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Abstract
The nonlocal competition in prey and schooling behavior among predators are
incorporated in a delayed diffusive predator–prey model. Our main interest is to study
the dynamic properties of the model generated by nonlocal competition and delay.
We mainly concentrate on the stability and Hopf bifurcation at the coexisting
equilibrium. Compared with the model without nonlocal competition, our results
suggest that nonlocal competition can affect the stability of the coexisting
equilibrium, and induce the stably spatial bifurcating periodic solutions.
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1 Introduction
In the ecological environment, schooling behavior among predators widely exists, such
as wolves, African wild dogs, and lions [1–3]. In [4], Cosner et al. proposed the following
functional response

ϕ(u, v) =
Ce0uv

1 + hCe0uv
.

The biological meanings of the parameters are given in Table 1. Unlike the traditional
functional response (Holling I–III [5]), it is dependent on predator density and increases
with prey and predator densities. This functional response can reflect the schooling be-
havior among predators. Incorporating this functional response, Ryu et al. [6] studied the
following model:

⎧
⎨

⎩

du
dt = ru(1 – u

K ) – Ce0uv2

1+hCe0uv ,
dv
dt = εCe0uv2

1+hCe0uv – μv.
(1.1)
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Table 1 Biological description of parameters

Parameter Definition Parameter Definition

t Time variable x Spatial variable
u Prey density v Predator density
r Prey intrinsic growth rate K Prey carrying capacity
C Capture rate e0 Encounter rate
h Handling time ε Conversion efficiency
μ Death rate of predators τ Gestation delay
d1 Diffusion coefficient of prey d2 Diffusion coefficient of predators

By the scaling

rt = t̄,
u
K

= ū, hCe0Ky = v̄,

1
Ce0(hK)2r

= α,
ε

rh
= β ,

μh
ε

= γ ,
(1.2)

model (1.1) changed to (dropping the bars)

⎧
⎨

⎩

du
dt = u(1 – u) – αuv2

1+uv ,
dv
dt = β( uv2

1+uv – γ v).
(1.3)

All parameters are positive. They mainly studied the saddle-node, Hopf, and Bogdanov–
Takens types of bifurcations at coexisting equilibrium.

In the real world, the living region of prey and predator is inhomogeneous, and diffusion
often occurs. Therefore, it is necessary to consider the spatial effect, such as reaction diffu-
sion. Some work shows that space will affect the dynamic properties of the predator–prey
model, such as spatial pattern, inhomogeneous periodic solution, etc. [7–10]. In addition,
time delays often occur in predator–prey models, such as maturity delay and resource
constraint delay. Time delays often cause spatial oscillations, such as periodic solutions
[11–14].

The resources in nature are limited, there will be competition within the population,
and this competition is usually nonlocal. In [15, 16], the authors modified the u

K as
1
K

∫

�
G(x, y)u(y, t) dy to represent the nonlocal competition, where G(x, y) is some kernel

function. In [17], Wu and Song studied a diffusive predator–prey model with nonlocal ef-
fect and delay, and suggested that steady-state, Hopf, and steady-state Hopf bifurcations
may occur. In [18], Geng et al. studied Hopf, Turing, double-Hopf, and Turing–Hopf bifur-
cations of a diffusive predator–prey model with nonlocal competition. In [19–22], all the
authors show that the nonlocal competition may induce stably spatially inhomogeneous
bifurcating periodic solutions, which is different from the model without nonlocal compe-
tition. Inspired by the above work, we want to analyze the effect of nonlocal competition,
time delay, and spatial diffusion on the model (1.1). Consider the following model

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u(x,t)
∂t = d1
u + u(1 –

∫

�
G(x, y)u(y, t) dy) – αuv2

1+uv ,
∂v(x,t)

∂t = d2
v + β( u(t–τ )v2(t–τ )
1+u(t–τ )v(t–τ ) – γ v), x ∈ �, t > 0

∂u(x,t)
∂ν̄

= ∂v(x,t)
∂ν̄

= 0, x ∈ ∂�, t > 0

u(x, θ ) = u0(x, θ ) ≥ 0, v(x, θ ) = v0(x, θ ) ≥ 0, x ∈ �̄, θ ∈ [–τ , 0].

(1.4)
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The biological descriptions of the parameters are given in Table 1.
∫

�
G(x, y)u(y, t) dy rep-

resents the nonlocal competition effect.
The rest of this paper is organized as follows. In Sect. 2, we study the stability of coexist-

ing equilibrium and the existence of a Hopf bifurcation. In Sect. 3, we study the property
of a Hopf bifurcation. In Sect. 4, we give some numerical simulations to illustrate the the-
oretical results. In Sect. 5, we give a short conclusion.

2 Stability analysis
Choose � = (0, lπ ), and the kernel function G(x, y) = 1

lπ . Denote N as a positive integer
set, and N0 as a nonnegative integer set. (0, 0) and (K , 0) are boundary equilibria of system
(1.4). The existence of positive equilibria of system (1.4) has been studied in [6], that is

Lemma 2.1 ([6]) The existence of positive equilibria of system (1.4) can be divided into
three cases:

• α > αbt := 4(1–γ )
27γ 2 : no positive equilibrium.

• α = αbt and β > γ : one positive equilibrium ( 2
3 , 3γ

2(1–γ ) ).
• α < αbt and β > γ : two distinct equilibria (u1, v1) and (u2, v2), where u1 < 2

3 < u2, and
u1,2 are two roots of u3 – u2 + αγ 2

1–γ
= 0, v1,2 = γ

(1–γ )u1,2
.

2.1 Model with nonlocal competition
Make the following hypothesis

(H0) α ≤ αbt , γ < 1.

If (H0) holds, then system (1.4) has one or two coexisting equilibria. Hereinafter, for
brevity, we denote E∗(u∗, v∗) as the coexisting equilibrium. Linearize system (1.4) at
E∗(u∗, v∗)

∂u
∂t

(
u(x, t)
u(x, t)

)

= D

(

u(t)

v(t)

)

+ L1

(
u(x, t)
v(x, t)

)

+ L2

(
u(x, t – τ )
v(x, t – τ )

)

+ L3

(
û(x, t)
v̂(x, t)

)

, (2.1)

where

D =

(
d1 0
0 d2

)

, L1 =

(
a1 a2

0 –βγ

)

,

L2 =

(
0 0
b1 b2

)

, L3 =

(
–u∗ 0

0 0

)

,

and a1 = u∗v3∗α

(1+u∗v∗)2 > 0, a2 = – u∗v∗(2+u∗v∗)α
(1+u∗v∗)2 < 0, b1 = v2∗β

(1+u∗v∗)2 > 0, b2 = u∗v∗(2+u∗v∗)β
(1+u∗v∗)2 > 0, û =

1
lπ

∫ lπ
0 u(y, t) dy. The characteristic equations are

λ2 + Anλ + Bn + (Cn – b2λ)e–λτ = 0, n ∈N0, (2.2)



Yang et al. Boundary Value Problems         (2022) 2022:56 Page 4 of 15

where

A0 = u∗ – a1 + βγ , B0 = (u∗ – a1)βγ , C0 = –b2(u∗ – a1) – a2b1,

An = (d1 + d2)
n2

l2 + βγ – a1, Bn = d1d2
n4

l4 + (βγ d1 – a1d2)
n2

l2 – a1βγ ,

Cn = –b2d1
n2

l2 + a1b2 – a2b1, n ∈N.

(2.3)

When τ = 0, the characteristic equations (2.2) are

λ2 + (An – b2)λ + Bn + Cn = 0, n ∈N0, (2.4)

where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A0 – b2 = –a1 + u∗ – b2, B0 + C0 = (a1 – u∗)(b2 – βγ ) – a2b1,

An – b2 = n2

l2 (d1 + d2) – a1 + βγ – b2,

Bn + Cn = d1d2
n4

l4 + n2

l2 [–d2a1 + d1(βγ – b2)]

+ a1(b2 – βγ ) – a2b1, n ∈ N.

(2.5)

Make the following hypothesis

(H1) An – b2 > 0, Bn + Cn > 0, for n ∈N0.

Theorem 2.1 For system (1.4), assume τ = 0 and (H0) hold. Then, E∗(u∗, v∗) is locally
asymptotically stable under (H1).

Proof If (H1) holds, we can obtain that the characteristic roots of (2.4) all have negative
real parts. Then, E∗(u∗, v∗) is locally asymptotically stable. �

Let iω (ω > 0) be a solution of Eq. (2.2), then

–ω2 + iωAn + Bn + (Cn – b2iω)(cosωτ – isinωτ ) = 0.

We can obtain cosωτ = ω2(b2An+Cn)–BnCn
C2

n+d2ω2 , sinωτ = ω(AnCn+Bnb2–b2ω2)
C2

n+b2
2ω2 . This leads to

ω4 + ω2(A2
n – 2Bn – b2

2
)

+ B2
n – C2

n = 0. (2.6)

Let z = ω2, then (2.6) becomes

z2 + z
(
A2

n – 2Bn – b2
2
)

+ B2
n – C2

n = 0, (2.7)

and the roots of (2.7) are z± = 1
2 [–Pn ± √

P2
n – 4QnRn], where Pn = A2

k – 2Bk – b2
2, Qn =

Bn + Cn, and Rn = Bn – Cn. If (H0) and (H1) hold, Qn > 0 (n ∈N0). By direct calculation, we
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have

P0 = (a1 – u∗)2 + β2γ 2 – b2
2,

Pk =
(

a1 – d1
k2

l2

)2

+
(

d2
n2

l2 + βγ

)2

– b2
2,

R0 = a2b1 – (a1 – u∗)(b2 + βγ )

Rk = d1d2
k4

l4 + (b2d1 – a1d2 + d1βγ )
k2

l2 + a2b1 – a1b2 – a1βγ , for k ∈N.

Define

W1 = {n|Rn < 0, n ∈N0},
W2 =

{
n|Rn > 0, Pn < 0, P2

n – 4QnRn > 0, n ∈N0
}

,

W3 =
{

n|Rn > 0, P2
n – 4QnRn < 0, n ∈N0

}
,

and

ω±
n =

√
z±

n ,

τ j,±
n =

⎧
⎨

⎩

1
ω±

n
arccos(V (n,±)

cos ) + 2jπ , V (n,±)
sin ≥ 0,

1
ω±

n
[2π – arccos(V (n,±)

cos )] + 2jπ , V (n,±)
sin < 0,

V (n,±)
cos =

(ω±
n )2(b2An + Cn) – BnCn

C2
n + b2

2(ω±
n )2 ,

V (n,±)
sin =

ω±
n (AnCn + Bnb2 – b2(ω±

n )2)
C2

n + b2
2(ω±

n )2 .

(2.8)

We have the following lemma.

Lemma 2.2 Assume (H0) and (H1) hold, then the following results hold.
• Eq. (2.2) has a pair of purely imaginary roots ±iω+

n at τ
j,+
n for j ∈N0 and n ∈W1.

• Eq. (2.2) has two pairs of purely imaginary roots ±iω±
n at τ

j,±
n for j ∈N0 and n ∈W2.

• Eq. (2.2) has no purely imaginary root for n ∈W3.

Lemma 2.3 Assume (H0) and (H1) hold. Then, Re( dλ
dτ

)|
τ=τ

j,+
n

> 0, Re( dλ
dτ

)|
τ=τ

j,–
n

< 0 for n ∈
W1 ∪W2 and j ∈N0.

Proof By (2.2), we have

(
dλ

dτ

)–1

=
2λ + An – b2e–λτ

(Cn – b2λ)λe–λτ
–

τ

λ
.
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Then,

[

Re

(
dλ

dτ

)–1]

τ=τ
j,±
n

= Re

[
2λ + An – b2e–λτ

(Cn – b2λ)λe–λτ
–

τ

λ

]

τ=τ
j,±
n

=
[

1
C2

n + b2
2ω

2

(
2ω2 + A2

n – 2Bn – b2
2
)
]

τ=τ
j,±
n

= ±
[

1
C2

n + b2
2ω

2

√
(
A2

n – 2Bn – b2
2
)2 – 4

(
B2

n – C2
n
)
]

τ=τ
j,±
n

.

Therefore, Re( dλ
dτ

)|
τ=τ

j,+
n

> 0, Re( dλ
dτ

)|
τ=τ

j,–
n

< 0. �

Denote τ∗ = min{τ 0
n |n ∈ W1 ∪ W2}. Note that τ = τ

j,+
m (τ = τ

j,–
m ) may be equal to τ =

τ
j,+
n (τ = τ

j,–
n ), for some m �= n. In this case, high codimensional bifurcation will occur. In

this paper, we do not consider this case. Then, we have the following theorem.

Theorem 2.2 Assume (H0) and (H1) hold, then the following statements are true for system
(1.4).

• E∗(u∗, v∗) is locally asymptotically stable for τ > 0 when W1 ∪W2 = ∅.
• E∗(u∗, v∗) is locally asymptotically stable for τ ∈ [0, τ∗) when W1 ∪W2 �= ∅.
• E∗(u∗, v∗) is unstable for τ ∈ (τ∗, τ∗ + ε) for some ε > 0 when W1 ∪W2 �= ∅.
• Hopf bifurcation occurs at (u∗, v∗) when τ = τ

j,+
n (τ = τ

j,–
n ), j ∈N0, n ∈W1 ∪W2.

2.2 Model without nonlocal competition
The model (1.4) without nonlocal competition is

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u(x,t)
∂t = d1
u + u(1 – u) – αuv2

1+uv ,
∂v(x,t)

∂t = d2
v + β( u(t–τ )v2(t–τ )
1+u(t–τ )v(t–τ ) – γ v), x ∈ �, t > 0

∂u(x,t)
∂ν̄

= ∂v(x,t)
∂ν̄

= 0, x ∈ ∂�, t > 0

u(x, θ ) = u0(x, θ ) ≥ 0, v(x, θ ) = v0(x, θ ) ≥ 0, x ∈ �̄, θ ∈ [–τ , 0].

(2.9)

Linearizing system (1.4) at (u∗, v∗) gives:

(
∂u
∂t
∂v
∂t

)

= d


(
u(t)
v(t)

)

+ L′
1

(
u(t)
v(t)

)

+ L′
2

(
u(t – τ )
v(t – τ )

)

, (2.10)

where

L′
1 =

(
a1 – u∗ a2

0 –βγ

)

, L′
2 =

(
0 0
b1 b2

)

.

The characteristic equations of (2.10) are

λ2 + λA′
n + B′

n +
(
C′

n – b2λ
)
e–λτ = 0, n ∈ N0, (2.11)
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where

A′
n = (d1 + d2)

n2

l2 + βγ + u∗ – a1,

B′
n = d1d2

n4

l4 + (βγ d1 + d2u∗ – a1d2)
n2

l2 + (u∗ – a1)βγ ,

C′
n = –b2d1

n2

l2 + (u∗ – a1)b2 – a2b1, n ∈N0.

When τ = 0, the characteristic Eq. (2.11) reduces to the following equation:

λ2 +
(
A′

n – b2
)
λ + B′

n + C′
n = 0, n ∈ N0, (2.12)

where

⎧
⎪⎪⎨

⎪⎪⎩

A′
n – b2 = n2

l2 (d1 + d2) – a1 + u∗ + βγ – b2,

B′
n + C′

n = d1d2
n4

l4 + n2

l2 [d2(u∗ – a1) + d1(βγ – b2)]

+ (a1 – u∗)(b2 – βγ ) – a2b1.

(2.13)

Make the following hypothesis

(H2) A′
n – b2 > 0, B′

n + C′
n > 0, n ∈N0. (2.14)

Theorem 2.3 For system (2.9), assume τ = 0 and (H0) holds. Then, E∗(u∗, v∗) is locally
asymptotically stable under (H2).

Let iω (ω > 0) be a solution of Eq. (2.10), and z = ω2. Similarly, we can obtain z±
n,w =

1
2 [–P′

n ± √
(P′

n)2 – 4Q′
nR′

n], where P′
n = (A′

k)2 – 2B′
k – b2

2, Q′
n = B′

n + C′
n, and R′

n = B′
n – C′

n. If
(H0) and (H2) hold, Q′

n > 0 (n ∈N0). By direct calculation, we have

P′
0 = P0, R′

0 = R0,

P′
k =

(

a1 – u∗ – d1
k2

l2

)2

+
(

d2
n2

l2 + βγ

)2

– b2
2,

R′
k = d1d2

k4

l4 +
[
d2(u∗ – a1) + d1(b2 + βγ )

]k2

l2 + b2u∗ + (u∗ – a1)βγ , for k ∈N.

Define

W
′
1 =

{
n|R′

n < 0, n ∈N0
}

,

W
′
2 =

{
n|R′

n > 0, P′
n < 0,

(
P′

n
)2 – 4Q′

nR′
n > 0, n ∈N0

}
,

W
′
3 =

{
n|R′

n > 0,
(
P′

n
)2 – 4Q′

nR′
n < 0, n ∈N0

}
,
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and

ω±
n,w =

√

z±
n,w,

τ j,±
n,w =

⎧
⎨

⎩

1
ω±

n,w
arccos(V (n,±)

cos,w ) + 2jπ , V (n,±)
sin,w ≥ 0,

1
ω±

n,w
[2π – arccos(V (n,±)

cos,w )] + 2jπ , V (n,±)
sin,w < 0,

V (n,±)
cos,w =

(ω±
n,w)2(b2A′

n + C′
n) – B′

nC′
n

(C′
n)2 + b2

2(ω±
n,w)2 ,

V (n,±)
sin,w =

ω±
n,w(A′

nC′
n + B′

nb2 – b2(ω±
n,w)2)

(C′
n)2 + b2

2(ω±
n,w)2 .

(2.15)

We have the following lemma.

Lemma 2.4 Assume (H0) and (H1) hold, then the following results hold.
• Eq. (2.11) has a pair of purely imaginary roots ±iω+

n,w at τ
j,+
n,w for j ∈N0 and n ∈W

′
1.

• Eq. (2.11) has two pairs of purely imaginary roots ±iω±
n,w at τ

j,±
n,w for j ∈N0 and n ∈W

′
2.

• Eq. (2.11) has no purely imaginary root for n ∈W
′
3.

Lemma 2.5 Assume (H0) and (H1) hold. Then, Re( dλ
dτ

)|
τ=τ

j,+
n,w

> 0, Re( dλ
dτ

)|
τ=τ

j,–
n,w

< 0 for n ∈
W

′
1 ∪W

′
2 and j ∈N0.

Proof By (2.11), we have

(
dλ

dτ

)–1

=
2λ + A′

n – b2e–λτ

(C′
n – b2λ)λe–λτ

–
τ

λ
.

Then,

[

Re

(
dλ

dτ

)–1]

τ=τ
j,±
n,w

= Re

[
2λ + A′

n – b2e–λτ

(C′
n – b2λ)λe–λτ

–
τ

λ

]

τ=τ
j,±
n,w

=
[

1
(C′

n)2 + b2
2ω

2

(
2ω2 +

(
A′

n
)2 – 2B′

n – b2
2
)
]

τ=τ
j,±
n,w

= ±
[

1
(C′

n)2 + b2
2ω

2

√
((

A′
n
)2 – 2B′

n – b2
2
)2 – 4

((
B′

n
)2 –

(
C′

n
)2)

]

τ=τ
j,±
n,w

.

Therefore, Re( dλ
dτ

)|
τ=τ

j,+
n,w

> 0, Re( dλ
dτ

)|
τ=τ

j,–
n,w

< 0. �

Denote τ ′∗ = min{τ 0
n |n ∈W

′
1 ∪W

′
2}. We have the following theorem.

Theorem 2.4 Assume (H0) and (H1) hold, then the following statements are true for system
(2.9).

• E∗(u∗, v∗) is locally asymptotically stable for τ > 0 when W
′
1 ∪W

′
2 = ∅.

• E∗(u∗, v∗) is locally asymptotically stable for τ ∈ [0, τ ′∗) when W
′
1 ∪W

′
2 �= ∅.

• E∗(u∗, v∗) is unstable for τ ∈ (τ ′∗, τ∗ + ε) for some ε > 0 when W
′
1 ∪W

′
2 �= ∅.

• Hopf bifurcation occurs at (u∗, v∗) when τ = τ
j,+
n,w (τ = τ

j,–
n,w), j ∈N0, n ∈W

′
1 ∪W

′
2.
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3 Property of Hopf bifurcation
By the work [23, 24], we study the property of Hopf bifurcation. For fixed j ∈ N0 and n ∈
W1 ∪W2, we denote τ̃ = τ

j,±
n . Let ū(x, t) = u(x, τ t) – u∗ and v̄(x, t) = v(x, τ t) – v∗. Dropping

the bar, (1.4) can be written as
⎧
⎨

⎩

∂u
∂t = τ [d1
u + (u + u∗)(1 – 1

lπ
∫ lπ

0 (u(y, t) + u∗) dy) – α(u+u∗)(v+v∗)2

1+(u+u∗)(v+v∗) ],
∂v
∂t = τ [d2
v + β(u(t–1)+u∗)(v(t–1)+v∗)2

1+(u(t–1)+u∗)(v(t–1)+v∗) – βγ (v + v∗)].
(3.1)

We rewrite system (3.1) as the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t = τ [d1
u + a1u + a2v – u∗û + α1u2 – uû + α2uv + α3v2

+ α4u3 + α5u2v + α6uv2

+ α7v3] + h.o.t.,
∂v
∂t = τ [d2
v + b1u(t – 1) + b2v(t – 1) – βγ v

+ β1u2(t – 1) + β2u(t – 1)v(t – 1) + β3u2(t – 1)

+ β4u3(t – 1) + β5u2(t – 1)v(t – 1)]

+ β6u(t – 1)v2(t – 1) + β7v3(t – 1)] + h.o.t.,

(3.2)

where α1 = v3∗α

(1+u∗v∗)3 , α2 = – 2v∗α

(1+u∗v∗)3 , α3 = – u∗α

(1+u∗v∗)3 , α4 = – v4∗α

(1+u∗v∗)4 , α5 = v2∗α

(1+u∗v∗)4 , α6 =
(–1+2u∗v∗)α

(1+u∗v∗)4 , α7 = u2∗α

(1+u∗v∗)4 , β1 = – v3∗β

(1+u∗v∗)3 , β2 = 2v∗β

(1+u∗v∗)3 , β3 = u∗β

(1+u∗v∗)3 , β4 = v4∗β

(1+u∗v∗)4 , β5 =

– 3v2∗β

(1+u∗v∗)4 , β6 = (1–2u∗v∗)β
(1+u∗v∗)4 , β7 = – 6u2∗β

(1+u∗v∗)4 .
Define the real-valued Sobolev space X := {(u, v)T : u, v ∈ H2(0, lπ ), (ux, vx)|x=0,lπ = 0}, the

complexification of X XC := X ⊕ iX = {x1 + ix2|x1, x2 ∈ X}, and the inner product 〈ũ, ṽ〉 :=
∫ lπ

0 u1v1 dx +
∫ lπ

0 u2v2 dx for ũ = (u1, u2)T , ṽ = (v1, v2)T , ũ, ṽ ∈ XC. The phase space C :=
C([–1, 0], X) is with the sup norm, then we can write φt ∈ C , φt(θ ) = φ(t +θ ) or –1 ≤ θ ≤ 0.
Denote β

(1)
n (x) = (γn(x), 0)T , β

(2)
n (x) = (0,γn(x))T , and βn = {β (1)

n (x),β (2)
n (x)}, where {β (i)

n (x)}
is an orthonormal basis of X. We define the subspace of C as Bn := span{〈φ(·),β (j)

n 〉β (j)
n |φ ∈

C , j = 1, 2}, n ∈ N0. There exists a 2 × 2 matrix function ηn(σ , τ̃ ) –1 ≤ σ ≤ 0, such that
–τ̃D n2

l2 φ(0) + τ̃L(φ) =
∫ 0

–1 dηn(σ , τ )φ(σ ) for φ ∈ C . The bilinear form on C ∗ ×C is defined
by

(ψ ,φ) = ψ(0)φ(0) –
∫ 0

–1

∫ σ

ξ=0
ψ(ξ – σ ) dηn(σ , τ̃ )φ(ξ ) dξ , (3.3)

for φ ∈ C , ψ ∈ C ∗. Define τ = τ̃ +μ, then the system undergoes a Hopf bifurcation at (0, 0)
when μ = 0, with a pair of purely imaginary roots ±iωn0 . Let A denote the infinitesimal
generators of the semigroup, and A∗ be the formal adjoint of A under the bilinear form
(3.3). Define the following function

δ(n0) =

⎧
⎨

⎩

1 n0 = 0,

0 n0 ∈N.
(3.4)

Choose ηn0 (0, τ̃ ) = τ̃ [(–n2
0/l2)D + L1 + L3δ(nn0 )], ηn0 (–1, τ̃ ) = –τ̃L2, ηn0 (σ , τ̃ ) = 0 for

–1 < σ < 0. Let p(θ ) = p(0)eiωn0 τ̃ θ (θ ∈ [–1, 0]), q(ϑ) = q(0)e–iωn0 τ̃ϑ (ϑ ∈ [0, 1]) be the eigen-
functions of A(τ̃ ) and A∗ corresponds to iωn0 τ̃ , respectively. We can choose p(0) = (1, p1)T ,
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q(0) = M(1, q2), where p1 = 1
a2

(iωn0 + d1n2
0/l2 – a1 + u∗δ(n0)), q2 = a2/(iωn0 – b2eiτωn0 + βγ +

d2n2

l2 ), and M = (1 + p1q2 + τ̃q2(b1 + b2p1)e–iωn0 τ̃ )–1. Then, (3.1) can be rewritten in an ab-
stract form

dU(t)
dt

= (τ̃ + μ)D
U(t) + (τ̃ + μ)
[
L1(Ut) + L2U(t – 1) + L3Û(t)

]

+ F(Ut , Ût ,μ), (3.5)

where

F(φ,μ) = (τ̃ + μ)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α1φ1(0)2 – φ1(0)φ̂1(0) + α2φ1(0)φ2(0)
+ α3φ2(0)2 + α4φ

3
1 (0) + α5φ

2
1 (0)φ2(0)

+ α6φ1(0)φ2
2 (0) + α7φ

3
2 (0)

β1φ
2
1 (–1) + β2φ1(–1)φ2(–1) + β3φ

2
2 (–1)

+ β4φ
3
1 (–1) + β4φ

2
1 (–1)φ2(–1)

+ β6φ1(–1)φ2
2 (–1) + β7φ

3
2 (–1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.6)

respectively, for φ = (φ1,φ2)T ∈ C and φ̂1 = 1
lπ

∫ lπ
0 φ dx. Then, the space C can be decom-

posed as C = P ⊕ Q, where P = {zpγn0 (x) + z̄p̄γn0 (x)|z ∈ C}, Q = {φ ∈ C |(qγn0 (x),φ) =
0 and (q̄γn0 (x),φ) = 0}. Then, system (3.6) can be rewritten as Ut = z(t)p(·)γn0 (x) +
z̄(t)p̄(·)γn0 (x) + ω(t, ·) and Ût = 1

lπ
∫ lπ

0 Ut dx, where

z(t) =
(
qγn0 (x), Ut

)
, ω(t, θ ) = Ut(θ ) – 2 Re

{
z(t)p(θ )γn0 (x)

}
. (3.7)

Then, we have ż(t) = iω)n0τ̃z(t) + q̄(0)〈F(0, Ut),βn0〉. There exists a center manifold C0 and
ω can be written as follows near (0, 0):

ω(t, θ ) = ω
(
z(t), z̄(t), θ

)
= ω20(θ )

z2

2
+ ω11(θ )zz̄ + ω02(θ )

z̄2

2
+ · · · . (3.8)

Then, restrict the system to the center manifold: ż(t) = iωn0 τ̃z(t) + g(z, z̄). Denote g(z, z̄) =
g20

z2

2 + g11zz̄ + g02
z̄2

2 + g21
z2 z̄
2 + · · · . By direct computation, we have

g20 = 2τ̃M(ς1 + q2ς2)I3, g11 = τ̃M(�1 + q2�2)I3, g02 = ḡ20,

g21 = 2τ̃M
[
(κ11 + q2κ21)I2 + (κ12 + q2κ22)I4

]
,

where I2 =
∫ lπ

0 γ 2
n0 (x) dx, I3 =

∫ lπ
0 γ 3

n0 (x) dx, I4 =
∫ lπ

0 γ 4
n0 (x) dx, ς1 = –δn + α1 + α2ξ + α3ξ

2,
ς2 = e–2iτωn (β1 + ξ (β2 + β3ξ )), �1 = 1

4 (2α1 – 2δn + α2ξ̄ + α2ξ + 2α3ξ̄ ξ ), �2 = 1
4 (2β1 + 2β3ξ̄ ξ +

β2(ξ̄ + ξ )), κ11 = 2W (1)
11 (0)(–1 + 2α1 – δn + α2ξ ) + 2W (2)

11 (0)(α2 + 2α3ξ ) + W (1)
20 (0)(–1 +

2α1 – δn + α2ξ̄ ) + W (2)
20 (0)(α2 + 2α3ξ̄ ), κ12 = 1

2 (3α4 + α5(ξ̄ + 2ξ ) + ξ (2α6ξ̄ + α6ξ + 3α7ξ̄ ξ )),
κ21 = 2e–iτωn W (1)

11 (–1)(2β1 +β2ξ ) + 2e–iτωn W (2)
11 (–1)(β2 + 2β3ξ ) + eiτωn W (1)

20 (–1)(2β1 +β2ξ̄ ) +
eiτωn W (2)

20 (–1)(β2 + 2β3ξ̄ ), κ22 = 1
2 e–iτωn (3β4 + β5(ξ̄ + 2ξ ) + ξ (2β6ξ̄ + β6ξ + 3β7ξ̄ ξ )).

Now, we compute W20(θ ) and W11(θ ) for θ ∈ [–1, 0] to give g21. By (3.7), we have

ω̇ = U̇t – żpγn0 (x) – ˙̄zp̄γn0 (x) = Aω + H(z, z̄, θ ), (3.9)
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where

H(z, z, θ ) = H20(θ )
z2

2
+ H11(θ )zz + H02(θ )

z2

2
+ · · · . (3.10)

Compared the coeffcients of (3.8) with (3.9), we have

(A – 2iωn0 τ̃ I)ω20 = –H20(θ ), Aω11(θ ) = –H11(θ ). (3.11)

Then, we have

ω20(θ ) =
–g20

iωn0 τ̃
p(0)eiωn0 τ̃ θ –

ḡ02

3iωn0 τ̃
p̄(0)e–iωn0 τ̃ θ + E1e2iωn0 τ̃ θ ,

ω11(θ ) =
g11

iωn0 τ̃
p(0)eiωn0 τ̃ θ –

ḡ11

iωn0 τ̃
p̄(0)e–iωn0 τ̃ θ + E2,

(3.12)

where E1 =
∑∞

n=0 E(n)
1 , E2 =

∑∞
n=0 E(n)

2 ,

E(n)
1 =

(

2iωn0 τ̃ I –
∫ 0

–1
e2iωn0 τ̃ θ dηn0 (θ , τ̄ )

)–1

〈F̃20,βn〉,

E(n)
2 = –

(∫ 0

–1
dηn0 (θ , τ̄ )

)–1

〈F̃11,βn〉, n ∈N0,

〈F̃20,βn〉 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
lπ F̂20, n0 �= 0, n = 0,

1
2lπ F̂20, n0 �= 0, n = 2n0,
1

lπ F̂20, n0 = 0, n = 0,

0, other,

〈F̃11,βn〉 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
lπ F̂11, n0 �= 0, n = 0,

1
2lπ F̂11, n0 �= 0, n = 2n0,
1

lπ F̂11, n0 = 0, n = 0,

0, other,

(3.13)

and F̂20 = 2(ς1,ς2)T , F̂11 = 2(�1,�2)T .
Thus, we can obtain

c1(0) =
i

2ωnτ̃

(

g20g11 – 2|g11|2 –
|g02|2

3

)

+
1
2

g21, μ2 = –
Re(c1(0))
Re(λ′(τ̃ ))

,

T2 = –
1

ωn0 τ̃

[
Im

(
c1(0)

)
+ μ2 Im

(
λ′(τ j

n
))]

, β2 = 2 Re
(
c1(0)

)
.

(3.14)

Theorem 3.1 For any critical value τ
j
n (n ∈ S, j ∈N0), we have the following results:

• When μ2 > 0 (resp., <0), the Hopf bifurcation is forward (resp., backward).
• When β2 < 0 (resp., >0), the bifurcating periodic solutions on the center manifold are

orbitally asymptotically stable (resp., unstable).
• When T2 > 0 (resp., T2 < 0), the period increases (resp., decreases).
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Figure 1 Bifurcation diagram of system (1.4) for β and τ . (Left: model (1.4). Right: model (2.9))

Table 2 Some parameters for model (1.4) with different ξ

β τ∗ μ2 β2 T2

0.18 89.9073 1.5764× 107 –565.8943 1467.4131
0.5 10.3066 257.2119 –0.4447 1.3340

4 Numerical simulations
To study the effect of nonlocal competition, we also give numerical simulations for models
(1.4) and (2.9). Fix the following parameters:

α = 1.2, γ = 0.25, d1 = 0.1, d2 = 0.3, l = 0.8.

System (1.4) has two positive equilibria E1 ≈ (0.4126, 0.8079) and E2 ≈ (0.8670, 0.3845).
Since E2 is always unstable, we mainly analyze the stability of E1. We can obtain the
bifurcation diagrams of systems (1.4) and (2.9) with β (Fig. 1), where β1 ≈ 0.1929 and
(β2, τ2) ≈ (0.2064, 80.1787). We also compute some parameters for model (1.4) with dif-
ferent β (Table 2).

From Fig. 1, we can see that increasing β is no benefit to the stability of coexisting equi-
librium. For the model (2.9), a spatially inhomogeneous periodic solution curve does not
exist. For the model (1.4), when 0 < β < β1, the stability of the coexistence equilibrium
E1 is similar to model (2.9). When β > β1, the spatially inhomogeneous periodic solution
curve (τ 0

1 ) exists, and is larger than the spatially homogeneous periodic solution curve
(τ 0

0 ) for β1 < β < β2. This means that the spatially homogeneous periodic solution will ap-
pear first, and the spatially inhomogeneous periodic solution is usually unstable. However,
when β > β2, the spatially inhomogeneous periodic solution curve (τ 0

1 ) is smaller than the
spatially homogeneous periodic solution curve (τ 0

0 ). This means that the spatially inho-
mogeneous periodic solution will appear first, and may be asymptotically stable.

Choose β = 0.18, when τ < τ∗ ≈ 89.9073, the coexistence equilibrium E1 is asymptoti-
cally stable for models (1.4) and (2.9) (Fig. 2). When τ > τ∗, the coexistence equilibrium E1

is unstable and the spatial homogeneous periodic solution appears for models (1.4) and
(2.9) (Fig. 3).

Choose β = 0.5, when τ < τ∗ ≈ 10.3066, the coexistence equilibrium E1 is asymptotically
stable for models (1.4) and (2.9) (Fig. 4). However, when τ∗ < τ < τ 0

0 ≈ 19.7545, for model
(1.4) the coexistence equilibrium E1 is unstable and the spatial homogeneous periodic so-
lution does not exist. The stably spatial inhomogeneous periodic solution appears (Fig. 5
left). However, for the model (2.9), the coexistence equilibrium E1 is still asymptotically
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Figure 2 Numerical simulations for prey population with β = 0.18 τ = 22. (Left: model (1.4). Right: model
(2.9))

Figure 3 Numerical simulations for prey population with β = 0.18 τ = 22. (Left: model (1.4). Right: model
(2.9))

Figure 4 Numerical simulations for prey population with β = 0.5 τ = 5. (Left: model (1.4). Right: model (2.9))

stable (Fig. 5 right). When τ > τ 0
0 , for model (1.4), the coexistence equilibrium E1 is un-

stable and the unstably spatial homogeneous periodic solution exists. The stably spatial
inhomogeneous periodic solution still exists (Fig. 6 left). However, for the model (2.9), the
coexistence equilibrium (u∗, v∗) is unstable, and the stably spatial homogeneous periodic
solution appears (Fig. 6 right).

5 Conclusion
In this paper, we study a delayed diffusive predator–prey model with nonlocal competi-
tion in prey and schooling behavior among predators. We mainly study the local stability
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Figure 5 Numerical simulations for prey population with β = 0.5 τ = 12. (Left: model (1.4). Right: model (2.9))

Figure 6 Numerical simulations for prey population with β = 0.5 τ = 22. (Left: model (1.4). Right: model (2.9))

of coexisting equilibrium and the existence of Hopf bifurcation. We also studied the prop-
erty of bifurcating periodic solutions by the normal form method and center manifold
theorem. Our results show that diffusion and delay can induce a spatially inhomogeneous
periodic solution, which is usually unstable. However, the model incorporating nonlocal
competition may have a stably spatially inhomogeneous periodic solution.
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