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Abstract
Recently, it was demonstrated that a modification of the Kalman-filtering model with
a pointwise delay of the signal noise could improve communication with
considerably distanced spacecraft. However, a complete and correct derivation of the
equations of the Kalman-type filter for this case has not yet been provided. In this
paper, we close this gap. The method of derivation is based on a passage from the
distributed delay to pointwise by means of a delta function. The derived equations
constitute a system of first-order partial differential equations with the initial and
boundary conditions.
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1 Introduction
Kalman filtering [1, 2] has great applications in engineering. The areas of its application
include guidance, navigation, and control of aircraft and spacecraft [3], Global Naviga-
tion Satellite Systems (GNSS) including GPS, GLONASS, Galileo, and other systems [4],
robotic motions [5], forecasting [6], but are not restricted to these.

Originally, the Kalman filter was derived for a finite-dimensional linear signal-
observation system corrupted by independent or correlated white noises. Further develop-
ments pushed scientists to create its different modifications. Thus, the extended Kalman
filter [3] was developed to cover nonlinear systems, the infinite-dimensional Kalman filter
[7] was created for application to systems governed by partial differential equations, and
Kalman filters for colored [8] and wide-band [9] noises were established for estimation of
the systems corrupted by noises of a nonwhite nature. A series of novel Kalman filters are
presented in [10–13].

Recently, it was demonstrated that the classic Kalman-filtering model does not take into
account a detail that is present in communication with significantly distanced spacecraft
[14, 15]. This detail consists in the presence of a time delay in the signal noise. More specif-
ically, consider a scenario of a spacecraft in a position at a fixed instant t so that the radio
signals reach it from the Earth and come back at a time ε > 0. The radio signals propagate
safely in vacuum, but possess noises at the beginning and at the end of the travel when
they pass through the higher layers of the Earth’s atmosphere. For this reason, a ground
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radar detects at t the signal

zt = xt–ε/2 + wt

about the state xt–ε/2 of the spacecraft at t – ε/2 corrupted by the noise wt . Next, assuming
that the control action u changes the position x of the spacecraft in accordance with the
equation x′ = Ax + Bu without taking into consideration noise effects and the distance to
the spacecraft, the position of the spacecraft at t –ε/2 is changed by the control action ut–ε

that is sent by the ground radar at t – ε. This control propagating through the atmosphere
accounts for the noise wt–ε . Hence, the equation for the position of the spacecraft must be
updated as

x′
t–ε/2 = Axt–ε/2 + B(ut–ε + wt–ε).

The substitution x̃t = xt–ε/2 and ũt = ut–ε leads to the signal-observation system
⎧
⎨

⎩

x̃′
t = Ax̃t + Bũt + wt–ε ,

zt = x̃t + wt

in which the noise of the signal system is a delay of the observation noise.
Currently, this time delay is ignored in communication with spacecraft. Most proba-

bly, this is related to the negligible altitude of satellites in comparison to the speed of the
signals. Thus, most far satellites are in Geostationary Earth Orbit with an approximately
36,000 km altitude for which ε = 0.24 s, which is not seen as sufficiently significant. How-
ever, for spacecraft with interplanetary missions, ε is significant and, moreover, time de-
pendent. An example is the spacecraft Voyager 2 lanced by NASA in 1977 that entered
the Jovian, Saturnian, Uranian, Neptunian systems before leaving the Solar system. Tak-
ing into account that the distances to these systems are approximately 0.8, 1.5, 2.8, 4.4
billion kilometers, it can be calculated that the value ε of delay becomes 1.5, 2.8, 5.2, 8.1
hours, respectively. This is a scenario with increasing delay.

Another scenario with decreasing delay takes place in NASA’s Mars Exploration Pro-
gram (MEP), which aimed to prepare for a human landing on Mars. Unlike Voyager 2
type spacecraft, MEP plans on returning back spacecraft exploring the near planet Mars.
The shortest distance to Mars is approximately 54,600,000 km. This distance can be cov-
ered in two ways by radio waves for approximately 6 min. This time delay is sufficiently
large to be taken into account.

These two scenarios demonstrate that it is important to handle filtering problems with
time-dependent delays in the signal noise. In this paper, we are going to derive equations
for a Kalman-type filter for the filtering model in which the signal noise is a pointwise and
time-dependent delay of the observation noise. Our method is based on the Kalman-type
filter for the same kind of filtering model in which signal noise is a distributed delay of the
observation noise [16, 17]. We apply a delta-function passage from the distributed delay
to pointwise and deduce the equations of the required filter.

2 Notation
Two major notations, which are employed to make visible the derivation process and the
final formulae, are as follows. First, we prefer to write the arguments of functions in sub-
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scripts instead of between parentheses. For example, instead of x(t), we write xt . Secondly,
instead of the differential form of stochastic differential equations we prefer to write them
in the derivative form. For example, the stochastic differential equation

dxt = Axt dt + �t dWt ,

driven by the Wiener process W , will be written as

x′
t = Axt + �twt ,

where wt = W ′
t is a white noise being a derivative (generalized) of the Wiener process W .

The differential form is popular in the mathematical literature, while the derivative form
appears in engineering. Both become meaningful in the integral form

xt = x0 +
∫ t

0
Axs ds +

∫ t

0
�s dWs.

By δ we denote Dirac’s delta function. It has the property

∫ T

0
fsδs–t ds = ft ,

provided that t belongs to the interval of integration. In some sense, this property is valid
for white-noise processes as well. Indeed, for the white noise w, we can evaluate

∫ T

0
�twt dt =

∫ T

0

∫ T

0
�twtδs–t ds dt

=
∫ T

0

∫ T

0
�twtδs–t dt ds =

∫ T

0

(∫ T

0
�swsδs–t ds

)

dt,

demonstrating that the integrals of �twt and
∫ T

0 �swsδs–t ds are equal. Since a white noise
becomes meaningful under the integral, we can identify them by writing

�twt =
∫ T

0
�swsδs–t ds.

R
n is an n-dimensional Euclidean space. As always, R = R

1. Rm×n is the space of (m × n)
matrices. The identity and zero matrices are denoted by I and 0. A∗ is the transpose of
the matrix A. L2(�,Rn) denotes the space of square integrable random variables on the
probability space (�,F , P). Expectation and conditional expectation are denoted by E and
E(·|·), respectively. cov(ξ ,η) is the covariance of the random variables ξ and η. As always,
cov ξ = cov(ξ , ξ ). Some other notations will be introduced in the text.

3 Setting of the problem
Motivated by the scenario in the introduction, we consider the following partially observed
linear system

⎧
⎨

⎩

x′
t = Axt + Fwmax(0,λt ), x0 = ξ , t > 0,

zt = Cxt + wt , z0 = 0, t > 0,
(1)
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where the signal and observation systems are disturbed by white noises with the signal
noise pointwisely delaying the observation noise in time for the time-dependent value
t – λt ≥ 0. In this paper, we assume the following conditions:

(A) A ∈R
n×n, C ∈R

m×n.
(B) w is a k-dimensional white-noise process with the properties w0 = 0, Ewt = 0 and

cov(wt , ws) = Iδt–s, ξ ∈ L2(�,Rn) is a Gaussian random variable that is independent
of w, Eξ = 0 and cov ξ = P0.

(C) F ∈ R
n×m and λ is a continuous strictly increasing function satisfying t – ε < λt ≤ t

for all t ≥ 0, where ε > 0 is fixed.
The problem of finding the best estimate x̂t of the corrupted signal xt on the basis of

the observations zs, 0 ≤ s ≤ t, for the system in (1) will be called a filtering problem (1).
Theoretically, the best estimate is the conditional expectation x̂t = E(xt|zs, 0 ≤ s ≤ t). The
equations describing x̂t form an optimal filter. Later, we will consider filtering problems
for other systems as well. The filtering problem for any system will refer to the reference
number of the system.

At first glance, this problem can be successfully solved by a stepwise method. To explain,
consider the particular case λt = t –σ . Then, on the intervals, [0,σ ], [σ , 2σ ], etc., the signal
and observation systems in (1) are driven by the independent pieces of the white-noise
process w and on each of these intervals the equations of the best estimate can be written
in accordance with the Kalman filter for independent white noises by arranging the initial
value x̂kσ on the interval [kσ , (k + 1)σ ] as the terminal value on the interval [(k – 1)σ , kσ ].
Therefore, there exists a closed system of equations describing the best estimate x̂. This
stepwise method can somehow be extended to general λ. However, it does not allow us to
obtain the overall picture, it just displays fragments. Also, it does not cover the case λ0 = 0,
which means that the delays are accounted for at nonzero instants.

To display the overall picture, we will use another method. Roughly speaking, this
method is based on a relation between pointwise and distributed delays.

4 Preliminaries
Replacing the pointwise delay of the signal noise in (1) by a distributed delay, we obtain
the system

⎧
⎨

⎩

x′
t = Axt + ϕt , x0 = ξ , t > 0,

zt = Cxt + wt , z0 = 0, t > 0,
(2)

where

ϕt =
∫ t

max(0,t–ε)
�t,s–tws ds, t ≥ 0. (3)

Here, in addition to (A) and (B), we will assume that
(C′) � is a deterministic function of (t, θ ) ∈ [0,∞) × [–ε, 0] with values in R

n×m and be-
longs to C(0,∞; L2(–ε, 0;Rn×m)) (the space of continuous functions on [0,∞) with
values in the space of square integrable R

n×m-valued functions on [–ε, 0]), where
ε > 0.

The noise process ϕ defined by (3) is called a wide-band or bandwidth noise. The func-
tion � in (3) is called a relaxing (damping) function of ϕ. To the best of our knowledge,
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the first report about wide-band noises appears in [18]. Later, this kind of noise was inves-
tigated by use of approximations [19–21] and by integral representation [22, 23]. In [24] it
was shown that wide-band noises can be represented as a distributed delay of white noises
and [25, 26] demonstrated that the systems disturbed by wide-band noises can be reduced
to abstract systems disturbed by white noises. Thus, the general guidelines of working with
wide-band noises were established. On this basis, different results, including filtering re-
sults as well, for wide-band noise-driven systems were obtained [16, 17, 27]. In particular,
the following filtering result for the system (2) is proved in [16].

Theorem 1 Under the conditions (A), (B), and (C′), the best estimate x̂ in the filtering
problem (2) is uniquely determined as a solution of the equation

x̂′
t = Ax̂t + ψt,0 + PtC∗(zt – Cx̂t), x̂0 = 0, t > 0, (4)

where ψ is a unique solution of

⎧
⎨

⎩

( ∂
∂t + ∂

∂θ
)ψt,θ = (Qt,θ C∗ + �t–θ ,θ )(zt – Cx̂t),

ψ0,θ = ψt,–ε = 0, –ε ≤ θ ≤ 0, t > 0,
(5)

P is a unique solution of the Riccati equation

P′
t = APt + PtA∗ + Qt,0 + Q∗

t,0 – PtC∗CPt , P0 = cov ξ , t > 0, (6)

Q and R are unique solutions of

⎧
⎨

⎩

( ∂
∂t + ∂

∂θ
)Qt,θ = Qt,θ A∗ + Rt,θ ,0 – (Qt,θ C∗ + �t–θ ,θ )CPt ,

Q0,θ = Qt,–ε = 0, –ε ≤ θ ≤ 0, t > 0,
(7)

and

⎧
⎪⎪⎨

⎪⎪⎩

( ∂
∂t + ∂

∂θ
+ ∂

∂τ
)Rt,θ ,τ = �t–θ ,θ�

∗
t–τ ,τ

– (Qt,θ C∗ + �t–θ ,θ )(CQ∗
t,τ + �∗

t–τ ,τ ),

R0,θ ,τ = Rt,–ε,τ = 0, –ε ≤ θ ≤ τ ≤ 0, t > 0.

(8)

Moreover, the mean square error of estimation in the filtering problem (2) is equal to

et = E‖x̂t – xt‖2 = tr Pt .

The classic Kalman filter consists of two equations, while the number of equations in
Theorem 1 is equal to five. Before going on, the origin of the additional equations should
be clarified. The issue is that the process ϕ in (3) can be represented as ϕt = φt,0, where φ

is a solution of the stochastic partial differential equation

(
∂

∂t
+

∂

∂θ

)

φt,θ = �t–θ ,θ wt , φ0,θ = φt,–ε = 0.
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Combining this with the equation of the signal process in (2), we obtain a linear system
for the enlarged signal process

x̃t =

[
xt

φt,·

]

,

where the second component is an infinite-dimensional process of t ∈ [0,∞) with values
in L2(–ε, 0;Rn). The infinite-dimensional Kalman filtering result [7] can be written for
the pair (x̃t , zt), where z is the observation process from (2), which produces equations
(4) for x̂ and (5) for ψ = φ̂. Respectively, the infinite-dimensional Riccati equation splits
into four equations, two of which are adjoint to each other. This implies three informative
equations. One of them is (6). The values of the solutions of the other two equations are
integral operators on L2(–ε, 0;Rn). In fact, (7) and (8) describe the behavior of the kernels
of them.

Note that (5), (7), and (8) are partial differential equations. The first of them is a stochas-
tic linear equation. Its solution is understood in the mild sense, that is, it is

ψt,θ =
∫ t

max(0,t–θ–ε)

(
Qs,s–t+θ C∗ + �t–θ ,s–t+θ

)
(zs – Cx̂s) ds. (9)

The other two equations are the components of an infinite-dimensional Riccati equation,
the solution of which is understood in the scalar product sense. Applying the scalar prod-
uct sense to these components produces the following integral equations for the kernels
Q and R of them:

Qt,θ =
∫ t

max(0,t–θ–ε)

(
Qs,s–t+θA∗

+ Rs,s–t+θ ,0 – Qs,s–t+θC∗CPs – �t–θ ,s–t+θ CPs
)

ds (10)

and

Rt,θ ,τ = –
∫ t

max(0,t–θ–ε)

(
Qs,s–t+θC∗CQ∗

s,s–t+τ

+ Qs,s–t+θ C∗�∗
t–τ ,s–t+τ + �t–θ ,s–t+θ CQ∗

s,s–t+τ

)
ds. (11)

Therefore, under (5), (7), and (8), it should be understood (9), (10), and (11), respectively.
The domain of ψ and Q is the infinite band

D =
{

(t, θ ) : –ε ≤ θ ≤ 0, t ≥ 0
}

,

depicted in Fig. 1. On its two boundary lines t = 0 and θ = –ε, ψ and Q satisfy zero bound-
ary conditions that together with equations (5) and (7) lead to the value of them in the
interior of D and, more importantly, on its third boundary θ = 0 with its further use in (4)
and (6), respectively.

The domain of R is the triangular cylinder

E =
{

(t, θ , τ ) : –ε ≤ θ ≤ τ ≤ 0, t ≥ 0
}

.



Abuasbeh and Bashirov Boundary Value Problems         (2022) 2022:64 Page 7 of 18

Figure 1 The region D

Figure 2 Bottom view of the region E

Its bottom view is depicted in Fig. 2. On its two boundary faces t = 0 and θ = –ε, R satisfies
a zero boundary condition that together with equation (8) leads to the values of R in the
interior of E and, more importantly, on its third boundary face τ = 0 with its further use
in (7). The values of R can be extended for the case –ε ≤ τ ≤ θ ≤ 0 by use of symmetry
Rr,θ ,τ = R∗

t,τ ,θ .
It could be verified that if �t,θ is continuously differentiable in both its variables, then

the Leibniz rule of differentiation implies that (9), (10), and (11) satisfy (5), (7), and (8),
respectively, in the ordinary sense. However, for general �, the sense of these equations
should be changed respectively.

5 Motivation
Writing �t,θ = Fδθ in (3) produces ϕt = Fwt . Consequently, (2) reduces to the Kalman-
filtering model

⎧
⎨

⎩

x′
t = Axt + Fwt , x0 = ξ , t > 0,

zt = Cxt + wt , z0 = 0, t > 0,
(12)

where the signal and observations are disturbed by the correlated white noises. According
to the Kalman-filtering result, the best estimate x̂ in the filtering problem (12) is a unique
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solution of the equation

x̂′
t = Ax̂t +

(
PtC∗ + F

)
(zt – Cx̂t), x̂0 = 0, t > 0, (13)

where P is a unique solution of the matrix Riccati equation

P′
t = APt + PtA∗ + FF∗ –

(
PtC∗ + F

)(
CPt + F∗), P0 = cov ξ , t > 0. (14)

In this section, we demonstrate that Theorem 1 accepts the case �t,θ = Fδθ as well, that is,
(4)–(8) reduce to (13)–(14) in this case.

First, we demonstrate that �t,θ = Fδθ yields the following explicit form of the solution
of (7) (or (10)):

Qt,θ =

⎧
⎨

⎩

–FCPt if θ = 0 and t > 0,

0 if – ε ≤ θ < 0 or t = 0.
(15)

Indeed, letting t = 0 in (10) immediately implies Q0,θ = 0. Assume –ε ≤ θ < 0. To show that
Qt,θ = 0 in this case, we let �t,θ = Fδθ in (10) and obtain

Qt,θ =
∫ t

max(0,t–θ–ε)

(
Qs,s–t+θA∗

+ Rs,s–t+θ ,0 – Qs,s–t+θC∗CPs – FCPsδs–t+θ

)
ds. (16)

Since s = t –θ belongs to the interval (max(0, t –θ –ε), t] of integration just for θ = 0, under
the assumption –ε ≤ θ < 0 the integral of the last term in (16) vanishes. Therefore,

Qt,θ =
∫ t

max(0,t–θ–ε)

(
Qs,s–t+θ A∗ + Rs,s–t+θ ,0 – Qs,s–t+θ C∗CPs

)
ds. (17)

Next, we deduce Rs,s–t+θ ,0 from (8) or (11). For this, we let �t,θ = Fδθ in (11) and obtain

Rt,θ ,τ = –
∫ t

max(0,t–θ–ε)

(
Qs,s–t+θC∗CQ∗

s,s–t+τ

+ Qs,s–t+θ C∗F∗δs–t+τ + FCQ∗
s,s–t+τ δs–t+θ

)
ds,

which implies

Rt,θ ,0 = –
∫ t

max(0,t–θ–ε)

(
Qs,s–t+θ C∗CQ∗

s,s–t

+ Qs,s–t+θC∗F∗δs–t + FCQ∗
s,s–tδs–t+θ

)
ds. (18)

For the same reason as above, the integral of the last term vanishes if –ε ≤ θ < 0. Therefore,
we obtain

Rt,θ ,0 = –Qt,θ C∗F∗ –
∫ t

max(0,t–θ–ε)
Qs,s–t+θ C∗CQ∗

s,s–t ds,
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implying

Rs,s–t+θ ,0 = –Qs,s–t+θC∗F∗ –
∫ s

max(0,t–θ–ε)
Qr,r–t+θ C∗CQ∗

r,r–s dr.

Using this in (17), we obtain

Qt,θ =
∫ t

max(0,t–θ–ε)
Qs,s–t+θ

(
A∗ – C∗CPs – C∗F∗)ds

–
∫ t

max(0,t–θ–ε)

∫ s

max(0,t–θ–ε)
Qr,r–t+θ C∗CQ∗

r,r–s dr ds

=
∫ t

max(0,t–θ–ε)
Qs,s–t+θ

(

A∗ – C∗CPs – C∗F∗ – C∗C
∫ t

s
Q∗

s,s–r dr
)

ds.

This demonstrates that Qt,θ = 0 if –ε ≤ θ < 0. Using this in (18), we obtain

Rt,θ ,0 = –
∫ t

max(0,t–θ–ε)
FCQ∗

s,s–tδs–t+θ ds

=

⎧
⎨

⎩

–FCQ∗
t,0 if θ = 0 and t > 0,

0 if – ε ≤ θ < 0 or t > 0.

Therefore, from (16),

Qt,θ = –
∫ t

max(0,t–θ–ε)
FCPsδs–t+θ ds,

which implies (15). This reduces (6) to the Riccati equation in (14).
Next, letting �t,θ = Fδθ and using (15), (9) can be evaluated as

ψt,θ =
∫ t

max(0,t–θ–ε)

(
Qs,s–t+θ C∗ + Fδs–t+θ

)
(zs – Cx̂s) ds

=

⎧
⎨

⎩

F(zt – Cx̂t) if θ = 0 and t > 0,

0 if – ε ≤ θ < 0 or t = 0.

This reduces (4) to (13).
Thus, the filtering problem (2) and its equations (4)–(8) reduce to the Kalman-filtering

problem (12) and its equations (13) and (14). In fact, the following happens with ψ and
Q from (5) and (7). The domain D of them from Fig. 1 squeezes to the half-line on which
θ = 0 and t > 0. Respectively, the equations (5) and (7) make the value of ψ and Q on this
half-line to be ψt,0 = F(zt – Cx̂t) and Qt,0 = –FCPt , substitution of which in (4) and (6)
produces the equations of Kalman filter (13) and (14).

Resuming, we see that although Theorem 1 does not include the functions �, which are
composed by use of the delta function, its statement remains valid with them as well. This
can be stated as follows.
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Theorem 2 Let the conditions (A) and (B) hold. Then, equations (4)–(8) of the best esti-
mate in the filtering problem (2) are valid for �t,θ = Fδθ , –ε ≤ θ ≤ 0. In this case, (4)–(8)
reduce to the equations (13) and (14) of the classic Kalman filter.

This theorem motivates a consideration of the relaxing functions �, which are com-
posed by use of the delta function so that they lead to the pointwise delays of white noises.
In other words, we will not squeeze the region D till the half-line, but stay in some medium
position. This is a general idea of our derivation of the equations of the best estimate in
the filtering problem (1).

6 Main result
The following theorem is the main result of this paper.

Theorem 3 Assume that the conditions (A), (B), and (C) hold. Then, the best estimate x̂
in the filtering problem (1) is uniquely determined as a solution of the equation

x̂t = Ax̂t + ψt,0 + PtC∗(zt – Cx̂t), x̂0 = 0, t > 0, (19)

where ψ is a unique solution of

⎧
⎪⎪⎨

⎪⎪⎩

( ∂
∂t + ∂

∂θ
)ψt,θ = Qt,θ C∗(zt – Cx̂t),

ψt,θ = 0, t – λ–1
0 ≤ θ ≤ 0, 0 ≤ t ≤ λ–1

0 ,

ψt,t–λ–1
t

= F(z′
t – Cx̂t), t > 0,

(20)

P is a unique solution of the Riccati equation

P′
t = APt + PtA∗ + Qt,0 + Q∗

t,0 – PtC∗CPt , P0 = cov ξ , t > 0, (21)

Q and R are unique solutions of

⎧
⎪⎪⎨

⎪⎪⎩

( ∂
∂t + ∂

∂θ
)Qt,θ = Qt,θ A∗ + Rt,θ ,0 – Qt,θ C∗CPt ,

Qt,θ = 0, t – λ–1
0 ≤ θ ≤ 0, 0 ≤ t ≤ λ–1

0 ,

Qt,t–λ–1
t

= –FCPt , t > 0,

(22)

and

⎧
⎪⎪⎨

⎪⎪⎩

( ∂
∂t + ∂

∂θ
+ ∂

∂τ
)Rt,θ ,τ = –Qt,θ C∗CQ∗

t,τ ,

Rt,θ ,τ = 0, t – λ–1
0 ≤ θ ≤ τ ≤ 0, 0 ≤ t ≤ λ–1

0 ,

Rt,t–λ–1
t ,τ = –FCQ∗

t,τ , t – λ–1
t ≤ τ < min(0, t – λ–1

0 ), t > 0.

(23)

Moreover, the mean square error of estimation in the filtering problem (1) equals

et = E‖x̂t – xt‖2 = tr Pt .

Before proving the main result the meaning of the equations in Theorem 3 should be
clarified. Two of them, namely, (19) and (21) are ordinary stochastic and deterministic,



Abuasbeh and Bashirov Boundary Value Problems         (2022) 2022:64 Page 11 of 18

respectively, differential equations. The solutions of them are understood in the ordinary
sense. However, (20), (22), and (23) are partial differential equations and to them we apply
solution concepts similar to the partial differential equations from Theorem 1.

The boundary conditions in (20) and (22) are similar. They define ψ and Q definitely to
be 0 on the triangle

G′ =
{

(t, θ ) : t – λ–1
0 ≤ θ ≤ 0, 0 ≤ t ≤ λ–1

0
}

and state the boundary value of them along the curve

C =
{

(t, θ ) : θ = t – λ–1
t , t > 0

}
.

Equations (20) and (22) describe the behavior of ψ and Q, respectively, in the region G
between the curve C, the line segment

L =
{

(t, θ ) : θ = t – λ–1
0 , 0 ≤ t ≤ λ–1

0
}

,

and the interval (λ–1
0 ,∞) on the t-axis (see Fig. 3). For technical reasons, besides the region

G′, we add to G the region

G′′ =
{

(t, θ ) : –ε ≤ θ < t – λ–1
t , t ≥ 0

}

as well, noting that ε comes from (C). Thus, G, G′ and G′′ from Fig. 3 form a partition
of D from Fig. 1. We let ψt,θ = 0 and Qt,θ = 0 for (t, θ ) ∈ G′′. Now, the solution of (20) is
understood in the mild sense. More precisely, it is zero on G′ ∪ G′′ and equals

ψt,θ = F(zλt–θ
– Cx̂λt–θ

) +
∫ t

λt–θ

Qs,s–t+θC∗(zs – Cx̂s) ds (24)

on G. Furthermore, the solution of (22) is zero on G′ ∪ G′′ and is understood as a solution
of the integral equation

Qt,θ = –FCPλt–θ
+

∫ t

λt–θ

(
Qs,s–t+θ A∗ + Rs,s–t+θ ,0 – Qs,s–t+θC∗CPs

)
ds (25)

on G.

Figure 3 The regions G, G′ , and G′′
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Note that ψ and Q from (20) and (22) vanish on G′ because on the interval [0,λ–1
0 ] the

signal system in (1) is noise free. Therefore, letting ψt,0 = 0 and Qt,0 = 0 for 0 ≤ t ≤ λ–1
0 in

(19) and (21) produces the respective equations of a Kalman filter. For this reason, it could
be sufficient to restrict the boundary condition in (20) and (22) from the triangle G′ to its
upper and lower edges.

For discussion of (23), we move the above considerations to three dimensions. The
boundary conditions in (23) define R to be zero on the tetrahedron

H ′ =
{

(t, θ , τ ) : t – λ–1
0 ≤ θ ≤ τ ≤ 0, 0 ≤ t ≤ λ–1

0
}

for the same reason that ψ and Q are zero on G′. Again, it could be sufficient to restrict
the boundary condition in (23) from the tetrahedron H ′ to its lower and front triangular
edges. Additionally, they state its value on the surface

S =
{

(t, θ , τ ) : t – λ–1
t = θ ≤ τ ≤ 0, t > 0

}
.

Equation (23) describes the behavior of R in the region H between the surface S, the tri-
angle

T =
{

(t, θ , τ ) : t – λ–1
0 = θ ≤ τ ≤ 0, 0 ≤ t ≤ λ–1

0
}

and the planes θ = τ and τ = 0 (see Fig. 4). For technical reasons, besides the region H ′ we
add to H the region

H ′′ =
{

(t, θ , τ ) : –ε ≤ θ < t – λ–1
t , θ ≤ τ ≤ 0, t ≥ 0

}

as well (see Fig. 4). Thus, H , H ′, and H ′′ from Fig. 4 form a partition of E from Fig. 2. We
let Rt,θ ,τ = 0 for (t, θ , τ ) ∈ H ′′. Now, the solution of (23) is zero on H ′ ∪ H ′′ and understood
as a solution of the integral equation

Rt,θ ,τ = –FCQ∗
λt–θ ,λt–θ –t+τ –

∫ t

λt–θ

Qs,s–t+θC∗CQ∗
s,s–t+τ ds (26)

on H .

Figure 4 Bottom view of the regions H, H′ , and H′′
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In general, the function λ as a continuous and strictly increasing function and is almost
everywhere differentiable. Hence, by the Leibniz rule of differentiation, the function R
from (26) satisfies (23) for all t > 0 and for almost every θ ∈ [–ε, 0] (as well as for almost
every τ ∈ [–ε, 0]). The same is valid for ψ and Q from (24) and (25).

7 Proof of the main result
It suffices to derive (20), (22), and (23) from (5), (7), and (8) by letting �t,θ = Fδθ+t–λt be-
cause (4) and (19) as well as (6) and (21) are the same, while having the entries ψ , Q, and
R coming from different equations. We start from the derivation of (22) from (7).

We look to the integral form (10) of (7) and substitute �t,θ = Fδθ+t–λt . Then, �t–θ ,s–t+θ =
Fδs–λt–θ

and (10) yields

Qt,θ =
∫ t

max(0,t–θ–ε)

(
Qs,s–t+θA∗

+ Rs,s–t+θ ,0 – Qs,s–t+θC∗CPs – FCPsδs–λt–θ

)
ds. (27)

Taking into account that the inequality t – θ – ε < λt–θ holds by (C), we conclude that the
integral of the term with the delta function is zero if either t < λt–θ or t – θ – ε < λt–θ ≤ 0.
Solving them in θ and taking into account the definitions of the sets G, G′, and G′′, we
conclude that (27) can be written as

Qt,θ =
∫ t

max(0,t–θ–ε)

(
Qs,s–t+θA∗ + Rs,s–t+θ ,0 – Qs,s–t+θC∗CPs

)
ds

–

⎧
⎨

⎩

FCPλt–θ
if (t, θ ) ∈ G,

0 if (t, θ ) ∈ G′ ∪ G′′.
(28)

We claim that Qt,θ = 0 for (t, θ ) ∈ G′ ∪ G′′.
First, let (t, θ ) ∈ G′′. In this case, max(0, t –θ –ε) < s ≤ t implies –ε < s – t +θ ≤ θ < t –λ–1

t

and, therefore,

(t, θ ) ∈ G′′ and max(0, t – θ – ε) < s ≤ t ⇒ (s, s – t + θ ) ∈ G′′. (29)

This will be used below. Letting �t,θ = Fδθ+t–λt in (10), we obtain

Qt,θ =
∫ t

max(0,t–θ–ε)

(
Qs,s–t+θ A∗ + Rs,s–t+θ ,0 – Qs,s–t+θ C∗CPs – FCPsδs–λt–θ

)
ds.

For (t, θ ) ∈ G′′, t < λ–1
t–θ . Therefore, the integral of the term with a delta function vanishes

and we obtain

Qt,θ =
∫ t

max(0,t–θ–ε)

(
Qs,s–t+θ A∗ + Rs,s–t+θ ,0 – Qs,s–t+θ C∗CPs

)
ds. (30)

To substitute R in (30) in terms of Q, we let �t,θ = Fδθ+t–λt in (11) and obtain

Rt,θ ,τ = –
∫ t

max(0,t–θ–ε)

(
Qs,s–t+θC∗CQ∗

s,s–t+τ
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+ Qs,s–t+θ C∗F∗δs–λt–τ + FCQ∗
s,s–t+τ δs–λt–θ

)
ds. (31)

The case (t, θ ) ∈ G′′ assumes t < λt–θ . Therefore,

Rt,θ ,0 = –
∫ t

max(0,t–θ–ε)

(
Qs,s–t+θ C∗CQ∗

s,s–t

+ Qs,s–t+θC∗F∗δs–λt + FCQ∗
s,s–tδs–λt–θ

)
ds

= –
∫ t

max(0,t–θ–ε)
Qs,s–t+θ

(
C∗CQ∗

s,s–t + C∗F∗δs–λt

)
ds. (32)

Then,

Rs,s–t+θ ,0 = –
∫ s

max(0,t–θ–ε)
Qr,r–t+θ

(
C∗CQ∗

r,r–s + C∗F∗δr–λs

)
dr.

Using this in (30), we obtain

Qt,θ =
∫ t

max(0,t–θ–ε)
Qs,s–t+θ

(
A∗ – C∗CPs

)
ds

–
∫ t

max(0,t–θ–ε)

∫ s

max(0,t–θ–ε)
Qr,r–t+θ

(
C∗CQ∗

r,r–s + C∗F∗δr–λs

)
dr ds

=
∫ t

max(0,t–θ–ε)
Qs,s–t+θ Kt,s ds,

where

Kt,s = A∗ – C∗CPs –
∫ t

s
C∗C

(
Q∗

s,s–r + C∗F∗δs–λr

)
dr.

By (29), Q on G′′ is expressed linearly by the values of Q on G′′. This implies that

Qt,θ = 0 if (t, θ ) ∈ G′′.

Now, we assume (t, θ ) ∈ G′. In this case, 0 ≤ s ≤ t implies 0 ≤ s ≤ λ–1
0 and s – λ–1

0 ≤
s – t + θ ≤ 0. Therefore,

0 ≤ s ≤ t ⇒ (s, s – t + θ ) ∈ G′. (33)

This will be used below. For (t, θ ) ∈ G′, we have t – θ – ε ≤ λ–1
0 – ε < 0. Therefore, letting

�t,θ = Fδθ+t–λt in (10), we obtain

Qt,θ =
∫ t

0

(
Qs,s–t+θA∗ + Rs,s–t+θ ,0 – Qs,s–t+θ C∗CPs – FCPsδs–λt–θ

)
ds.

Additionally, in this case, λt–θ ≤ 0 implying

Qt,θ =
∫ t

0

(
Qs,s–t+θA∗ + Rs,s–t+θ ,0 – Qs,s–t+θ C∗CPs

)
ds. (34)
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Performing the same operations with (11) yields

Rt,θ ,0 = –
∫ t

0

(
Qs,s–t+θ C∗CQ∗

s,s–t

+ Qs,s–t+θC∗F∗δs–λt + FCQ∗
s,s–tδs–λt–θ

)
ds

= –
∫ t

0
Qs,s–t+θ

(
C∗CQ∗

s,s–t + C∗F∗δs–λt

)
ds. (35)

Then,

Rs,s–t+θ ,0 = –
∫ s

0
Qr,r–t+θ

(
C∗CQ∗

r,r–s + C∗F∗δr–λs

)
dr.

Substituting this into (34) yields

Qt,θ =
∫ t

0
Qs,s–t+θ

(
A∗ – C∗CPs

)
ds

–
∫ t

0

∫ s

0
Qr,r–t+θ

(
C∗CQ∗

r,r–s + C∗F∗δr–λs

)
dr ds

=
∫ t

0
Qs,s–t+θ

(

A∗ – C∗CPs –
∫ t

s
C∗C

(
Q∗

s,s–r + C∗F∗δs–λr

)
dr

)

ds.

By (33), Q on G′ is expressed linearly by the values of Q on G′. This implies that

Qt,θ = 0 if (t, θ ) ∈ G′.

Resuming, we can update equation (28) for (t, θ ) ∈ G by removing from the interval
(max(0, t – θ – ε), t] of integration those values of s for which (s, s – t + θ ) /∈ G. According
to the definitions of G′ and G′′, these values of s are specified by the inequalities

s – t + θ < s – λ–1
s and s – λ–1

0 ≤ s – t + θ .

Solving these inequalities, we obtain s < λt–θ ≤ 0. Therefore, the interval of integration
in (28) must be (λt–θ , t]. Therefore, (28) in the updated form becomes the same as (25) if
(t, θ ) ∈ G and Qt,θ = 0 if (t, θ ) ∈ G′ ∪ G′′.

Next, we derive (23) from (8) or (11). Letting �t,θ = Fδθ+t–λt in (11), we obtain

Rt,θ ,τ = –
∫ t

max(0,t–θ–ε)

(
Qs,s–t+θC∗CQ∗

s,s–t+τ

+ Qs,s–t+θ C∗F∗δs–λt–τ + FCQ∗
s,s–t+τ δs–λt–θ

)
ds. (36)

Implementing zeros of Q, one can see that Rt,θ ,τ = 0 on the sets H ′ and H ′′. Therefore,
the integral of the first two terms in (36) can be updated to the interval (λt–θ , t]. Then,
the integral of the second term vanishes since θ ≤ τ implies λt–τ ≤ λt–θ and, therefore,
λt–τ remains out of the interval (λt–θ , t] of integration. Finally, the integral of the last term
produces –FCQ∗

λt–θ ,λt–θ –t+τ . Thus, we obtain that (36) in the updated form becomes the
same as (26) if (t, θ , τ ) ∈ H and Rt,θ ,τ = 0 if (t, θ , τ ) ∈ H ′ ∪ H ′′.
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Finally, we turn to (5). Its solution can be written as (9). Letting �t,θ = Fδθ+t–λt and im-
plementing zeros of Q, we find that (9) in the updated form becomes the same as (24) if
(t, θ ) ∈ G and ψt,θ = 0 if (t, θ ) ∈ G′ ∪ G′′. This completes the proof.

8 Numerical aspects
Application of the proposed filter requires a clear determination of the delay as a function
of time. In the example of a spacecraft, discussed in the introduction of this paper, this
means that the trajectory of a spacecraft should be known beforehand and its distance
from the Earth calculated at different instants of the voyage. The filter is seen to be stable
to minor changes in the trajectory.

Another challenge is related to numerical calculations for realization of the filter. Equa-
tions (19)–(23) of the optimal filter from Theorem 3 could be seen as computationally
complex. However, they are quite suitable for numerical calculations. First, they should be
separated into (19)–(20) for the best estimate x̂ and (21)–(23) for P. Equations (21)–(23)
are deterministic. Therefore, initially they can be numerically solved and stored in a com-
puter. Then, (19)–(20) can be solved on the basis of the stored data and timely available
observation input z. In fact, the same idea can be applied to (19)–(20) and (21)–(23).
The distinction is just in the number of equations and arguments. Therefore, we will just
demonstrate this for the relatively simple set of equations (19)–(20) in the case of constant
delay, assuming that λt = t – ε with ε > 0. Then, 0 ≤ t < ∞ and –ε ≤ θ ≤ 0.

Discretize the continuous time argument t by considering

0 = t0 < t1 < · · · < tn < · · · .

Do the same for θ by considering

–ε = θk < θk–1 < · · · < θm < · · · < θ0 = 0.

For simplicity, chose the steps of discretization in both t and θ equal, that is, assume that
tn+1 – tn = θm – θm+1 = h for all n = 0, 1, . . . and m = 0, 1, . . . , k – 1. Let

x̂n = x̂tn , zn = ztn , ψn,m = ψtn ,θm , Pn = Ptn .

Then, using the substitution

x̂′
n+1 ≈ x̂n+1 – x̂n

h
,

we transform (19) to the discrete form

x̂n+1 = x̂n + h
((

A + PnC∗C
)
x̂n + ψn,0 + PnC∗zn

)
,

where zn is the input of the filter. Therefore, we need to determine only ψn,0 to be able to
calculate x̂n+1 on the basis of x̂n. This can be done in k steps by discretization of (20). Note
that the number of such steps reduces to n if 0 ≤ n ≤ k. At this point, observe that the left
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side of (20) is a directional derivative of ψ in the main diagonal direction on the tθ -plane
so that we can use

(
∂

∂t
+

∂

∂θ

)

ψn,m ≈ ψn,m – ψn–1,m+1

h
√

2
.

Based on this, (20) can be discretized as

ψn,m = ψn–1,m+1 + h
√

2Qn–1,m+1C∗(zn–1 – Cx̂n–1).

Thus, for jumping from calculation of x̂n to x̂n+1, there are min(k, n) steps for calculation of
ψn,0. The total number of steps becomes n +

∑n
i=1 min(i, k) ≤ k(n + 1) for calculation of x̂n.

In the case of equations (21)–(23), assuming that discretization of τ is the same as for θ ,
the number of steps increases and is bounded by k(k + 1)(n + 1)/2 because 0 ≤ θ ≤ τ ≤ 0.
These estimations are valid for the case when the state space is one-dimensional. For mul-
tidimensional state space the complexity increases. However, as was mentioned before,
equations (21)–(23) are deterministic, they can be solved beforehand and be presented as
a table of values of P and Q. However, (19)–(20) should be solved timely upon availability
of observation measurements.

9 Conclusion
A delay is an important element in systems theory. Previously, delays in state and control
were investigated and important results in this way were obtained. In the recent papers
[14, 16, 17, 27] it was justified that a delay in noises in either distributed or pointwise forms
is important too. As a continuation of these papers, the present paper proves an important
Kalman-type filtering result in the case of a pointwise delay in the signal noise.
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