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Abstract
First, the symmetry of classical solutions to the Monge–Ampère-type equations is
obtained by the moving plane method. Then, the existence and nonexistence of
radial solutions in a ball are got from the symmetry results. Finally, the existence and
nonexistence of classical solutions to Hessian equations in bounded domains are
considered.
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1 Introduction
We firstly consider the Monge–Ampère-type equations

F (u) = det
[
D2u + M(x, u, Du)

]
= g(x, u, Du), (1.1)

with D2u being the Hessian matrice of u, M(x, u, Du) being a given symmetric matrix
function, and g being a positive function. In (1.1), the operator F is elliptic for u if
D2u + M(x, u, Du) > 0, and at the same time, a C2-solution u is called an elliptic solution.

Equations of the form (1.1) come from geometric optics [1], optimal transportation [2],
conformal geometry [3], isometric embedding [4], and reflector–refractor problems [5–
8]. In optimal transportation, the function u is called the potential function and it satisfies
the optimal transportation equation

det
[
D2u – D2

xθ̃
(
x, Y (x, Du)

)]
= η̃/|det Yp|,

with the vector field Y : D ×R×R
n →R

n, Y = Y (x, z, p) being independent of z, D being
a domain in R

n, det Yp �= 0, Y coming from a cost function θ̃ : Rn × R
n → R, θ̃ = θ̃ (x, y)

being determined by the equations

θ̃x
(
x, Y (x, p)

)
= p,

and η̃ being a known nonnegative function η̃ : D ×R×R
n →R. The optimal transporta-

tion equation is of the form (1.1).
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Monge–Ampère-type equations have got a lot of interest [9, 10]. For M ≡ 0, the equa-
tion (1.1) becomes the standard Monge–Ampère equation det D2u = g(x, u, Du) which was
investigated in [11–13], etc. For instance, the a priori estimates and existence of solutions
[11], as well as the symmetry, existence, and nonexistence of solutions [13] were studied.
The blow-up solutions to the Monge–Ampère equation and fully nonlinear equations and
convex solutions of the Monge–Ampère systems can be found in [14–16]. If M �= 0 and
M is linear in, or independent of, the gradient Du [4], one has very similar a priori esti-
mates as those of the standard Monge–Ampère equations. But if M is nonlinear in Du,
the situation is very different. The interior a priori estimates of (1.1) were got in [8] for
dimension two, and in [1] for all dimensions. The interior C2-estimates and the interior
regularity of (1.1) were obtained by Ma–Trudinger–Wang [17] under some structure con-
ditions on the matrix M and under a generalized target convexity condition. Under weaker
conditions, Trudinger–Wang [18] have proved the global C2-estimates and regularity to
the second boundary value problem of (1.1). However, the C2,α-estimates are few. When
M = M(x, Du), g = g(x), Liu–Trudinger–Wang [19] have proved the interior C2,α-estimates
of (1.1) under appropriate assumptions and Huang–Jiang–Liu [20] have got the bound-
ary C2,α-estimates of solutions. Jiang–Trudinger–Yang [21] have proved that the Dirichlet
problem of (1.1) has a unique classical solution. Dai and Li [22] obtained the necessary
and sufficient condition for the existence of subsolutions to (1.1) with M = κI , κ ≥ 0, and
g = g(u).

When studying partial differential equations, we are interested in knowing whether the
solutions are symmetric about some plane, or monotone in some direction. Gidas–Ni–
Nirenberg [23] obtained the first symmetry results. Utilizing the moving plane method,
they showed that if the solutions to the Dirichlet problem of –�u = g(u), g ∈ C0,1(R) in
a ball are C2 and positive, then they are symmetric. Alexandrov [24] first introduced the
distinguished the moving plane method and then Serrin [25] developed it. Later, many
authors generalized the symmetry results. Especially, Li [26] extended the symmetry re-
sults to fully nonlinear elliptic equations G(x, u, Du, D2u) = 0, with G being uniformly el-
liptic on smooth domains, and the author of [27] studied the symmetry of viscosity solu-
tions to fully nonlinear parabolic equations –ut + G(x, t, u, Du, D2u) = 0 in a singular do-
main. Zhang–Wang [13] have obtained that the classical solutions to the standard Monge–
Ampère equations det D2u = e–u are symmetric.

Let D ⊂ R
n be a domain. Consider the symmetry of solutions for the Dirichlet problem

⎧
⎨

⎩
det[D2u + M(x)] = g(u), x ∈ D,

u = 0, x ∈ ∂D.
(1.2)

We suppose that 0 ∈ D and the following hypotheses hold:
(F) g ≥ g0 > 0, g0 is a constant, g is Lipschitz continuous in u.

(M) M(x) = (mij(x)), mij(x), i, j ∈ {1, 2, . . . , n} are sufficiently smooth functions, M(x) and
D2u + M(x) are positive definite, and det[M(x)] < g0 for x ∈ D.

Let

xt = (2t – x1, x2, . . . , xn).
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We assume that mij(x), i, j ∈ {1, 2, . . . , n} satisfy the following hypotheses:

(H1) mij(xt) = mij(x), i, j ∈ {2, . . . , n},
m11(xt) = m11(x),

m1j(xt) = –m1j(x), mj1(xt) = –mj1(x), j = 2, . . . , n, i.e.,

(
mij

(
xt)) =

⎛

⎜⎜
⎜⎜
⎝

m11(x) –m12(x) . . . –m1n(x)
–m21(x) m22(x) . . . m2n(x)

...
...

. . .
...

–mn1(x) mn2(x) . . . mnn(x)

⎞

⎟⎟
⎟⎟
⎠

The symmetry results are the following.

Theorem 1.1 Let the hypotheses (F) and (M) hold. Suppose that D ⊂ R
n is a bounded

domain, convex in the x1 direction, symmetric about the hyperplane {x : x1 = 0}, and its
boundary ∂D is smooth. Then any solution u ∈ C3(D) of the Dirichlet problem (1.2) is also
symmetric about the hyperplane {x : x1 = 0}. In addition, for x1 < 0, u is decreasing in x1.

Now we discuss the existence and nonexistence of classical solutions for the equations
with exponential terms on the right-hand side which usually appear in geometry. Consider

⎧
⎨

⎩
det(D2u + κI) = e–u, x ∈ BH (0),

u = 0, x ∈ ∂BH ,
(1.3)

where κ > 0 is a constant, I is the identity matrix, and BH = BH (0) is the ball centered at
the origin and having radius H .

Theorem 1.2
(1) The Dirichlet problem (1.3) has no solution if 0 < κ < 1 and H is large enough.
(2) The Dirichlet problem (1.3) has a unique elliptic solution if 0 < κ < e and H is small.
(3) The Dirichlet problem (1.3) has a unique elliptic solution if κ ≥ e and 0 < H < +∞ is

arbitrary.

Let D ⊂ R
n be a bounded domain and 0 ∈ D. In the following, we will consider the

Hessian equation

Sk
(
D2u

)
= σk

(
λ
(
D2u

))
= g in D, (1.4)

where λ(D2u) = (λ1, . . . ,λn) is the eigenvalues of D2u,

σk
(
λ
(
D2u

))
=

∑

j1<···<jk

λj1 · · ·λjk

is the kth elementary symmetric function of λ(D2u), k = 1, . . . , n and g is a known positive
function of D.

Notice that if k = 1, equation (1.4) corresponds to �u = g(u), which is semilinear, and if
k = n, then we get det D2u = g(u), which is the standard Monge–Ampère equation which
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is fully nonlinear. For 1 < k < n, equation (1.4) is fully nonlinear and elliptic, and it is im-
portant in conformal geometry, etc., see [28]. We will restrict the class of functions to
guarantee that (1.4) is elliptic. Let u ∈ C2(D) and 
k = {λ ∈ R

n|σl(λ) > 0, l = 1, . . . , k} be
a convex cone, and let its vertex be the origin. If λ(D2u) ∈ 
k , then u is said to be uni-
formly k-convex. If λ(D2u) ∈ 
k , then u is said to be k-convex. According to [28], Sk(D2u)
is elliptic if u is uniformly k-convex, that is,

(
Sij

k
(
D2u

)) ≡
(

∂

∂rij
Sk

(
D2u

)
)

> 0.

For any y ∈ ∂D, let ν(y) = (ν1, . . . ,νn–1), where νj, j = 1, . . . , n – 1, represent the principal
curvatures of y ∈ ∂D. If ν(y) ∈ 
k–1, then the domain D is said to be uniformly (k – 1)-
convex. We always assume that the domain D in (1.4) is uniformly (k – 1)-convex.

Equation (1.4) has seen a lot of investigation. If g = g(x), independent of u, the existence
of solutions is considered, see [28–30], among other sources. If g = g(x, u), the multiplic-
ity of (1.4) for k = 1 and k = n is investigated in [13, 31, 32]. For instance, Zhang–Wang
[13] obtained the multiplicity of solutions for the Dirichlet problem of standard Monge–
Ampère equation det D2u = e–u and det D2u = eτu. For 1 < k < n, Jacobsen [33] considered
the multiplicity of solutions of

⎧
⎨

⎩
Sk(D2u) = λe–u, x ∈ D,

u = 0, x ∈ ∂D.

The author of [34] studied the multiplicity of solutions of

⎧
⎨

⎩
Sk(D2u) = λg(x, u), x ∈ D,

u = 0, x ∈ ∂D.

Li [35] investigated the existence of classical solutions for the Dirichlet problem of the

equations σ
1
k

k (λ(uij(x) + b̃ij(x))) = ψ(x). Wang–Bao [36, 37] investigated the symmetry of
solutions to σk(λ(D2u)) = g(x, u, Du).

In this paper, using the radial symmetry results for Hessian equations, we consider the
following problem:

⎧
⎨

⎩
Sk(D2u) = e–u, x ∈ D,

u = 0, x ∈ ∂D.
(1.5)

Theorem 1.3 For D = BH (0), if H > 0 is large enough, then (1.5) has no solution, and if
H > 0 is small enough, then (1.5) has a solution.

Letting ᾱ be a parameter, we also consider the problem

⎧
⎨

⎩
Sk(D2u) = e–ᾱu, x ∈ D,

u = 0, x ∈ ∂D.
(1.6)
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Theorem 1.4 There exists some constant ᾱ∗ > 0 such that for any ᾱ > ᾱ∗, there does not
exist any solution of (1.6).

We arrange the paper as follows: Some maximum principles of linear elliptic equations
are proved in Sect. 2. We get the symmetry of solutions for problem (1.2) in Sect. 3. Theo-
rems 1.1 and 1.2 will be demonstrated in Sect. 4, and Theorems 1.3 and 1.4 will be demon-
strated in Sect. 5.

2 Maximum principles for “narrow regions”
Let D ⊂ R

n be a domain. In this section, a few maximum principles for the linear elliptic
equation

–aij(x)Diju + θ (x)u = 0 in D

will be given. These maximum principles may be found in other references, but here for
convenience we list them and give their proofs. We always assume in this section that aij(x),
θ (x) are continuous and bounded in D, and (aij(x)) is uniformly elliptic, that is, there are
some constants 0 < λ ≤ � such that

�|ξ |2 ≥ aij(x)ξiξj ≥ λ|ξ |2, ξ ∈R
n.

Lemma 2.1 Suppose that D ⊂ R
n is bounded. Let ρ(x) ∈ C(D) and h(x) be positive on D

satisfying

–aij(x)Dijh + ρ(x)h ≥ 0. (2.1)

Suppose that u ∈ C3(D) satisfies

–aij(x)Diju + θ (x)u ≥ 0, x ∈ D, (2.2)

u ≥ 0, x ∈ ∂D.

If

θ (x) > ρ(x), ∀x ∈ D, (2.3)

then we have u ≥ 0 in D.

Proof We use contradiction arguments to prove the lemma. Let x̄ ∈ D be some point sat-
isfying u(x̄) < 0. Define

q(x) =
u(x)
h(x)

, x ∈ D.

Then from the fact that h(x) > 0 in D, we know that q(x̄) < 0. Let x0 ∈ D be one minimum
point of q(x), then q(x0) < 0. By a direct computation we get that

Diq =
1
h

Diu –
u
h2 Dih,
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Dijq =
1
h

Diju –
u
h2 Dijh –

1
h

DiqDjh –
1
h

DjqDih.

Therefore, we obtain

–aij(x)Dijq =
1
h

(
–aijDiju +

aijDijh
h

u
)

+ aij 1
h

DiqDjh + aij 1
h

DjqDih. (2.4)

On the one hand, since q(x0) is a minimum of q(x), we have

Dq(x0) = 0 and D2q(x0) ≥ 0. (2.5)

Then

–aij(x0)Dijq(x0) ≤ 0. (2.6)

On the other hand, by (2.1)–(2.3), and considering u(x0) < 0, we get, at point x0,

–aijDiju +
aijDijh

h
u ≥ –aijDiju + ρ(x)u

> –aijDiju + θ (x)u

≥ 0.

By virtue of (2.4) and (2.5), we then have

–aij(x0)Dijq(x0) > 0.

This contradicts (2.6), and the proof of Lemma 2.1 is completed. �

Using the same idea of the above arguments, we can extend Lemma 2.1 to unbounded
domains provided that u is “nonnegative” at infinity.

Lemma 2.2 Let D be unbounded. If, in addition to the conditions in Lemma 2.1, we suppose
further that

lim inf|x|→+∞ u(x) ≥ 0, (2.7)

then u(x) ≥ 0, x ∈ D.

Proof We consider the same q(x) as above in the proof of Lemma 2.1. Obviously, assump-
tion (2.7) means that we cannot obtain the minimum of q(x) at infinity. So the minimum
point of q is in the interior of D. Similar to the proof of Lemma 2.1, we finish the proof of
Lemma 2.2. �

In the following, we give some particular h(x) such that θ (x) satisfies (2.3) in the narrow
regions, thus the maximum principle can be applied to those narrow regions. Let

D = {x | 0 < x1 < l – 2ε̃, 0 < ε̃ < l/2}
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be a narrow region with width l – 2ε̃, then we can choose

h(x) = sin

(
x1 + ε̃

l – ε̃

)
.

Then

–aijDijh =
(

1
l – ε̃

)2

a11h.

For the constants � and λ, if (aij(x)) is uniformly elliptic, let ρ(x) = –λ/l2, so ρ(x) can be
very negative when l is sufficiently small and

–aijDijh =
(

1
l – ε̃

)2

a11h ≥ λ

l2 h.

So

–aijDijh + ρ(x)h ≥ 0.

Now applying Lemma 2.1, we have

Corollary 2.3 (Narrow region principle) Assume that D is bounded and the width l of D
is small enough. Suppose further that for the constants � and λ, (aij(x)) is uniformly elliptic
and u satisfies (2.2). Then u ≥ 0 in D, provided that u ≥ 0 on ∂D.

3 Symmetry of solutions
Lemma 3.1 The solution of (1.2) is negative in D, that is, u < 0 in D.

Proof We firstly demonstrate that u ≤ 0 in D. We use the contradiction arguments. Sup-
pose this is not true, then there are some point x0 ∈ D and its neighborhood N (x0) ⊂ D
satisfying u(x0) = maxx∈N (x0) u > 0. Then at x0, D2u ≤ 0. Thus D2u(x0) + M(x0) ≤ M(x0)
and

det
[
D2u(x0) + M(x0)

] ≤ det
[
M(x0)

]
< g0.

This contradicts the equation in (1.2).
Next we prove that u �= 0 in D. On the contrary, let some point x0 ∈ D satisfy u(x0) = 0.

From the above proof, we know that u(x0) is the maximum of u in D. Then at x0, D2u ≤ 0.
We get a contradiction by the similar arguments as the above. �

Proof of Theorem 1.1 Let

Dt := D ∩ {x1 ≤ t} (t ≤ 0).

Define ut(x) = u(xt) in Dt , i.e.,

ut(x1, x2, . . . , xn) = u(2t – x1, x2, . . . , xn) in Dt .
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Then we have

D2ut(x) = QD2u(2t – x1, x2, . . . , xn)QT

= QD2u
(
xt)QT ,

with Q = diag(–1, 1, . . . , 1) and QT being the transpose of Q. By the hypothesis (H1), we
know that

M(x) =
(
mij(x)

)
= QM

(
xt)QT .

Thus

det
[
D2ut(x) + M(x)

]
= det

[
QD2u

(
xt)QT + QM

(
xt)QT]

= det
[(

D2u + M
)(

xt)]

= g
(
u
(
xt))

= g
(
ut(x)

)
.

Then

log det
[
D2u(x) + M(x)

]
– log det

[
D2ut(x) + M(x)

]

=
∫ 1

0

d
dζ

log det
[
ζ
(
D2u + M

)
+ (1 – ζ )

(
D2ut + M

)]
dζ

=
∫ 1

0
h̄ij

ζ dζ
(
u – ut)

ij

= Fij(u – ut)
ij,

where Fij =
∫ 1

0 h̄ij
ζ dζ , h̄ij

ζ is the inverse matrix of ζ (D2u + M) + (1 – ζ )(D2ut + M). So

Fij(u – ut)
ij = log g(u) – log g

(
ut)

=
∫ 1

0

d
dζ

log
(
ζ g(u) + (1 – ζ )g

(
ut))dζ

=
∫ 1

0

1
ζ g(u) + (1 – ζ )g(ut)

dζ
g(u) – g(ut)

u – ut

(
u – ut).

(3.1)

Set ht(x) = u(x) – ut(x) for x ∈ Dt , then ht satisfies

–Fijht
ij + θ̄ (x, t)ht = 0, x ∈ Dt , (3.2)

where

θ̄ (x, t) =
∫ 1

0

1
ζ g(u) + (1 – ζ )g(ut)

dζ
g(u) – g(ut)

u – ut .
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From the Lipschitz continuity of g , for some constant θ̄0 > 0, |θ̄ (x, t)| ≤ θ̄0. Since M is inde-
pendent of Du, from [4, 10], we know that the equation in (1.2) has the second derivative
estimate for the solutions. So Fij is uniformly elliptic.

Obviously, we have u = ut on ∂Dt ∩ {x1 = t}. In addition, we know that the reflection of
∂D ∩ ∂Dt is in the interior of D, then, by Lemma 3.1, we get for t < 0, ut < 0 on ∂D ∩ ∂Dt .
Thus on ∂Dt , ht ≥ 0. Thanks to Corollary 2.3, we know that ht ≥ 0 in Dt if the width of Dt

is small enough.
Towards the right, the plane can be moved. Let

t0 = sup
{

t < 0 | ht ≥ 0 in Dt}.

We will prove that

t0 = 0.

On the contrary, if t0 < 0, we will demonstrate that the plane can still be moved a little to
the right, and this contradicts the definition of t0.

Indeed, if t0 < 0, then the image of ∂Dt0 ∩ ∂D through the {x1 = t0} reflection is inside D.
But u < 0 in D by Lemma 3.1. It follows that on ∂Dt0 ∩ ∂D, ht0 > 0. By the strong maximum
principle for the linear elliptic equations,

ht0 (x) > 0 in Dt0 . (3.3)

Assume that d0 is the maximum width of such narrow regions in which we can still
utilize the “narrow region principle.” Suppose that ε is a small positive constant satisfying
ε < min{–t0, d0/2}. Let the narrow region be

Ut0+ε = Dt0+ε ∩
{

x
∣∣
∣ x1 > t0 –

d0

2

}
.

Now we take into account the function ht0+ε(x) on Ut0+ε . Similarly to equation (3.2),
ht0+ε(x) satisfies

⎧
⎨

⎩
–Fij(x, t0 + ε)ht0+ε

ij + θ̄ (x, t0 + ε)ht0+ε = 0, x ∈ Ut0+ε ,

ht0+ε(x) ≥ 0, x ∈ ∂Ut0+ε ,
(3.4)

where Fij(x, t0 + ε) =
∫ 1

0 gij
ζ dζ , gij

ζ is the inverse matrix of ζ (D2u + M) + (1 – ζ )(D2ut0+ε + M).
To see the boundary condition, we first note that it is satisfied on ∂Ut0+ε ∩ ∂D, and on
∂Ut0+ε ∩{x1 = t0 + ε} the same holds, by virtue of the definition of ht0+ε . To illustrate that it
is also true on ∂Ut0+ε ∩{x1 = t0 – d0

2 }, we use the continuity argument. If (t0 – d0
2 , x2, . . . , xn) ∈

∂D, it is clear that

ht0+ε

(
t0 –

d0

2
, x2, . . . , xn

)
≥ 0.

If (t0 – d0
2 , x2, . . . , xn) ∈ Dt0 , by (3.3), we can get that there is a positive constant δ0 such that

ht0

(
t0 –

d0

2
, x2, . . . , xn

)
≥ δ0.
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Since for ε sufficiently small, ht0 is continuous in t0, then we have

ht0+ε

(
t0 –

d0

2
, x2, . . . , xn

)
≥ 0.

Therefore the boundary condition in (3.4) holds for such a small ε. Now applying Corol-
lary 2.3, we get

ht0+ε(x) ≥ 0 in Ut0+ε .

Consequently, ht0+ε(x) ≥ 0 in Dt0+ε which contradicts the definition of t0.
Thus t0 = 0, particularly h0 ≥ 0 in D0. This implies for x1 < 0 that

u(–x1, x2, . . . , xn) ≤ u(x1, . . . , xn).

If the plane is moved from right to left, then similarly

u(x1, . . . , xn) ≤ u(–x1, x2, . . . , xn).

It follows that

u(x1, . . . , xn) = u(–x1, x2, . . . , xn).

This implies that u is symmetric about the plane {x : x1 = 0}.
For the sake of completing the proof of Theorem 1.1, it is needed to prove that u is

decreasing in x1 < 0. In fact, ht = 0 on the plane {x1 = t, t < 0}, and ht > 0 on ∂D ∩ ∂Dt .
Due to the strong maximum principle, ht(x) > 0 in Dt . We then apply the Hopf lemma and
conclude that

2ux1 =
∂ht

∂x1
< 0.

Hence Theorem 1.1 is proved. �

Remark 3.1 If g(u) = el(u) in (1.2), where l(u) is Lipschitz continuous and nonnegative in
[u0, 0], u0 = inf u, then log g(u) = l(u), log g(ut) = l(ut) in (3.1), and Theorem 1.1 is still true.

According to Theorem 1.1, if we let the x1 axis be any direction, then we obtain

Corollary 3.2 Let D be a ball and u ∈ C3(D) be any solution of (1.2). Then u is radially
symmetric about the origin and monotone increasing along the radii.

4 Existence and nonexistence results of radial solutions in a ball
Proof of Theorem 1.2 (1) For 0 < κ < 1, from Corollary 3.2, we know that the solution
of (1.3) is radially symmetric. Then let u(x) = u(r), r = |x|. In addition, u′(r) > 0. Then
u(0) ≤ u(x), x ∈ BH , and u′(0) = 0. Since u(H) = 0, one has u(0) = –C < 0. By a simple
calculation,

ui =
xi

r
u′(r), (4.1)
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uij =
xixj

r2 u′′(r) +
(

δij

r
–

xixj

r3

)
u′(r). (4.2)

The eigenvalues of D2u + κI are κ + u′′(r), κ + u′(r)
r , . . . , κ + u′(r)

r , and so

det
(
D2u + κI

)
=

(
κ + u′′(r)

)(
κ +

u′(r)
r

)n–1

=
(
κ + u′′(r)

) (κr + u′(r))n–1

rn–1 .

Then equation (1.3) becomes

(
κ + u′′(r)

) (κr + u′(r))n–1

rn–1 = e–u(r).

Thus

((
κr + u′(r)

)n)′ = nrn–1e–u(r).

When r ∈ [0, H], integrating the above equality on [0, r], we get

(
κr + u′(r)

)n =
∫ r

0
nsn–1e–u(s) ds.

Since u is increasing in [0, H], we get

(
κr + u′(r)

)n ≥ e–u(r)
∫ r

0
nsn–1 ds

= rne–u(r).

It means that

re–u(r)/n ≤ κr + u′(r),

eu(r)/nu′(r) ≥ r – κreu(r)/n.

Since 0 = u(H) > u(r), r ∈ [0, H], then 1 = eu(H)/n > eu(r)/n, so

eu(r)/nu′(r) ≥ (
1 – κeu(H)/n)r = (1 – κ)r.

That is,

(
eu(r)/n)′ ≥ r

n
(1 – κ).

By integrating the above inequality on [0, r], we have

eu(r)/n – eu(0)/n ≥ 1 – κ

2n
r2.
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Set r = H , then

eu(H)/n – eu(0)/n ≥ H2

2n
(1 – κ).

Therefore,

H2 ≤ 2n
(
1 – eu(0)/n)/(1 – κ).

So if H is large enough, (1.3) has no solution.
(2) If 0 < κ < e, define, for x ∈ BH ,

u(x) =
n(|x|2 – H2)

H2 .

Then

det
(
D2u + κI

)
=

(
2n
H2 + κ

)n

. (4.3)

Therefore, if H ≤
√

2n
e–κ

, we then have

det
(
D2u + κI

) ≥ en ≥ e–u.

Thus u(x) is one subsolution to (1.3). Due to Remark 4.5 in [21], we know that (1.3) has a
unique elliptic solution.

(3) If κ ≥ e and 0 < H < +∞ is arbitrary, we still define u(x) as above. By (4.3), we know
that

det
(
D2u + κI

) ≥ en ≥ e–u.

Then for any H > 0, u(x) is one subsolution to (1.3). As a result, problem (1.3) has a unique
elliptic solution. �

Remark 4.1 In the proof of Theorem 1.2, (2) and (3), if a subsolution is found, then the
existence of solution can be obtained from the global estimates in [35] and an argument
similar to the following Lemma 5.3.

5 Existence and nonexistence results of Hessian equations
Let u ∈ C3(D) be a solution to (1.5). By Theorem 4.2 (see [38]), the equation in (1.5) is
uniformly elliptic. Thanks to the Theorem 2.1′ in [23], we have

Theorem 5.1 Suppose that D is symmetric about a hyperplane. Any solution u ∈ C3(D) to
(1.5) is also symmetric about the hyperplane.

Due to Theorem 5.1, if we let the x1 axis be any direction, then we obtain

Corollary 5.2 Let D be a ball. All solutions of (1.5) are radially symmetric with respect to
the origin and monotone increasing along the radii.
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Using the above symmetry results, we are able to prove Theorem 1.3. We first apply the
upper and lower solution method to build a solution of (1.5) through iteration. We can also
refer the reader to [39]. But we will give the proof for the sake of readers’ convenience.

Lemma 5.3 Let a uniformly k-convex function u ∈ C3(D) satisfy Sk(D2u) ≥ e–u in D and
u ≤ 0 on ∂D. Then (1.5) has a solution u in D.

Proof Let u0 = u and

⎧
⎨

⎩
Sk(D2(uk+1)) = e–uk , x ∈ D,

uk+1 = 0, x ∈ ∂D.
(5.1)

By Theorems 3.3 and 3.4 (see [30]), we know that (5.1) has a solution uk+1 ∈ C3,α(D), and
the C1,1(D) norm of uk can control the C3,α(D) norm of uk+1.

In addition, we have
⎧
⎨

⎩
Sk(D2(u1)) ≤ Sk(D2(u0)) in D,

u1 ≥ u0 on ∂D.

Then we have u1 ≥ u0 in D due to the comparison principle. So e–u1 ≤ e–u0 = Sk(D2(u1))
in D. So uk ≤ uk+1 by induction, and then for any k, e–uk+1 ≤ Sk(D2(uk+1)).

Due to Theorem 3.1 (see [30]), the C1,1(D) norm of u can control the C1,1(D) norm of
uk . Thus the C1,1(D) norm of u can control the C3,α(D) norm of uk+1 and so the sequence
{uk} converges to u in C2(D). Therefore u is a solution to (1.5) when we take the limit in
(5.1). �

Proof of Theorem 1.3 According to Corollary 5.2, any solution to (1.5) is radially symmet-
ric. Hence set u(x) = u(r), r = |x|. In addition, u′(r) > 0 and u(0) is the minimum of u.

Then we have (4.1) and (4.2). A direct calculation gives that

Sk
(
D2u

)
= Ck–1

n–1
r1–n(rn–k(u′)k)′

k
= e–u, (5.2)

here Ck–1
n–1 = (n–1)!

(k–1)!(n–k)! .
From (5.2), we deduce that

(
rn–k(u′)k)′ =

k
Ck–1

n–1
rn–1e–u.

By the integration for r from 0 to r ∈ [0, H] and using the fact that u′(0) = 0, we have

(
u′)krn–k =

∫ r

0

k
Ck–1

n–1
e–u(s)sn–1 ds.

Since u is increasing, we know that e–u is then decreasing, and therefore get

(
u′)k ≥ k

nCk–1
n–1

rke–u(r),
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that is,

u′(r) ≥
(

k
nCk–1

n–1

) 1
k

re–u(r)/k ,

(
k

nCk–1
n–1

) 1
k r

k
≤ d

dr
(
eu(r)/k).

Assume that for some constant C̃ > 0, u(0) = –C̃. By integrating with respect to r, we derive

eu(r)/k ≥
(

k
nCk–1

n–1

) 1
k r2

2k
+ e– C̃

k .

Particularly, we obtain from u(H) = 0 that

1 ≥
(

k
nCk–1

n–1

) 1
k H2

2k
+ e– C̃

k ≥
(

k
nCk–1

n–1

) 1
k H2

2k
.

So

H ≤ (2k)
1
2

(
nCk–1

n–1
k

) 1
2k

,

which means that if H is large enough, there does not exist any solution of (1.5).
Let H > 0 be small enough. To prove that there is a solution of (1.5), we let

u(x) =
n(|x|2 – H2)

H2 . (5.3)

Then we have

uij =
2n
H2 δij.

So if

H < (2n)
1
2

(
Ck

n
en

) 1
2k

then

Sk
(
D2u

)
= Ck

n

(
2n
H2

)k

≥ en ≥ e–u,

and (5.3) becomes a subsolution of (1.5). Because u = 0 is always a supsolution of (1.5),
then, by Lemma 5.3, there does exist a solution to (1.5) if H is small enough. We thus
complete the proof of Theorem 1.3. �

Lemma 5.4 Suppose that D1 and D2 are bounded and uniformly (k – 1)-convex in R
n

satisfying D1 ⊂ D2. If the problem (1.5) has a solution u in D2, then (1.5) has a solution v
in D1, or equivalently, if (1.5) has no solution in D1, then (1.5) has no solution in D2.
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Proof We only need to choose a subsolution to confine u in D1 and utilize Lemma 5.3, and
then we get the results. �

Theorem 5.5 There is a constant μ0 > 0 such that for μ < μ0 (1.5) has a solution in μD,
while if μ > μ0 then (1.5) has no solution in μD.

Proof From Lemma 5.4, we know that if (1.5) has a solution in μD, then for any μ′ ∈ (0,μ),
(1.5) has a solution in μ′D; and if (1.5) has no solution in μD, then for any μ′ > μ, (1.5) has
no solution in μ′D. Define

μ0 = sup{μ > 0 | there is a solution to (1.5) in μD}.

This completes the proof of Theorem 5.5. �

Next we verify Theorem 1.4. Consider the problem

⎧
⎨

⎩
Sk(D2φ) = |λ1φ|k , x ∈ D,

φ = 0, x ∈ ∂D.
(5.4)

Suppose that λ1 is the first eigenvalue and φ is the corresponding eigenfunction. Then
λ1 > 0 and φ is k-convex, φ ≤ 0 (see [30]).

Lemma 5.6 If (1.6) has a solution u with ᾱ > 0, then ᾱ < λ1(k!)
1
k .

Proof We argue by contradiction. Assume that (1.6) has a solution u with ᾱ ≥ λ1(k!)
1
k . Let

φ satisfy (5.4). We may suppose that u(x) < φ(x) for any x ∈ D, otherwise, scaling can be
performed if necessary. Let

c∗ = sup
{

c | (u – cφ)(x) ≤ 0,∀x ∈ D
}

.

Then we can find some point x0 ∈ D satisfying (u – c∗φ)(x0) = 0 and, for x ∈ D, u – c∗φ ≤ 0.
Set ϕ̃ = c∗φ and consider the linear operator

L = Fij
(
D2ϕ̃

)
Dij,

where Fij = ∂S
1
k
k /∂rij. Since ϕ̃ is k-convex, using the concavity of S

1
k
k , we conclude that

L(u – ϕ̃) ≥ S
1
k
k
(
D2u

)
– S

1
k
k
(
D2ϕ̃

)

=
(
e–ᾱu) 1

k –
(|λ1ϕ̃|k) 1

k .

As –u ≥ –ϕ̃ ≥ 0, then we derive that

e–ᾱu ≥ e–ᾱϕ̃ >
|–ᾱϕ̃|k

k!
.
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So |ϕ̃|k < k!e–ᾱu( 1
ᾱ

)k . Due to ᾱ ≥ λ1(k!)
1
k , we have

|λ1ϕ̃|k < k!λk
1

(
1
ᾱ

)k

e–ᾱu ≤ e–ᾱu.

So

0 < L(u – ϕ̃) in D.

Then we deduce that u – ϕ̃ satisfies

L(u – ϕ̃) > 0, x ∈ D,

u – ϕ̃ = 0, x ∈ ∂D.

Consequently u – ϕ̃ cannot achieve its maximum in D. This is a contradiction to the fact
that x0 is its maximum point in D. �

From Lemma 5.6, we know that Theorem 1.4 holds.

Lemma 5.7 ([40]) Let k > n/2 and α = 2 – n/k. A k-convex function u in D must belong to
Cα(D).

Theorem 5.8 If n/2 < k ≤ n, then for the problem (1.6), as ‖u‖ → ∞, we have ᾱ → 0.

Proof Assume that the sequence {(ᾱn, un)} satisfies (1.6) and ‖un‖ → ∞, ᾱn → ᾱ0 > 0,
n → ∞. Let vn = un/‖un‖. Then vn satisfies the equation

Sk
(
D2vn

)
=

1
‖un‖k e–ᾱnun

=
1

‖un‖k e–ᾱn‖un‖vn .
(5.5)

For any D1 ⊂⊂ D, from Lemma 5.7, we know that ‖un‖ → ∞ uniformly in D1. In partic-
ular, ‖vn‖ → 1 uniformly in D1, which implies that Sk(D2vn) → 0 for each x ∈ D1.

But, from (5.5) and the fact that ᾱn and vn < 0 are bounded away from zero in D1, we
derive that in D1, Sk(D2vn) → ∞. This is a contradiction. Hence ᾱ → 0 as ‖u‖ → ∞. Thus
we complete the proof. �

The results of [13] and our results motivate the following conjecture.

Conjecture 1 If n/2 < k ≤ n, then there is some constant ᾱ∗ > 0 such that, for ᾱ ∈ (0, ᾱ∗),
(1.6) has at least two solutions, while for ᾱ = ᾱ∗, (1.6) has a unique solution.
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