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Abstract
We study the Dirichlet problem for the prescribed mean curvature equation in
Minkowski space

⎧
⎪⎨

⎪⎩

M(u) + vα = 0 in B,

M(v) + uβ = 0 in B,

u|∂B = v|∂B = 0,

whereM(w) = div( ∇w√
1–|∇w|2 ) and B is a unit ball inRN(N ≥ 2). We use the index theory

of fixed points for completely continuous operators to obtain the existence,
nonexistence and uniqueness results of positive radial solutions under some
corresponding assumptions on α, β .
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1 Introduction and main results
Consider the Dirichlet problem of a quasilinear differential system of the type

⎧
⎪⎪⎨

⎪⎪⎩

M(u) + vα = 0 in B,

M(v) + uβ = 0 in B,

u|∂B = v|∂B = 0,

(1.1)

where M stands for the mean curvature operator in Minkowski space

M(w) := div

( ∇w
√

1 – |∇w|2
)

,

B = {x ∈R
N : |x| < 1}, N ≥ 2 is an integer.

Minkowski-curvature equations are quasilinear second-order PDEs, and there are im-
portant applications in differential geometry and the theory of relativity. Geometrically,
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these are related to maximal and constant mean curvature spacelike hypersurfaces having
the property that the trace of the extrinsic curvature is zero, respectively, constant (see
[12]).

It is known (see [1]) that the study of spacelike submanifolds of codimension one in the
flat Minkowski space L

N+1 (LN+1 := {(x, t) : x ∈ R
N , t ∈ R} endowed with the Lorentzian

metric
∑N

j=1(dxj)2 – (dt)2, where (x, t) are the canonical coordinates in R
N+1) with pre-

scribed mean extrinsic curvature, can lead to the type

Mv = H(x, v) in �, v = 0 on ∂�, (1.2)

where � is a bounded domain in R
N and the nonlinearity H : � ×R → R is continuous.

The existence and multiplicity of positive solutions of problem (1.2) have been discussed
in the last two decades by several authors (see [1–7, 15, 16, 20, 22, 23]) in connection
with various configurations of H . If � is a bounded domain and H is a bounded function
defined on �×R, Bartnik and Simon [1] proved that the problem (1.2) has a strictly space-
like solution. In particular, if � = BR := {x ∈R

N : |x| < R} with R > 0, Bereanu, Jebelean and
Torres [2, 3] established some existence/nonexistence and multiplicity results for positive
radial solutions of problem (1.2) via a Leray–Schauder degree argument and critical point
theory. In [6, 7, 15, 20], by using the bifurcation method, the authors studied the existence,
multiplicity, and the global behavior of positive solutions of problem (1.2) with H = λf (x, v)
on the unit ball. However, to the authors’ best knowledge, the study of the Dirichlet prob-
lem of a quasilinear differential system with mean curvature operator M seems to be in
its early stages, we refer the reader to [10–13, 16, 17, 21] and the references therein. For
instance, Gurban et al. [11] investigated the following two-parameter problem

⎧
⎪⎪⎨

⎪⎪⎩

M(u) + λ1g1(|x|, u, v) = 0 in B,

M(v) + λ2g2(|x|, u, v) = 0 in B,

u|∂B = v|∂B = 0.

(1.3)

By using the fixed-point index, they obtained the following results:

Theorem A Suppose gi : [0, 1] × [0,∞)2 → [0,∞), i = 1, 2 are continuous, quasimonotone
nondecreasing with respect to both s, t and satisfy for every r ∈ (0, 1],

gi(r, s, t) > 0, ∀s, t > 0, g1(r, ξ , 0) = g2(r, 0, ξ ) = 0, ∀ξ > 0

and

∫ b

0
τN–1gi(τ ,α,α) dτ > 0, i = 1, 2,

where b ∈ (0, 1), 0 < α < 1 – b are constants. Then, there exist λ∗
1 > 0 < λ∗

2 such that for all
λ1 > λ∗

1 and λ2 > λ∗
2, problem (1.3) has at least one positive radial solution. Note that (1.1)

is a special case of (1.3) and Theorem A does not cover the case where λ1 = λ2 = 1.
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In 2015, Zhang and Qi [24] studied the following system coupled by Monge–Ampère
equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

det D2u1 = (–u2)α in �,

det D2u2 = (–u1)β in �,

u1 < 0, u2 < 0 in �,

u1 = 0, u2 = 0 on ∂�,

(1.4)

where � is a ball in R
N , N ≥ 2, α > 0, β > 0, det D2u stands for the determinant of the

Hessian matrix ( ∂2u
∂xi∂xj

) of u. By reducing it to a system coupled by ODEs and using the
fixed-point index, they obtained the existence, uniqueness results and nonexistence of
radial convex solutions under some corresponding assumptions on α, β .

Motivated by these studies, the main objective of this paper is to investigate the exis-
tence/nonexistence and uniqueness of positive radial solutions for system (1.1) on the unit
ball B mainly by the fixed-point index in a cone in the same way as in [24]. Our results are
completely new and complementary to the results of [11].

We obtain:

Theorem 1.1 System (1.1) has a positive radial solution if α > 0, β > 0 and αβ < 1.

Theorem 1.2 Let α > 0, β > 0 and αβ < 1, then system (1.1) has a unique positive radial
solution.

Theorem 1.3 If α > 0, β > 0 and αβ = 1, then system (1.1) has no positive radial solution.

This paper is organized as follows: In Sect. 2, some preliminaries are given; in Sect. 3,
we obtain the main results.

2 Preliminaries
In order to present the existence results of positive radial solutions for system (1.1), setting
r = |x| and u(|x|) = u(r), v(|x|) = v(r), the system (1.1) reduces to the homogeneous mixed
boundary-value problem:

⎧
⎪⎪⎨

⎪⎪⎩

(rN–1φ(u′))′ + rN–1vα = 0,

(rN–1φ(v′))′ + rN–1uβ = 0,

u′(0) = u(1) = 0 = v(1) = v′(0).

(2.1)

By a solution of (2.1) we mean a couple of nonnegative functions (u, v) ∈ C1[0, 1] ×
C1[0, 1] with ‖u′‖ < 1, ‖v′‖ < 1 and r �→ rN–1φ(u′(r)), r �→ rN–1φ(v′(r)) of class C1 on [0, 1],
which satisfies problem (2.1). Here and below, ‖ · ‖ stands for the usual sup-norm on
C := C[0, 1].

The following lemma is a direct consequence of [18, Lemma 2.2].

Lemma 2.1 For any u ∈ C([0, 1], [0,∞)) for which u′(r) is decreasing in [0, 1] we have

min
r∈[ 1

4 , 3
4 ]

u(r) ≥ 1
4
‖u‖.
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Lemma 2.2 ([14]) Let φ(s) := s/
√

1 – s2. Then, φ–1(s) = s/
√

1 + s2 and

φ–1(s1)φ–1(s2) ≤ φ–1(s1s2) ≤ s1s2, ∀s1, s2 ∈ [0,∞).

In particular, for 0 < s1 ≤ 1 we have

φ–1(s1s2) ≥ s1φ
–1(s2).

Define P to be a cone in C by

P =
{

u ∈ C : u(t) > 0, t ∈ [0, 1], and min
t∈[ 1

4 , 3
4 ]

u(t) ≥ 1
4
‖u‖

}

.

Define PR = {u ∈ P : ‖u‖ < R} for R > 0.
For each u ∈ P, we define two solution operators Ti : P → P (i = 1, 2) as follows:

(T1u)(r) =
∫ 1

r
φ–1

(
1

tN–1

∫ t

0
sN–1uα ds

)

dt (2.2)

and

(T2u)(r) =
∫ 1

r
φ–1

(
1

tN–1

∫ t

0
sN–1uβ ds

)

dt. (2.3)

From [19], we know that each operator Ti, i = 1, 2 is a nonnegative concave function,
this combines with Lemma 2.1, we have Ti : P → P is a completely continuous operator.
Define a composite operator T = T1 ◦ T2, which is also completely continuous from P to
itself. This implies from (2.2) and (2.3) that (v1, v2) ∈ C1[0, 1] × C1[0, 1] is the solution of
(2.1) if and only if v1 = T1v2, v2 = T2v1, where (v1, v2) ∈ P \ {0} × P \ {0}.

Thus, if v1 ∈ P \ {0} is a fixed point of T , define v2 = T2v1, then v2 ∈ P \ {0} so that
(v1, v2) ∈ C1[0, 1] × C1[0, 1] solves (1.1); conversely, if (v1, v2) ∈ C1[0, 1] × C1[0, 1] solves
(1.1), then v1 must be a nonzero fixed point of T in P. Hence, our task is to search for
nonzero fixed points of T .

Lemma 2.3 ([8]) Let E be a Banach space and K a cone in E. For r > 0, define Kr = K ∩ Br .
Assume that T : K̄r → K is completely continuous such that Tx �= x for x ∈ ∂Kr = {x ∈ K :
‖x‖ = r}.

(i) If ‖Tx‖ ≥ ‖x‖ for x ∈ ∂Kr , then i(T , Kr , K) = 0.
(ii) If ‖Tx‖ ≤ ‖x‖ for x ∈ ∂Kr , then i(T , Kr , K) = 1.

Definition 2.4 ([9, 18]) Let K be a cone in real Banach space Y . Let A : K → K and u0 > θ ,
where θ denotes the zero element Y .

(i) For any x > θ , there exist θ1, θ2 > 0 such that

θ1u0 ≤ A(x) ≤ θ2u0.

(ii) For any αu0 ≤ x ≤ βu0 and t ∈ (0, 1), there exists some η > 0 such that

A(tx) ≥ (1 + η)tAx.

Then, A is called u0-sublinear.
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Lemma 2.5 ([9, 18]) An increasing and u0-sublinear operator T can have at most one
positive fixed point.

3 Proof of main results
Proof of Theorem 1.1 By Lemma 2.2 and the definition of T2, for each u ∈ P, we have

‖T2u‖ =
∫ 1

0
φ–1

(
1

tN–1

∫ t

0
sN–1uβ ds

)

dt

≥
∫ 3

4

1
4

φ–1
(

1
tN–1

∫ t

1
4

sN–1
(

1
4
‖u‖

)β

ds
)

dt

≥
∫ 3

4

1
4

φ–1
((

1
4
‖u‖

)β)∫ t

1
4

(
s
t

)N–1

ds dt

= φ–1
((

1
4
‖u‖

)β)∫ 3
4

1
4

∫ t

1
4

(
s
t

)N–1

ds dt

≥ �1φ
–1(‖u‖β

)
,

where �1 is a positive constant given by

�1 =
1

4β

∫ 3
4

1
4

∫ t

1
4

(
s
t

)N–1

ds dt.

By using the same method, we can obtain

‖T1u‖ ≥ �1φ
–1(‖u‖α

)
.

Hence, we have

∥
∥T(u)

∥
∥ =

∥
∥T1 ◦ T2(u)

∥
∥

≥ �1φ
–1(‖T2u‖α

)

≥ �1+α
1 φ–1((φ–1(‖u‖β

))α)

≥ 1√
2
�1+α

1
‖u‖αβ

(1 + ‖u‖2β ) α
2

,

which implies that

‖Tu‖ ≥ �2
‖u‖αβ

(1 + ‖u‖2β ) α
2

, (3.1)

where �2 = 1√
2�1+α

1 .
On the other hand, for each u ∈ P, we have

‖T2u‖ =
∫ 1

0
φ–1

(
1

tN–1

∫ t

0
sN–1uβ (s) ds

)

dt

≤
∫ 1

0
φ–1

(
1

tN–1

∫ t

0
sN–1‖u‖β ds

)

dt
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≤
∫ 1

0
φ–1(‖u‖β

)
dt

≤ ‖u‖β .

In the same way, we can obtain

‖T1u‖ ≤ ‖u‖α .

Moreover,

‖Tu‖ ≤ ∥
∥T1 ◦ T2(u)

∥
∥ ≤ ‖u‖αβ . (3.2)

Now, let us consider the case of αβ < 1. Since lims→0
sαβ–1

(1+s2β )
α
2

= ∞, there exists R1 ∈ (0, 1)
small enough such that for every u ∈ P satisfying ‖u‖ = R1, we have

�2
‖u‖αβ–1

(1 + ‖u‖2β ) α
2

> 1.

Now, by (3.1), we have

‖Tu‖ > ‖u‖.

Moreover, by (3.2), we know that there exists R2 > R1, and for each u ∈ P satisfying ‖u‖ = R2

it holds that

‖Tu‖ < ‖u‖.

By Lemma 2.3, we have

i(T , PR1 , P) = 0, i(T , PR2 , P) = 1.

Therefore, i(T , PR2 \ P̄R1 , P) = 1, which implies that T has a fixed-point u1 ∈ PR2 \ P̄R1 . �

Remark 3.1 Bereanu et al. [3] studied the existence and multiplicity of positive radial so-
lutions for the problem

Mu + λuq = 0 in B, u = 0 on ∂B, (3.3)

where q > 1. By using the Leray–Schauder degree argument and critical point theory, they
obtained a sharper result: there exists 
 > 0 such that problem (3.3) has zero, at least
one or at least two positive radial solutions according to λ ∈ (0,
), λ = 
 or λ > 
. In
[11], Gurban et al. investigated the existence of positive radial solutions for the Dirichlet
problem of a quasilinear differential system of type

⎧
⎪⎪⎨

⎪⎪⎩

M(u) + λ1up1 vq1 = 0 in B,

M(v) + λ2up2 vq2 = 0 in B,

u|∂B = v|∂B = 0,

(3.4)
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where p1, q2 are nonnegative, while q1, p2 are positive exponents. By using the fixed-point
index, they proved that there exist λ∗

i > 0, such that for all λ > λ∗
i , system (3.4) has a positive

radial solution (u, v). We note that the relationship between 
 and 1 (λ∗
i and 1) is still

uncertain. For the same reason, in this paper, if αβ > 1, it is difficult to obtain any results
in the case of λi = 1, i = 1, 2.

Next, we can further prove that the positive radial solution obtained in Theorem 1.1 is
the unique positive radial solution to problem (1.1).

Proof of Theorem 1.2 By the definitions of T1 and T2, it is clear that T1 and T2 are both
increasing operators induced by K , where K := {u ∈ C[0, 1] : u(t) ≥ 0, t ∈ [0, 1]} is a cone in
C[0, 1]. Obviously, P ⊂ K . Let T = T1 ◦ T2. Then, by Theorem 1.1, if we want to obtain the
solution of system (1.1), we only need to prove that T has at most one fixed-point in K .
Furthermore, by Lemma 2.5, it suffices to verify that T : K → K is u0-sublinear for some
u0 positive in C[0, 1]. First, let us show that T2 satisfies the Definition 2.4(i). In fact,

(T2u)(r) =
∫ 1

r
φ–1

(
1

tN–1

∫ t

0
sN–1uβ ds

)

dt

≤
∫ 1

r
φ–1

(
1

tN–1

∫ t

0
sN–1‖u‖β ds

)

dt

≤
∫ 1

r
φ–1

(‖u‖β

tN–1
tN

N

)

dt

≤
∫ 1

r
φ–1

(‖u‖β

N
t
)

dt

≤ 1
2

‖u‖β

N
(
1 – r2)

≤ ‖u‖β

N
(1 – r).

Now, let u0 = 1 – r, r ∈ [0, 1] and θ2 = ‖u‖β

N , then T2(u)(r) ≤ θ2u0.
Next, let c ∈ (0, 1) be a fixed number and �3 = φ–1( 1

cN–1

∫ c
0 sN–1uβ (s) ds). Note that

T2(u)(r) decreases with the variable r, then we obtain that

T2(u)(r) ≥ T2u(c) ≥ �3(1 – c), r ∈ [0, c].

By Lemma 2.2 and the fact that r ∈ [c, 1], we have

(T2u)(r) ≥
∫ 1

r
φ–1

(
1

tN–1

∫ t

0
sN–1

(
1
4
‖u‖

)β

ds
)

dt

=
∫ 1

r
φ–1

( ( 1
4‖u‖)β

N
t
)

dt

≥ φ–1
( ( 1

4‖u‖)β

N

)∫ 1

r
t dt
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≥ φ–1
( ( 1

4‖u‖)β

N

)∫ 1

r
c dt

≥ cφ–1
( ( 1

4‖u‖)β

N

)

(1 – r) dt.

Choose �′
3 = min{�3, cφ–1( ( 1

4 ‖u‖)β

N )}. Then, we have T2(u)(r) ≥ �′
3(1 – c)(1 – r). Now, if we

take θ1 = �′
3(1 – c), then θ1u0 ≤ T2(u) ≤ θ2u0, which satisfies Definition 2.4(i). Similarly, T1

also satisfies Definition 2.4(i). This implies that the operator T satisfies Definition 2.4(i).
Secondly, we prove that for any θ1u0 ≤ x ≤ θ2u0 and ξ ∈ (0, 1), there exists some η > 0

such that

T(ξu) ≥ (1 + η)ξTu.

From the definition of T1 and T2, it is easy to obtain

T2(ξx) ≥ ξβ (T2x), T1(ξx) ≥ ξα(T1x).

Moreover, for 0 < αβ < 1, there exists η > 0 such that

T(ξx) ≥ T1 ◦ (
ξβT2(x)

) ≥ ξαβT1 ◦ T2(x) ≥ (1 + η)ξTx,

which implies that T satisfies Definition 2.4(ii). Then, T is u0-sublinear and T has at most
one fixed-point in K by Lemma 2.5. Therefore, the system (1.1) has a unique positive radial
solution. �

Finally, we prove the nonexistence results.

Proof of Theorem 1.3 Suppose on the contrary that T has a positive fixed point v0 ∈ P,
then ‖v0‖ = ‖Tv0‖ and v0 is a concave function satisfying

v0(1) = 0, v0(t) > 0, t ∈ [0, 1).

From the proof of Theorem 1.1, we know that for any u ∈ P, ‖T1(u)‖ ≤ ‖u‖α and ‖T2(u)‖ ≤
‖u‖β . Let u = v0, then combining this with the concavity property of v0, we obtain that
‖T1(v0)‖ < ‖v0‖α and ‖T2(v0)‖ < ‖v0‖β . Moreover,

∥
∥T(v0)

∥
∥ < ‖v0‖αβ = ‖v0‖,

which is a contradiction. Therefore, the system (1.1) has no positive radial solution. �
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