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Abstract
The fourth-order discrete Dirichlet boundary value problem is also a discrete elastic
beam problem. In this paper, the existence of infinitely many solutions to this
problem is investigated through the critical point theory. By an important inequality
we established and the oscillatory behavior of f either near the origin or at infinity, we
obtain the existence of infinitely many solutions, which either converge to zero or
unbounded. In the end, two examples are presented to illustrate our results.
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1 Introduction
Let Z and R denote the sets of integers and real numbers, respectively. Define Z(a) =
{a, a + 1, . . .} and Z(a, b) = {a, a + 1, . . . , b} for any a, b ∈ Z with a ≤ b.

In this paper, we consider the following nonlinear fourth-order difference equation:

�2(pk–2�2uk–2
)

= λf (k, uk), k ∈ Z(1, T), (1.1)

with the Dirichlet boundary value conditions

u–1 = u0 = uT+1 = uT+2 = 0, (1.2)

where T is a given positive integer, � is the forward difference operator defined by �uk =
uk+1 – uk , �2uk = �(�uk), pk > 0 for all k ∈ Z(–1, T), f : Z(1, T) ×R→R is continuous in
the second variable.

Boundary value problem (1.1) with (1.2) can be regarded as a discrete analogue of the
following fourth-order boundary value problem:

⎧
⎨

⎩
(p(t)u′′(t))′′ = λf (t, u(t)), t ∈ [0, l],

u(0) = u(1) = u′(0) = u′(l) = 0.
(1.3)
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This problem gives the equilibrium state of a beam under simple bearing forces at both
ends [1, 2]. In the mechanics of materials, the deformation of an elastic beam is usually
modeled by the fourth-order problem (1.3) and some of its variants. For such issues, Agar-
wal [3] and Aftabizadeh [4] discussed the existence and uniqueness of solutions, Bonanno
studied the multiplicity of solutions [5], and Graef et al. explored the existence of positive
solutions [6].

In recent years, due to the wide applications of difference equations [7–9], the discrete
elastic beam problems have attracted extensive attention of scholars. The methods include
the fixed point theorem [10], invariant sets of descending flow [11], bifurcation techniques
[12], etc. In 2003, the critical point theory was first used to prove the existence of pe-
riodic and subharmonic solutions of second-order difference equations [13]. Since then
this method has been widely used to discuss periodic solutions [14], homoclinic solutions
[15–17], and boundary value problems [18–23] for difference equations. In particular, the
critical point theory is also used for boundary value problems of fourth-order difference
equations [14, 23, 24]. Among them, Cai et al. obtained some sufficient conditions for the
existence of at least two nontrivial solutions of the boundary value problem (1.1) with (1.2)
for λ = 1 in [14].

In addition, He and Yu discussed the fourth-order difference equation

�4uk–2 = λakg(uk), k ∈ Z(2, T + 2), (1.4)

with the following boundary value conditions:

u0 = �2u0 = uT+2 = �2uT = 0, (1.5)

where ak > 0 for any k ∈ Z(2, T + 2) in [20]. It is clear that (1.4) is a special case of (1.1)
when pk ≡ 1 for k ∈ Z(–1, T) and f with the form f (k, u) = akg(u). By using the fixed point
theorem, the existence of positive solutions to the boundary value problem (1.4) with (1.5)
is obtained.

This paper aims to establish the existence results of infinite solutions to the boundary
value problem (1.1) with (1.2) by the critical point theorem. To this end, we first construct
a function space E and establish an important inequality between two norms in E, then,
through the oscillation of nonlinear function f at the origin and at infinity, we obtain suffi-
cient conditions for the existence of infinitely many solutions to the elastic beam problem
(1.1) with (1.2).

The rest of this article is organized as follows. In Sect. 2, we establish a variational func-
tional Jλ corresponding to the elastic beam problem (1.1) with (1.2) on the function space
E. And we find that the critical points of Jλ are actually solutions to problem (1.1) with
(1.2). Furthermore, we construct an inequality that plays an important role in proving our
main results. The sufficient conditions for the existence of infinite solutions to problem
(1.1) with (1.2) are established and proved in Sect. 3. In Sect. 4, we give two examples to
illustrate the rationality and applicability of our conclusions.
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2 Preliminaries
In this section, we first establish the variational framework associated with problem (1.1)
with (1.2). We consider the T-dimensional Banach space

E =
{

u : Z(–1, T + 2) →R : u–1 = u0 = uT+1 = uT+2 = 0
}

endowed with the norm

‖u‖ :=

(T+1∑

k=0

(�2uk–1
)2

) 1
2

. (2.1)

For each u ∈ E, define

�(u) =
1
2

T+1∑

k=0

pk–1
(
�2uk–1

)2, �(u) =
T∑

k=1

F(k, uk),

where

F(k, u) :=
∫ u

0
f (k, t) dt.

Define the functional Jλ on E as Jλ(u) = �(u) – λ�(u) for any u ∈ E. Clearly, �, � ∈
C1(E,R), and we have

〈
J ′
λ(u), v

〉
= lim

t→0

Jλ(u + tv) – Jλ(u)
t

=
dJλ(u + tv)

dt

∣∣
∣∣
t=0

=
d
dt

(
1
2

T+1∑

k=0

pk–1
(
�2(uk–1 + tvk–1)

)2 – λ

T∑

k=1

F(k, uk + tvk)

) ∣
∣∣∣
∣
t=0

=
T+1∑

k=0

pk–1�
2uk–1�

2vk–1 – λ

T∑

k=1

f (k, uk)vk

=
(
pk–2�

2uk–2�vk–1
)|T+2

0 –
T∑

k=1

�
(
pk–2�

2uk–2
)
�vk–1 – λ

T∑

k=1

f (k, uk)vk

=
T∑

k=1

(
�2(pk–2�

2uk–2
)

– λf (k, uk)
)
vk

for any u, v ∈ E. This shows that critical points of functional Jλ are solutions to the bound-
ary value problem (1.1) with (1.2).

Now we present the following result obtained by Ricceri in [25], which will be used to
find the critical points of the problem (1.1) with (1.2).

Lemma 2.1 Let E be a real reflexive Banach space. For any x ∈ E, Jλ(x) = �(x) – λ�(x),
where λ ∈R

+ and � , � ∈ C1(E,R) with � coercive, that is, lim‖x‖→+∞ �(x) = +∞.
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Assume that infE � < r, let

α = lim inf
r→+∞ φ(r), β = lim inf

r→(infE �)+
φ(r),

where

φ(r) = inf
u∈�–1(–∞,r)

(supx∈�–1(–∞,r) �(x)) – �(u)
r – �(u)

.

When α = 0 (or β = 0), in the sequel, we agree to read 1/α (or 1/β) as +∞.
(I) If α < +∞, then for each λ ∈ (0, 1

α
) the following alternatives hold: either

(I1) Jλ possesses a global minimum or
(I2) there is a sequence {un} of critical points of Jλ such that limn→+∞ �(un) = +∞.
(H) If β < +∞, then for each λ ∈ (0, 1

β
) the following alternatives hold: either

(H1) there is a global minimum of �, which is a local minimum of Jλ, or
(H2) there is a sequence {un} of pairwise distinct critical points of Jλ with limn→+∞ �(un) =

infE �, which weakly converges to a global minimum of �.

Now we give the following inequality, which plays an important role in the proof of our
main results.

Lemma 2.2 For any u ∈ E, we have

max
k∈Z(1,T)

{|uk|
} ≤ (T + 1)

√
T + 3

4
√

2
‖u‖. (2.2)

Proof Let τ ∈ Z(1, T) be such that

|uτ | = max
k∈Z(1,T)

{|uk|
}

.

Noticing u–1 = u0 = 0, we have

uτ =
τ∑

k=1

�uk–1 =
τ∑

k=1

k∑

j=1

�2uj–2.

By the Cauchy–Schwarz inequality, we have

|uτ | ≤
τ∑

k=1

k∑

j=1

∣
∣�2uj–2

∣
∣

≤
(

τ (τ + 1)
2

) 1
2
(

τ∑

k=1

k∑

j=1

(
�2uj–2

)2
) 1

2

≤
(

τ + 1
2

) 1
2
τ

(
τ∑

k=1

(
�2uk–2

)2
) 1

2

. (2.3)
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Similarly, by the fact that uT+1 = uT+2 = 0, we have

|uτ | ≤
(

T – τ + 2
2

) 1
2

(T – τ + 1)

( T∑

k=τ

(
�2uk

)2
) 1

2

. (2.4)

If

(τ + 1)τ 2

2

τ∑

k=1

(
�2uk–2

)2 ≤ (T + 1)2(T + 3)
32

T+2∑

k=1

(
�2uk–2

)2,

then Lemma 2.1 holds. Otherwise,

(τ + 1)τ 2

2

τ∑

k=1

(
�2uk–2

)2 >
(T + 1)2(T + 3)

32

T+2∑

k=1

(
�2uk–2

)2.

Then

τ∑

k=1

(
�2uk–2

)2 >
(T + 1)2(T + 3)

16(τ + 1)τ 2

T+2∑

k=1

(
�2uk–2

)2

and

T+2∑

k=τ+1

(
�2uk–2

)2 ≤
(

1 –
(T + 1)2(T + 3)

16(τ + 1)τ 2

) T+2∑

k=1

(
�2uk–2

)2.

By (2.4), we have

|uτ |2 ≤ (T – τ + 2)
2

(T – τ + 1)2
(

1 –
(T + 1)2(T + 3)

16(τ + 1)τ 2

)
‖u‖2.

We now show that

(T – τ + 2)
2

(T – τ + 1)2
(

1 –
(T + 1)2(T + 3)

16(τ + 1)τ 2

)
≤ (T + 1)2(T + 3)

32
.

In fact, we consider the function v : [1, T] →R given by

v(s) =
1

s2(s + 1)
+

1
(T – s + 1)2(T – s + 2)

.

Since

v′(s) = –
3s2 + 2s

s4(s + 1)2 +
3(T – s + 1)2 + 2(T – s + 1)

(T – s + 1)4(T – s + 2)2

is increasing in [1, T], and we see that there exists unique s = T+1
2 such that

v′
(

T + 1
2

)
= 0, and

v′(s) < 0 for s ∈
[

1,
T + 1

2

)
, v′(s) > 0 for s ∈

(
T + 1

2
, T

]
.



Chen and Zhou Boundary Value Problems         (2022) 2022:58 Page 6 of 13

Therefore, v attains its minimum at s = T+1
2 , that is,

1
s2(s + 1)

+
1

(T – s + 1)2(T – s + 2)
≥ 2

( T+1
2 )2( T+1

2 + 1)
=

16
(T + 1)2(T + 3)

for s ∈ [1, T]. Since τ ∈ Z(1, T), we have

1
τ 2(τ + 1)

+
1

(T – τ + 1)2(T – τ + 2)
≥ 16

(T + 1)2(T + 3)
,

which is the same as (2.2). �

3 Main results
In this section, we give our main results. Let

μ = lim sup
x→+∞

∑T
k=1 F(k, x)

x2 (3.1)

and

p∗ = min
{

pk , k ∈ Z(1, T)
}

, p∗ = max
{

pk , k ∈ Z(1, T)
}

.

We have the following result.

Theorem 3.1 Suppose that there are two real sequences {ωn}, {cn} with ωn > 0 and
limn→+∞ ωn = +∞ such that

1
2

(p–1 + p0 + pT–1 + pT )c2
n <

16p∗ω2
n

(T + 1)2(T + 3)
for n ∈ Z(1) (3.2)

and

ρ <
2μ

p–1 + p0 + pT–1 + pT
, (3.3)

where

ρ = lim inf
n→∞

∑T
k=1 max|x|≤ωn F(k, x) –

∑T
k=1 F(k, cn)

16p∗ω2
n

(T+1)2(T+3) – 1
2 (p–1 + p0 + pT–1 + pT )c2

n

.

Then, for each λ ∈ ( p–1+p0+pT–1+pT
2μ

, 1
ρ

), problem (1.1) with (1.2) admits an unbounded se-
quence of solutions.

Proof It is obvious that

lim‖u‖→+∞�(u) = lim‖u‖→+∞
1
2

T+1∑

k=0

pk–1
(
�2uk–1

)2 ≥ lim‖u‖→+∞
p∗
2

‖u‖2 = +∞,

which means that �(u) is coercive.
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Define

rn =
16p∗ω2

n
(T + 1)2(T + 3)

.

If u ∈ E and �(u) < rn, then we have the following inequality:

1
2

p∗
T+1∑

k=0

(
�2uk–1

)2 < rn.

Considering Lemma 2.2, for any k ∈ Z(1, T), we have

|uk|2 ≤ (T + 1)2(T + 3)
32

T+1∑

k=0

(
�2uk–1

)2 < ω2
n.

Furthermore, according to the definition of φ, we have

φ(rn) ≤ inf
u∈�–1(–∞,rn)

∑T
k=1 max|x|≤ωn F(k, x) –

∑T
k=1 F(k, uk)

16p∗ω2
n

(T+1)2(T+3) – �(u)
. (3.4)

For any n ∈ Z(1), take (qn)k = cn for k ∈ Z(1, T) and (qn)–1 = (qn)0 = (qn)T = (qn)T+1 = 0,
then qn ∈ E and

�(qn) =
1
2

(p–1 + p0 + pT–1 + pT )c2
n ≤ rn

by exploiting (3.2). Therefore, from (3.4), we have

φ(rn) ≤
∑T

k=1 max|x|≤ωn F(k, x) –
∑T

k=1 F(k, (qn)k)
16p∗ω2

n
(T+1)2(T+3) – �(qn)

=
∑T

k=1 max|x|≤ωn F(k, x) –
∑T

k=1 F(k, cn)
16p∗ω2

n
(T+1)2(T+3) – 1

2 (p–1 + p0 + pT–1 + pT )c2
n

.

Moreover, combining (3.3), it is clear that α ≤ lim infn→+∞ φ(rn) ≤ ρ < +∞.
We assert that Jλ is unbounded from below. In fact, when μ < +∞, since

2λμ > p–1 + p0 + pT–1 + pT ,

there exists ε0 > 0 such that

2λ(μ – ε0) > p–1 + p0 + pT–1 + pT .

From (3.1), we know that there exists a positive sequence {an} with limn→+∞ an = +∞ such
that

T∑

k=1

F(k, an) ≥ (μ – ε0)a2
n.
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For each n ∈ Z(1), define υn ∈ E with (υn)k = an for k ∈ Z(1, T), then we have the following
inequality:

Jλ(υn) =
1
2

T+1∑

k=0

pk–1
(
�2(υn)k–1

)2 – λ

T∑

k=1

F
(
k, (υn)k

)

≤ 1
2

(p–1 + p0 + pT–1 + pT )a2
n – λ(μ – ε0)a2

n

=
1
2
(
p–1 + p0 + pT–1 + pT – 2λ(μ – ε0)

)
a2

n. (3.5)

The above inequality implies limn→+∞ Jλ(υn) = –∞. If μ = +∞, it can be seen that there is
a sequence of positive number {ān} with limn→+∞ ān = +∞ such that

T∑

k=1

F(k, ān) ≥ p–1 + p0 + pT–1 + pT

λ
ā2

n

from the definition of μ. Define ῡn ∈ E as (ῡn)k = ān for k ∈ Z(1, T), then

Jλ(ῡn) =
1
2

T+1∑

k=0

pk–1
(
�2(ῡn)k–1

)2 – λ

T∑

k=1

F
(
k, (ῡn)k

)

≤ –
1
2

(p–1 + p0 + pT–1 + pT )ā2
n → –∞ as n → +∞. (3.6)

By combining (3.5) with (3.6), we can conclude that condition (I1) of Lemma 2.1 does not
hold. Therefore, the functional Jλ has a sequence of critical points with limn→+∞ �(un) =
+∞, which means that the problem (1.1) with (1.2) admits an unbounded sequence of
solutions. �

Corollary 3.2 If there is a sequence of positive numbers {ω̃n} with ω̃n → +∞ as n → +∞
such that

ρ̃ <
2μ

p–1 + p0 + pT–1 + pT
, (3.7)

where

ρ̃ = lim inf
n→∞

(T + 1)2(T + 3)
∑T

k=1 max|x|≤ω̃n F(k, x)
16p∗ω̃2

n
,

then, for each λ ∈ ( p–1+p0+pT–1+pT
2μ

, 1
ρ̃

), problem (1.1) with (1.2) admits an unbounded se-
quence of nontrivial solutions.

Proof Taking cn = 0 for all n ∈ Z(1), it can be easily proved by Theorem 3.1. �

In particular, if the nonlinear function f in (1.1) with the form f (k, u) = akg(u), where
ak > 0 for k ∈ Z(1, T), and pk ≡ 1 for k ∈ Z(–1, T). Then (1.1) reads

�2(pk–2�2uk–2
)

= λakg(uk), k ∈ Z(1, T). (3.8)
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Define

μ̄ = lim sup
x→+∞

Ḡ(x)
x2 ,

where

Ḡ(x) =
∫ x

0
g(s) ds.

Then we have the following.

Corollary 3.3 Suppose that there are two real sequences {ω̄n}, {c̄n} with ω̄n > 0 and
limn→+∞ ω̄n = +∞ such that

1
2

(p–1 + p0 + pT–1 + pT )c̄2
n <

16p∗ω̄2
n

(T + 1)2(T + 3)
for n ∈ Z(1) (3.9)

and

ρ̄ <
2μ̄

p–1 + p0 + pT–1 + pT
, (3.10)

where

ρ̄ = lim inf
n→∞

max|x|≤ω̄n Ḡ(x) – Ḡ(c̄n)
16p∗ω̄2

n
(T+1)2(T+3) – 1

2 (p–1 + p0 + pT–1 + pT )c̄2
n

.

Then, for each λ ∈ 1∑T
k=1 ak

( p–1+p0+pT–1+pT
2μ̄

, 1
ρ̄

), problem (3.8) with (1.2) admits an unbounded
sequence of nontrivial solutions.

Now, we discuss the existence of infinitely many solutions to the boundary value prob-
lem (1.1) with (1.2) by using the oscillatory behavior of the nonlinear function at the origin.

Theorem 3.4 Suppose that there are two real sequences {zn} and {z̄n}, where z̄n > 0 and
limn→+∞ z̄n = 0, such that

1
2

(p–1 + p0 + pT–1 + pT )z2
n <

16p∗z̄2
n

(T + 1)2(T + 3)
for n ∈ Z(1) (3.11)

and

� <
2μ

p–1 + p0 + pT–1 + pT
, (3.12)

where

� = lim inf
n→∞

∑T
k=1 max|x|≤z̄n F(k, x) –

∑T
k=1 F(k, zn)

16p∗ z̄2
n

(T+1)2(T+3) – 1
2 (p–1 + p0 + pT–1 + pT )z2

n

.

Then, for each λ ∈ ( p–1+p0+pT–1+pT
2μ

, 1
�

), problem (1.1) with (1.2) has a sequence of nontrivial
solutions that converges to 0.
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The proof of Theorem 3.4 is similar to that of Theorem 3.1, so we omit it.

Corollary 3.5 Suppose that there is a sequence {z̃n} where z̃n > 0 and limn→+∞ z̃n = 0 such
that

�̄ <
2μ

p–1 + p0 + pT–1 + pT
, (3.13)

where

�̄ = lim inf
n→∞

(T + 1)2(T + 3)
∑T

k=1 max|x|≤z̃n F(k, x)
16p∗z̃2

n
.

Then, for each λ ∈ ( p–1+p0+pT–1+pT
2μ

, 1
�̄

), problem (1.1) with (1.2) has a sequence of nontrivial
solutions that converges to 0.

Considering the boundary value problem (3.8) with (1.2), we have the following result
when the nonlinear function g oscillates at the origin.

Corollary 3.6 Suppose there are two real sequences {bn}, {b̄n} with b̄n > 0 and
limn→+∞ b̄n = 0 such that

1
2

(p–1 + p0 + pT–1 + pT )b2
n <

16p∗b̄2
n

(T + 1)2(T + 3)
for n ∈ Z(1) (3.14)

and

σ <
2μ̄

p–1 + p0 + pT–1 + pT
, (3.15)

where

σ = lim inf
n→∞

max|x|≤b̄n Ḡ(x) – Ḡ(bn)
16p∗b̄2

n
(T+1)2(T+3) – 1

2 (p–1 + p0 + pT–1 + pT )b2
n

.

Then, for each λ ∈ 1∑T
k=1 ak

( p–1+p0+pT–1+pT
2μ̄

, 1
σ

), problem (3.8) with (1.2) admits a sequence of
nontrivial solutions that converges to 0.

4 Examples
Example 4.1 Consider (1.1) with (1.2) when

f (k, u) = f (u) =
(
1 + |u|)(2 + 2ε + 2 sin

(
ε ln

(|u| + 1
))

+ ε cos
(
ε ln

(|u| + 1
)))

for any k ∈ Z(1, T) and ε > 0. Then, for u ≥ 0, it can be obtained by direct calculation

F(k, u) = F(u) =
∫ u

0
f (s) ds = (1 + u)2(1 + ε + sin

(
ε ln(u + 1)

)
– 1 – ε.

Obviously, f (u) ≥ 0 for u ∈R, and F(u) is increasing at (–∞, +∞). Take

ω̃n = e
1
ε ( 3π

2 +2nπ ) – 1, νn = e
1
ε ( π

2 +2nπ ) – 1.
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Then we have limn→+∞ νn = limn→+∞ ω̃n = +∞ and

μ = lim sup
x→+∞

∑T
k=1 F(k, x)

x2 ≥ lim sup
n→+∞

∑T
k=1 F(k,νn)

ν2
n

= (2 + ε)T .

In addition,

ρ̃ = lim inf
n→∞

(T + 1)2(T + 3)
∑T

k=1 F(k, ω̃n)
16p∗ω̃2

n
=

(T + 1)2(T + 3)Tε

16p∗
.

Let ε be sufficiently small such that

(T + 1)2(T + 3)Tε

16p∗
≤ (2 + ε)T

p–1 + p0 + pT–1 + pT
,

which implies that (3.7) of Corollary 3.2 holds. Therefore, by Corollary 3.2, for any
λ ∈ 1

T ( p–1+p0+pT–1+pT
2+ε

, 16p∗
(T+1)2(T+3)ε ), the boundary value problem (1.1) with (1.2) has an un-

bounded sequence of solutions.

Example 4.2 Consider (1.1) with (1.2) when

f (k, u) = f (u) =

⎧
⎨

⎩
u(2 + 2ε + 2 sin(ε2 ln |u|) + ε2 cos(ε2 ln |u|)), u = 0,

0, u = 0,

for any k ∈ Z(1, T) and ε > 0. Then, for u = 0, we have

F(k, u) = F(u) =
∫ u

0
f (s) ds = u2(1 + ε + sin

(
ε2 ln |u|).

It can be seen that f (u) ≥ 0 for u ≥ 0, F(u) is increasing at [0, +∞) and F(–u) = F(u). It is
easy to get that

μ = lim sup
x→+∞

∑T
k=1 F(k, x)

x2 = (2 + ε)T .

Let ζn = e– 1
ε2 ( π

2 +2nπ ), then limn→+∞ ζn = 0, ζn > 0 for n ∈ Z(1). After a simple calculation,
we have

�̄ = lim inf
n→∞

(T + 1)2(T + 3)
∑T

k=1 F(k, ζn)
16p∗ζ 2

n
=

(T + 1)2(T + 3)Tε

16p∗
.

Take ε be small enough such that

(T + 1)2(T + 3)Tε

16p∗
≤ (2 + ε)T

p–1 + p0 + pT–1 + pT
,

which means that (3.13) of Corollary 3.5 holds. Hence, from Corollary 3.5, for any λ ∈
1
T ( p–1+p0+pT–1+pT

2+ε
, 16p∗

(T+1)2(T+3)ε ), the boundary value problem (1.1) with (1.2) admits a se-
quence of solutions which converges to 0.
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