3.

Definition 4 An H-Bézier curve p(¢) is defined by

pt)=> PH!®), te[0al
i=0

Similarly to C-Bézier curve, P; (i =0,1,...,n) is control point, H(¢) is the H-Bézier basis

function for the space T = span{sinht,cosh¢, <=3, tk=4,

...,t,1}, a is the shape parameter.

As shown in Fig. 4, the graph on the left demonstrates a quadratic H-Bézier curve with

control points (0,5), (2,2), (4,7) and « = 2. The image of a cubic curve with « = 3 is in the
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Figure 3 H-Bézier basis functionsat @ =7 and o =8
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(a) quadratic H-Bézier curve  (b) cubic H-Bézier curve  (c) quadratic H-Bézier curve

Figure 4 H-Bézier curves

middle; its control points are (0,6), (1,2), (3,4), (4,1). A quadratic H-Bézier curve with
control points (0,0), (2,4), (4,7), (6,4), (8,1) and « = 1 is provided on the right.

The H-Bézier basis functions have many beneficial properties in common with Bern-
stein basis functions. Compared to classical Bernstein basis, C-Bézier and H-Bézier basis
functions have a free variable allowing adjustment of the local or global shape and geo-
metrical properties of the curves. In addition, even though shape parameter may change,
the position and tangent direction of the curve’s endpoints do not alter [35]. Furthermore,
in the splicing of multiple C-Bézier curves, the shape parameter will not transform the
original continuity between curves [36].

3 Discrete model of convection-diffusion equation
In this section, we consider combining the Galerkin finite element approach with C-Bézier

and H-Bézier basis functions to solve the following convection-diffusion equation [37].

%—’:—V-(aVu)+qu+cu:f, in Q x [0, 7],
u(x,0) = uo(x), ae. in, (5)
ulpo =gx), ae indQ x[0,T].

Denote by 2 an open, bounded, connected subset of R! and 32 the boundary of Q. An ini-
tial condition #y and a boundary condition g(x) on d<2 for u are prescribed. a = a(x, t) and
b = b(x,t) are the diffusion and convection coefficients; the right-hand side, f = f(x, t) rep-
resents the source function [38]. To solve the above model with the finite element method,
C-Bézier and H-Bézier basis functions are selected to construct trial and test function
spaces. We give the weak formulation of one-dimensional convection-diffusion in Eq. (5)
and discrete the weak formulation with the Galerkin method. First of all, denoted by H} (€2)
the subspace of the Sobolev space H'(R):

Hy(Q) = {u e H(Q) : ulyq = 0}.

Multiplying the first equation of Eq. (5) by test function v yields
ad
(a—btt, V) + (—V . (aVu),v) +(bVu,v) + (cu,v) = (f,v), VYve HS(Q). (6)

Using Green formula and divergence theorem, one can obtain the following:

d du d 0
/—Mvdx+/a—u—vdx+/b—uvdx+/cuvdx:/fvdx, VveHé(Q). (7)
o Ot o 0x 0x Q 0x Q Q
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If we define two operators as

8 0
A(u,v) = 4 Vd b—de+ cuvdx,
3 0x
Q Q

(8)
(f,v) = /vadx,

then the variational scheme of Eq. (5) may be read as, looking for an u(x, t) satisfies

(g—’:,v) +Awm,v)=(f,v), inQx][0,T],
u(x,0) = up(x), a.e.in K, 9)
ulpo =gx), ae indQ x[0,T],

saying that u is the generalized solution of Eq. (5) [39].

Now, we divide €2 into mesh elements uniformly, denoted by €2, then define C-Bézier
basis functions or H-Bézier basis functions on each element E of ;. The finite dimen-
sional subspace Uj, = span{q),'}]'?:1 of H}(R) are constructed taking all the basis functions
together, where ¢; are actually C-Bézier basis functions or H-Bézier basis functions.

Subsequently, the Galerkin formulation of the above problem is to find u; € U}, such
that

(%, vy) + Aun,vi) = (Fovi), Yve Uyt €[0,T),
(u(x, 0): Vh) = (uo(x), Vh): Vv e Uh; te [0; T]’ (10)
ulpo =gx), ae indQ x[0,T].

As ¢;,j=1,...,nis base of finite dimensional space U}, u;(x,t) and is expressed as

i, £) = Y (0 ().

Jj=0

Taking v; = ¢, i =1,...,n, we get a system of ordinary differential equations for u; (¢), u>(¢),

Uy (2)
" du, .
DGt + Z (¢ @) = (F¢), i=12,...,n. (11)
j=1 j=1

System Eq. (11) is expressed in vector form as

MX'(t) + AOX(E) = b(t). (12)

We assume 2 = [0, L], then

L n

L L
A(t) = [alj];fj=1 = |:/ dV(ﬁ]’ . V¢, dx + bv¢]¢, dx +/ C¢/¢i dx]
0 0 0

ij=1

is the stiffness matrix,

L
M= [mi,j]:szl :/ oo dx
0
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is the mass matrix,

b = (b, = [ /0 f@}
i=1

is the load vector,
X0 =[],

is the unknown vector. So far, we gain a semi-discretization Galerkin function Eq. (11).

If we further discretize the space-time domain [0, T],let0 =ty < t; <--- <ty = T, tx = kt,
where 7 is the time step. Then obtain a completely discretized Galerkin equation. For
instance, using the forward difference quotient

%(ulh”l - ulh(,vh) +A(u£,vh) =(f,v), k=0,1,..., (13)
using the backward difference quotient

%(uﬁ” - u/,;, vh) +A(u’,j*1, Vh) =(f,w), k=0,1,..., (14)
using the Crank—Nicolson format [40]

%(ulh”l - ulh(,vh) + %A(ulh”l + uﬁ, Vh) = (f(tk+%),vh), k=0,1,.... (15)

In which superscript k is the approximation at ¢ = ¢ = kt. We use the Crank-Nicolson
format to discretize the space-time domain; its stability will be proved in the next chapter.

4 Stability and error analysis

Our first goal is to present an error estimate in L? when equation (5) is semi-discrete.

Lemma 1 Let u and uy be the solutions of equation (5) and equation (11), suppose uy = 0
on Q2. Then,

t
|en(®) — w(®)]| < lluo, — uoll + Ch’<||u0||,+/ ||ut||rd8), Jort=0.

Here, we require the solution of the continuous problem has the regularity implicitly
assumed by the presence of the norms on the right [37].

In this paper, the Crank—Nicolson format is applied to discrete time ¢. Here, the semi-
discrete form is discretized in a symmetric fashion around the point ¢, , 1= (k + %)‘L’. This
will generate a second order accurate in time. Below, we prove that this format is stable

with initial values. Let vj = u}*! -/}, f = 0, we have

Sl ] A ) =0, (16)

where | - || expresses L2 norm. Taking advantage of the symmetry of a(-, -), we obtain

2

A vl uf ™ — ) = A(ut ultt) - A(u), ulf) = |uz+1’f — |uj; v
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here, | |; is semi-norm, then
gy < i, < < ],

Therefore, the stability of format Eq. (15) is proved. Next, the error estimate reads as fol-

lows.

Theorem 1 Let U* be the solution of problem (15). U represents the value of wy at t = t;.
u is the solution of problem (5), and let ||uo, — uoll < Ch"||uo|l, and uy = 0 on 9Q2. Then,

173 173
U - u(e)|] < Chf(nuon, . f ||ut||rds) . C / (ltteall + 1 At s,
0 0

fork=>0.
Specific proof can be found in reference [41].

5 Numerical examples
In this section, several numerical examples are given to solve convection-diffusion func-
tions with C-Bézier and H-Bézier basis functions, which are used to construct test and trial
function spaces of finite element method. In contrast to Lagrange basis functions, the ac-
curacy of numerical solution is improved by 1 — 3 order-of magnitudes, which implies a
much better approximation in simulating convection-diffusion problems.

The errors for the finite element method shall be measured in three norms defined as
follows.

llue — uplloo = sup | — | (L norm error),
xeQ

= upllo = / (u —up)?dx (L2 norm error),
Q

(1 — 2
| — uyly = \// (M) dx (H' semi-norm error).
Q ox

Example 1 Consider following convection-diffusion equation with Dirichlet conditions

u,— V- (Vi) + tVu = (4 + 1) sinxcosx + t2(cos? x — sin® x),
x€(0,1), t>0,

u(x,0) =0, x€[0,1], t=0,

u(0,t) =0, u(l,t)=tsinlcosl, ¢>0.

(17)

Its exact solution is u = ¢sinxcosx.

In this example, we construct test and trial function spaces consisting quadratic C-
Bézier basis function. Divide the [0,1] into # elements, the ith element is denoted by
E; = [x;,x;,1]. Finite element nodes include all the mesh nodes and the middle points of
all the mesh elements. We firstly consider the reference C-Bézier basis function on the
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reference element [0, 1]. As shown in Eq. (1), the range of ¢ is [0,«], let £ = ma, m € [0, 1].

Then the reference C-Bézier basis function on the reference element [0, 1] is

¢ _ 1—cos(e—ma)
1= "1 cosa

_ _ 1—cos(ma)+cosa—cos(a—ma) 1
¢2= 1-cosa ’ (18)

’

¢ _ 1-cos(ma)
3= TT—cosa *

Here, m € [0,1], o € (0, r]. Next, we use the affine mapping between an arbitrary interval
[%;,%:,1] and the reference interval [0, 1] to construct the local basis functions from the
reference. Equation (19) is the quadratic C-Bézier basis function on E; = [x;,x;,1].

l—cos(x”h1 )
('b“ = 1-cosa ’
l—cos(’%ahcosa—cos(xi*ﬁ_"a) (19)
bin = - 1-cosa ’
l—cos(j%u)
¢i3 = l-cosa °

Where x € [x;,%:,1], @ € (0,7]. A finite dimensional subspace will be constructed by
putting these local basis functions together.

The comparison of the errors in L* norm with quadratic C-Bézier and quadratic La-
grange basis functions is indicated in Fig. 5(a) (k = %, t = 1). Figure 5(b) presents the cor-
responding colormap of convection diffusion when 0 <x <1, 0 <t < 1. The numerical

errors obtained from C-Bézier and Lagrange basis functions are set out in Table 1.

s 10 Convection-Diffusion Equ: ro<z<land0<t<l

1
= =C-Bezier
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0.8
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(a) The error graph at h = i,t =1 (b) convection diffusion diagram

Figure 5 The error graph and convection diffusion diagram

Table 1 The numerical errors

Basis h o llu—unlloo llu—unllo |u—unly

Lagrange : - 40161e-04 2.2697e-04 5.9000e-03
5 50261e-05 2.8547e-05 1.5000e-03
= - 6.2151e-06 3.5738e-06 3.7059e-04
5 - 7.7125-07 4.4690e-07 9.2680e-05

C-Bézier : z 3.9680e-05 2.2019e-05 5.7253e-04
z us 4.8746e-06 2.7611e-06 14326e-04
= z 6.0110e-07 3.4540e-07 3.5822e-05
> z 74538e-08 43183e-08 8.9559e-06
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In Table 1, % is the step size of subdivision, and « is the shape parameter. It stands out

that the precision of numerical solutions with C-Bézier basis function is one order-of mag-

nitude higher than Lagrange basis function with the same step size 4.

Example 2 In this example, the convection-diffusion function with Dirichlet conditions

is given as

u;— V- (Vu) + wVu + (sinx)u

=tsin(wx)(2 + £sinx)

+ 22(sin(7rx) + cos(mx)), x € (0,1),£>0, (20)
u(x,0)=0, x€l0,1],£=0,
u(0,t) =0, u(1,)=0, £>0.

The exact solution of the above problem is # = £ sin(77x); we use quadratic C-Bézier and

Lagrange basis functions to create trail space and test space. Figure 6(a) compares the

errors in L% norm of C-Bézier and Lagrange basis functions.

The table below illustrates the specific data of errors.

Comparing the errors of numerical solution obtained by C-Bézier and Lagrange basis

functions with h unchanged, it stands out in Table 2 that the numerical solutions of C-

Bézier basis function are 4 — 7 order-of magnitudes more accurate than Lagrange basis

function.

%103

45

= =C-Bezier
Lagrange|

Time t

error in L norm

0 0.2 0.4 0.6 0.8 1
X

(a) The error graph at h = %,t =1

Figure 6 The error graph and convection diffusion diagram

Convection-Diffusion Equation for 0< z< land0 <t <1

0 0.2 0.4 0.6 0.8 1
Distance x

(b) convection diffusion diagram

Table 2 The numerical errors

>
S

Basis

llu=Unlloo llu—=unllo |u—unls
Lagrange 1 - 34000e-03 1.9000e-03 5.0900e-02
: - 4.1488e-04 24555e-04 1.2800e-02
= 4.9912e-05 3.0760e-05 3.2000e-03
5 - 6.0911e-06 3.8470e-06 7.978%-04
[3pt] C-Bézier 1 z 1.3192¢-08 7.4480e-09 2.0785e-07
: z 4.9641e-11 26246e-11 1.5837e-09
= z 7.5162e-14 4.0419e-14 4.9740e-12
5 5 6.8501e-14 3.1989%-14 36248e-12
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Figure 7 The error graph and convection diffusion diagram

Table 3 The numerical errors

Basis h « llu=tnlloo llu-unllo u—unls
Lagrange : - 1.0399e-04 56672e-05 1.5000e-03
z - 1.1736e-05 7.1429e-06 37051e-04
= - 1.7590e-06 8.9473e-07 9.2787e-05
% 22233e-07 1.1190e-07 23207e-05
H-Bézier 3 1 4.5819-12 3.1198e-12 4.0685e-11
: : 1.6454e-13 1.0612e-13 2.8138e-12
= = 3.7970e-14 2.1969%-14 1.2745e-12
& 5 24425e-14 1.2866e-14 6.3154e-13
Example 3 Considering the following equation
u;— V- (Vu) + tVu =coshx(l — t) + t?>sinhx, x€(0,1),£>0,
ux,0)=0, x€[0,1],£=0, (21)
u(0,t) = t, u(1,t) =tcoshl, ¢>0,

where the exact solution is # = ¢t coshx. We make quadratic H-Bézier and Lagrange basis
functions construct trail space and test space. The errors in L> norm got from Lagrange
and H-Bézier basis functions can be compared in Fig. 7(a) (h = i, t = 1). Figure 7(b) pro-
vides the picture of convection diffusion when 0 <x <1, 0 < ¢ < 1. Numerical values for
the errors are given in Table 3.

What is striking about the figures in this table is the precision of numerical solutions with
H-Bézier basis function is 5 — 6 order-of magnitudes higher than Lagrange basis function.

Example 4 In this example, we consider

u;—V - (2Vu) + u =4cosh®(3) - £sinh*(%), x€[0,1],£>0,
u(x,0)=0, x€l0,1],£=0,
u(0,t) = 4t, u(l,t) = 4tcosh2(i), t>0.

(22)

The exact solution for above problem is u = 4¢ coshz(ﬁ). The quadratic H-Bézier and La-
grange basis functions are used to solve Example 4. Figure 8(a) shows the comparison

Page 12 of 16
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Table 4 The numerical errors

Basis h o

llu—unllo llu—unllo |u—unly
Lagrange 3 - 1.1129e-05 6.5899e-06 17101e-04
: - 14925e-06 8.2923e-07 43003e-05
x 19291e-07 1.0383e-07 1.0767e-05
= - 24511e-08 1.2983e-08 26926e-06
H-Bézier 1 : 24514e-13 1.8875e-13 24714e-12
: = 63061e-14 4.9274e-14 1.1176e-12
= =5 7.1942e-14 4.9036e-14 5.6620e-13
5 = 1.1546e-13 8.0507e-14 4.2444e-13

of errors in L* norm, which obtained by Lagrange and H-Bézier basis functions (& = %,

t = 1), numerical errors are given in Table 4.

The difference of errors between H-Bézier and Lagrange basis functions is highlighted
in Table 4. Compared to the numerical results obtained by Lagrange basis function, the
accuracy of numerical results got by H-Bézier basis function is improved by 2 — 5 order-of
magnitudes.

Example 5 In this example, we verify the effectiveness of H-Bézier basis function with
shape parameter o > 1. Consider the following equation

u; — V- (Vu) + u=sinhx, xe[-4,4],t>0,
u(x,0)=0, «xe[-4,4],t=0, (23)
u(—4,t) = tsinh(—4), u(1,t) = tsinh(4), >0,

with exact solution u(x, t) = ¢ sinhx, quadratic H-Bézier and Lagrange basis functions are

=1
= 3,
¢t = 1) and convection diffusion diagram. Table 5 provides the rate of convergence of H-

used to solve the above problem. Figure 9 shows the numerical errors in L* norm (k1

Bézier and Lagrange basis functions in L>, L2, and H' norm on uniform rectangular mesh
with size h.

From the date in the Table 5, it can be seen that while Lagrange basis function and H-
Bézier basis function have the same rate of convergence, the mesh size / for Lagrange basis
function is much smaller, which implies that the computational complexity of Lagrange
basis function is far greater than that of H-Bézier basis function.

Page 13 of 16
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Figure 9 The error graph and convection diffusion diagram

Table 5 The numerical errors

Basis h o llu - unlloo llu—unllo |u—ul;

Lagrange 3 - 3.1461e-04 3.0705e-04 1.5900e-02
= - 4.0542e-05 3.8417e-05 4,0000e-03
. - 5.1439-06 4.8032e-06 9.9613e-04
& - 6.4770e-07 6.0041e-07 24904e-04
o5 - 8:4437e-08 7.5197e-08 6.2262e-05

H-Bézier 2 2 24146e-04 1.8102e-04 7.2802e-04
1 1 24421e-06 2.1046e-06 1.0613e-05
5 5 1.4447e-08 1.3262e-08 9.9744e-08
: : 7.7012e-11 6.1906e-11 9.2855e-10
: : 2.9026e-12 2.2807e-12 6.4485e-11

From the above examples, it is surprising that the accuracy of numerical solutions with
H-Bézier and C-Bézier functions is higher than Lagrange basis function. Consequently,
we have verified the effectiveness and feasibility of our method.

6 Conclusions and future work

In this contribution, we adopt C-Bézier and H-Bézier basis functions to construct the test
and trial function spaces of the finite element method. In contrast to classical Lagrange
basis functions, our scheme gets much better approximation precision for convection-
diffusion equations. The limitation of this paper is that there is no systematic method to
obtain the optimal shape parameters to minimize the error between the numerical solu-
tion and the exact solution.

There are two interesting aspects to be explored in future research. Firstly, how to get
better shape parameter for solving PDEs numerically. Secondly, how to analyze the error of
exact results and numerical solutions generated by C-Bézier and H-Bézier basis functions
theoretically.
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