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1 Introduction
The idea of fractional calculus is to replace the natural numbers in the derivative’s order
with rational ones. Although it seems an elementary consideration, it has an exciting rele-
vance explaining some physical phenomena. Especially in the last two decades, significant
numbers of papers appeared on this topic, some papers deal with the existence of solutions
to problems of variable order; see e.g. [3, 4, 9, 10, 12].

In particular, [2] Benchohra et al. studied the existence and uniqueness results for the
following nonlinear implicit fractional differential equations:

⎧
⎨

⎩

cDu
0+ x(t) = f (t, x(t), cDu

0+ x(t)), t ∈ [0, T], 0 < T < +∞, 1 < u ≤ 2,

x(0) = x0, x(T) = x1,

where f is a given function, x0, x1 ∈ �, and cDu
0+ is the Caputo fractional derivative of

order u.
Inspired by [2] and [3, 4, 9, 10, 12], we deal with the boundary value problem (BVP)

⎧
⎨

⎩

cDu(t)
0+ x(t) = f1(t, x(t), cDu(t)

0+ x(t)), t ∈ J := [0, T]

x(0) = 0, x(T) = 0,
(1)

where u : J → (1, 2], f1 : J × � × � → � is a continuous function and cDu(t)
0+ is the Caputo

fractional derivative of variable-order u(t).
In this paper, we shall look for a solution of (1). Further, we study the stability of the

obtained solution of (1) in the sense of Ulam–Hyers (UH).
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2 Preliminaries
This section introduces some important fundamental definitions that will be needed for
obtaining our results in the next sections.

The symbol C(J ,�) represents the Banach space of continuous functions x : J → � with
the norm

‖x‖ = Sup
{∣
∣x(t)

∣
∣ : t ∈ J

}
.

For –∞ < a1 < a2 < +∞, we consider the mappings u(t) : [a1, a2] → (0, +∞) and v(t) :
[a1, a2] → (n – 1, n), n ∈ N . Then the left Caputo fractional integral (CFI) of variable-order
u(t) for the function f2(t) [7, 8, 11] is

Iu(t)
a+

1
f2(t) =

∫ t

a1

(t – s)u(t)–1

�(u(t))
f2(s) ds, t > a1, (2)

and the left Caputo fractional derivative (CFD) of variable-order v(t) for the function f2(t)
[7, 8, 11] is

cDv(t)
a+

1
f2(t) =

∫ t

a1

(t – s)n–v(t)–1

�(n – v(t))
f (n)
2 (s) ds, t > a1. (3)

As anticipated, in the case of u(t) and v(t) being constant, then CFI and CFD coincide
with the standard Caputo fractional derivative and integral, respectively; see e.g. [6–8].

Recall the following pivotal observation.

Lemma 2.1 ([6]) Let α1,α2 > 0, a1 > 0, f2 ∈ L(a1, a2), cDα1
a+

1
f2 ∈ L(a1, a2). Then the differen-

tial equation

cDα1
a+

1
f2 = 0

has the unique solution

f2(t) = ω0 + ω1(t – a1) + ω2(t – a1)2 + · · · + ωn–1(t – a1)n–1

and

Iα1
a+

1

cDα1
a+

1
f2(t) = f2(t) + ω0 + ω1(t – a1) + ω2(t – a1)2 + · · · + ωn–1(t – a1)n–1

with n – 1 < α1 ≤ n, ω� ∈ �, � = 0, 1, . . . , n – 1.
Furthermore,

cDα1
a+

1
Iα1

a+
1

f2(t) = f2(t)

and

Iα1
a+

1
Iα2

a+
1

f2(t) = Iα2
a+

1
Iα1

a+
1

f2(t) = Iα1+α2
a+

1
f2(t).
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Remark 2.1 ([13, 15, 16]) Note that the semigroup property is not fulfilled for general
functions u(t), v(t), i.e.,

Iu(t)
a+

1
Iv(t)

a+
1

f2(t) �= Iu(t)+v(t)
a+

1
f2(t).

Example 2.1 Let

u(t) = t, t ∈ [0, 4], v(t) =

⎧
⎨

⎩

2, t ∈ [0, 1],

3, t ∈]1, 4],
f2(t) = 2, t ∈ [0, 4],

Iu(t)
0+ Iv(t)

0+ f2(t) =
∫ t

0

(t – s)u(t)–1

�(u(t))

∫ s

0

(s – τ )v(s)–1

�(v(s))
f2(τ ) dτ ds

=
∫ t

0

(t – s)t–1

�(t)

[∫ 1

0

(s – τ )
�(2)

2 dτ +
∫ s

1

(s – τ )2

�(3)
2 dτ

]

ds

=
∫ t

0

(t – s)t–1

�(t)

[

2s – 1 +
(s – 1)3

3

]

ds,

and

Iu(t)+v(t)
0+ f2(t) =

∫ t

0

(t – s)u(t)+v(t)–1

�(u(t) + v(t))
f2(s) ds.

So, we get

Iu(t)
0+ Iv(t)

0+ f2(t)|t=3 =
∫ 3

0

(3 – s)2

�(3)

[

2s – 1 +
(s – 1)3

3

]

ds

=
21
10

,

Iu(t)+v(t)
0+ f2(t)|t=3 =

∫ 3

0

(3 – s)u(t)+v(t)–1

�(u(t) + v(t))
f2(s) ds

=
∫ 1

0

(3 – s)4

�(5)
2 ds +

∫ 3

1

(3 – s)5

�(6)
2 ds

=
1

12

∫ 1

0

(
s4 – 12s3 + 54s2 – 108s + 81

)
ds

+
1

60

∫ 3

1

(
–s5 + 15s4 – 90s3 + 270s2 – 405s + 243

)
ds

=
665
180

.

Therefore, we obtain

Iu(t)
0+ Iv(t)

0+ f2(t)|t=3 �= Iu(t)+v(t)
0+ f2(t)|t=3.

Lemma 2.2 ([18]) Let u : J → (1, 2] be a continuous function, then, for f2 ∈ Cδ(J ,�) =
{f2(t) ∈ C(J ,�), tδf2(t) ∈ C(J ,�), 0 ≤ δ ≤ 1}, the variable order fractional integral Iu(t)

0+ f2(t)
exists for any points on J .
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Lemma 2.3 ([18]) Let u : J → (1, 2] be a continuous function, then Iu(t)
0+ f2(t) ∈ C(J ,�) for

f2 ∈ C(J ,�).

Definition 2.1 ([5, 14, 17]) Let I ⊂ �, I is called a generalized interval if it is either an
interval, or {a1} or ∅.

A finite set P is called a partition of I if each x in I lies in exactly one of the generalized
intervals E in P .

A function g : I → � is called piecewise constant with respect to partition P of I if for
any E ∈P , g is constant on E.

Theorem 2.1 (Krasnoselskii fixed point theorem [6]) Let S be a closed, bounded and con-
vex subset of a real Banach space E and let W1 and W2 be operators on S satisfying the
following conditions:

(i) W1(S) + W2(S) ⊂ S,
(ii) W1 is continuous on S and W1(S) is a relatively compact subset of E,
(iii) W2 is a strict contraction on S, i.e., there exists k ∈ [0, 1), such that

∥
∥W2(x) – W2(y)

∥
∥ ≤ k‖x – y‖

for every x, y ∈ S.
Then there exists x ∈ S such that W1(x) + W2(x) = x.

Definition 2.2 ([1]) Equation (1) is (UH) stable if there exists cf1 > 0, such that, for any
ε > 0 and for every solution z ∈ C(J ,�) of the following inequality:

∣
∣cDu(t)

0+ z(t) – f1
(
t, z(t), cDu(t)

0+ z(t)
)∣
∣ ≤ ε, t ∈ J , (4)

there exists a solution x ∈ C(J ,�) of Eq. (1) with

∣
∣z(t) – x(t)

∣
∣ ≤ cf1ε, t ∈ J .

3 Existence of solutions
Let us introduce the following assumption:

(H1) Let n ∈ N be an integer, P = {J1 := [0, T1], J2 := (T1, T2], J3 := (T2, T3], . . . , Jn :=
(Tn–1, T]} be a partition of the interval J , and let u(t) : J → (1, 2] be a piecewise
constant function with respect to P , i.e.,

u(t) =
n∑

�=1

u�I�(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u1, if t ∈ J1,

u2 if t ∈ J2,
...

un if t ∈ Jn,

where 1 < u� ≤ 2 are constants, and I� is the indicator of the interval J� := (T�–1, T�],� =
1, 2, . . . , n, (with T0 = 0, Tn = T ) such that

I�(t) =

⎧
⎨

⎩

1 for t ∈ J�,

0 for elsewhere.
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For each � ∈ {1, 2, . . . , n}, the symbol E� = C(J�,�), indicates the Banach space of contin-
uous functions x : J� → � equipped with the norm

‖x‖E�
= sup

t∈J�

∣
∣x(t)

∣
∣.

Then, for any t ∈ J�,� = 1, 2, . . . , n, the left Caputo fractional derivative of variable order
u(t) for the function x(t) ∈ C(J ,�), defined by (3), could be presented as a sum of left
Caputo fractional derivatives of constant-orders u�,� = 1, 2, . . . , n

cDu(t)
0+ x(t) =

∫ T1

0

(t – s)1–u1

�(2 – u1)
x(2)(s) ds + · · · +

∫ t

T�–1

(t – s)1–u�

�(2 – u�)
x(2)(s) ds. (5)

Thus, according to (5), the BVP (1) can be written for any t ∈ J�,� = 1, 2, . . . , n in the form

∫ T1

0

(t – s)1–u1

�(2 – u1)
x(2)(s) ds + · · · +

∫ t

T�–1

(t – s)1–u�

�(2 – u�)
x(2)(s) ds = f1

(
t, x(t), cDu(t)

0+ x(t)
)
. (6)

In what follows we shall introduce the solution to the BVP (1).

Definition 3.1 The BVP (1) has a solution, if there are functions x�,� = 1, 2, . . . , n, so that
x� ∈ C([0, T�],�), fulfilling Eq. (6), and x�(0) = 0 = x�(T�).

Let the function x ∈ C(J ,�) be such that x(t) ≡ 0 on t ∈ [0, T�–1] and such that it solves
the integral equation (6). Then (6) is reduced to

cDu�

T+
�–1

x(t) = f1
(
t, x(t), cDu�

T+
�–1

x(t)
)
, t ∈ J�.

We shall deal with the following BVP:

⎧
⎨

⎩

cDu�

T+
�–1

x(t) = f1(t, x(t), cDu�

T+
�–1

x(t)), t ∈ J�

x(T�–1) = 0, x(T�) = 0.
(7)

For our purpose, the upcoming lemma will be a corner stone of the solution of the BVP
(7).

Lemma 3.1 Let � ∈ {1, 2, . . . , n} be a natural number, f1 ∈ C(J� ×�×�,�) and there exists
a number δ ∈ (0, 1) such that tδ f1 ∈ C(J� × � × �,�).

Then the function x ∈ E� is a solution of the BVP (7) if and only if x solves the integral
equation

x(t) = –(T� – T�–1)–1(t – T�–1)Iu�

T+
�–1

y(T�) + Iu�

T+
�–1

y(t), (8)

where

y(t) = f1
(
t, –(T� – T�–1)–1(t – T�–1)Iu�

T+
�–1

y(T�) + Iu�

T+
�–1

y(t), y(t)
)
, t ∈ J�.
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Proof We presume that x ∈ E� is solution of the BVP (7) and we take cDu�

T+
�–1

x(t) = y(t).
Employing the operator Iu�

T+
�–1

to both sides of (7) and regarding Lemma 2.1, we find

x(t) = ω1 + ω2(t – T�–1) + Iu�

T+
�–1

y(t), t ∈ J�.

By x(T�–1) = 0, we get ω1 = 0.
Let x(t) satisfy x(T�) = 0. So, we observe that

ω2 = –(T� – T�–1)–1Iu�

T+
�–1

y(T�).

Then we find

x(t) = –(T� – T�–1)–1(t – T�–1)Iu�

T+
�–1

y(T�) + Iu�

T+
�–1

y(t),

where

y(t) = f1
(
t, –(T� – T�–1)–1(t – T�–1)Iu�

T+
�–1

y(T�) + Iu�

T+
�–1

y(t), y(t)
)
, t ∈ J�.

Conversely, let x ∈ E� be a solution of the integral equation (8). Regarding the continuity
of the function tδf1 and Lemma 2.1, we deduce that x is the solution of the BVP (7).

We will prove the existence result for the BVP (7). This result is based on Theo-
rem 2.1. �

Theorem 3.1 Let the conditions of Lemma 3.1 be satisfied and there exist constants K , L >
0, such that tδ|f1(t, y1, z1) – f1(t, y2, z2)| ≤ K |y1 – y2| + L|z1 – z2|, for any yi, zi ∈ �, i = 1, 2,
t ∈ J�. and the inequality

2(T� – T�–1)u�–1(T1–δ
� – T1–δ

�–1 )
(1 – δ)�(u�)

(

2K
(T� – T�–1)u�

�(u� + 1)
+ L

)

< 1, (9)

holds.
Then the BVP (7) possesses at least one solution in E�.

Proof We construct the operators

W1, W2 : E� → E�

as follows:

W1y(t) = –(T� – T�–1)–1(t – T�–1)Iu�

T+
�–1

y(T�), W2y(t) = Iu�

T+
�–1

y(t), (10)

where

y(t) = f1
(
t, –(T� – T�–1)–1(t – T�–1)Iu�

T+
�–1

y(T�) + Iu�

T+
�–1

y(t), y(t)
)
, t ∈ J�.

It follows from the properties of fractional integrals and from the continuity of the func-
tion tδf1 that the operators W1, W2 : E� → E� defined in (10) are well defined.
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Let

R� ≥
2f 	(T�–T�–1)u�

�(u�+1)

1 – 2(T�–T�–1)u�–1(T1–δ
�

–T1–δ
�–1 )

(1–δ)�(u�) (2K (T�–T�–1)u�

�(u�+1) + L)
,

where

f 	 = sup
t∈J�

∣
∣f1(t, 0, 0)

∣
∣.

We consider the set

BR�
=

{
y ∈ E�,‖y‖E�

≤ R�

}
.

Clearly BR�
is nonempty, closed, convex and bounded.

Now, we demonstrate that W1, W2 satisfy the assumption of Theorem 2.1. We shall prove
it in four phases.

STEP 1: Claim: W1(BR�
) + W2(BR�

) ⊆ (BR�
).

For y ∈ BR�
, we have

∣
∣(W1y)(t) + (W2y)(t)

∣
∣

≤ (T� – T�–1)–1(t – T�–1)
�(u�)

∫ T�

T�–1

(T� – s)u�–1∣∣f1
(
s, –(T� – T�–1)–1(s – T�–1)Iu�

T+
�–1

y(T�)

+ Iu�

T+
�–1

y(s), y(s)
)∣
∣ds

+
1

�(u�)

∫ t

T�–1

(t – s)u�–1∣∣f1
(
s, –(T� – T�–1)–1(s – T�–1)Iu�

T+
�–1

y(T�)

+ Iu�

T+
�–1

y(s), y(s)
)∣
∣ds

≤ 2
�(u�)

∫ T�

T�–1

(T� – s)u�–1∣∣f1
(
s, –(T� – T�–1)–1(s – T�–1)Iu�

T+
�–1

y(T�)

+ Iu�

T+
�–1

y(s), y(s)
)∣
∣ds

≤ 2
�(u�)

∫ T�

T�–1

(T� – s)u�–1∣∣f1
(
s, –(T� – T�–1)–1(s – T�–1)Iu�

T+
�–1

y(T�)

+ Iu�

T+
�–1

y(s), y(s)
)

– f1(s, 0, 0)
∣
∣ds

+
2

�(u�)

∫ T�

T�–1

(T� – s)u�–1∣∣f1(s, 0, 0)
∣
∣ds

≤ 2
�(u�)

∫ T�

T�–1

(T� – s)u�–1s–δ
(
K

∣
∣–(T� – T�–1)–1(s – T�–1)Iu�

T+
�–1

y(T�) + Iu�

T+
�–1

y(s)
∣
∣

+ L
∣
∣y(s)

∣
∣
)

ds +
2f 	(T� – T�–1)u�

�(u� + 1)

≤ 2(T� – T�–1)u�–1

�(u�)

∫ T�

T�–1

s–δ
(
K

∣
∣Iu�

T+
�–1

y(T�) + Iu�

T+
�–1

y(s)
∣
∣ + L

∣
∣y(s)

∣
∣
)

ds

+
2f 	(T� – T�–1)u�

�(u� + 1)
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≤ 2(T� – T�–1)u�–1

�(u�)
(
2K

∥
∥Iu�

T+
�–1

y
∥
∥

E�
+ L‖y‖E�

)
∫ T�

T�–1

s–δ ds +
2f 	(T� – T�–1)u�

�(u� + 1)

≤ 2(T� – T�–1)u�–1(T1–δ
� – T1–δ

�–1 )
(1 – δ)�(u�)

(

2K
(T� – T�–1)u�

�(u� + 1)
+ L

)

R� +
2f 	(T� – T�–1)u�

�(u� + 1)

≤ R�,

which means that W1(BR�
) + W2(BR�

) ⊆ BR�
.

STEP 2: Claim: W1 is continuous.
We presume that the sequence (yn) converges to y in E� and t ∈ J�. Then

∣
∣(W1yn)(t) – (W1y)(t)

∣
∣

≤ (T� – T�–1)–1(t – T�–1)
�(u�)

×
∫ T�

T�–1

(T� – s)u�–1∣∣f1
(
s, –(T� – T�–1)–1(s – T�–1)Iu�

T+
�–1

yn(T�) + Iu�

T+
�–1

yn(s), yn(s)
)

– f1
(
s, –(T� – T�–1)–1(s – T�–1)Iu�

T+
�–1

y(T�) + Iu�

T+
�–1

y(s), y(s)
)∣
∣ds

≤ (T� – T�–1)–1(t – T�–1)
�(u�)

×
∫ T�

T�–1

(T� – s)u�–1s–δ
(
K

∣
∣–(T� – T�–1)–1(s – T�–1)Iu�

T+
�–1

(
yn(T�) – y(T�)

)

+ Iu�

T+
�–1

(
yn(s) – y(s)

)∣
∣ + L

∣
∣
(
yn(s) – y(s)

)∣
∣
)

≤ (T� – T�–1)u�–1

�(u�)

∫ T�

T�–1

s–δ
(
K

∣
∣Iu�

T+
�–1

(
yn(T�) – y(T�)

)

+ Iu�

T+
�–1

(
yn(s) – y(s)

)∣
∣ + L

∣
∣
(
yn(s) – y(s)

)∣
∣
)

≤ (T� – T�–1)u�–1

�(u�)
(
2K

∥
∥Iu�

T+
�–1

(yn – y)
∥
∥

E�
+ L‖yn – y‖E�

)
∫ T�

T�–1

s–δ ds

≤ (T� – T�–1)u�–1(T1–δ
� – T1–δ

�–1 )
(1 – δ)�(u�)

(

2K
(T� – T�–1)u�

�(u� + 1)
+ L

)

‖yn – y‖E�
,

i.e., we obtain

∥
∥(W1yn) – (W1y)

∥
∥

E�
→ 0 as n → ∞.

Ergo, the operator W1 is a continuous on E�.
STEP 3: W1 is compact
Now, we will show that W1(BR�

) is relatively compact, meaning that W1 is compact.
Clearly W1(BR�

) is uniformly bounded because by Step 1, we have W1(BR�
) = {W1(y) : y ∈

BR�
} ⊂ W1(BR�

) + W2(BR�
) ⊆ (BR�

) thus for each y ∈ BR�
we have ‖W1(y)‖E�

≤ R�, which
means that W1(BR�

) is bounded. It remains to show that W1(BR�
) is equicontinuous.

For t1, t2 ∈ J�, t1 < t2 and y ∈ BR�
, we have

∣
∣(W1y)(t2) – (W1y)(t1)

∣
∣
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=
∣
∣
∣
∣–

(T� – T�–1)–1(t2 – T�–1)
�(u�)

∫ T�

T�–1

(T� – s)u�–1f1
(
s, –(T� – T�–1)–1(s – T�–1)Iu�

T+
�–1

y(T�)

+ Iu�

T+
�–1

y(s), y(s)
)

ds +
(T� – T�–1)–1(t1 – T�–1)

�(u�)

×
∫ T�

T�–1

(T� – s)u�–1f1
(
s, –(T� – T�–1)–1(s – T�–1)Iu�

T+
�–1

y(T�) + Iu�

T+
�–1

y(s), y(s)
)

ds
∣
∣
∣
∣

≤ (T� – T�–1)–1

�(u�)
(
(t2 – T�–1) – (t1 – T�–1)

)

×
∫ T�

T�–1

(T� – s)u�–1∣∣f1
(
s, –(T� – T�–1)–1(s – T�–1)Iu�

T+
�–1

y(T�) + Iu�

T+
�–1

y(s), y(s)
)∣
∣ds

≤ (T� – T�–1)u�–2

�(u�)
(
(t2 – T�–1) – (t1 – T�–1)

)

×
∫ T�

T�–1

∣
∣f1

(
s, –(T� – T�–1)–1(s – T�–1)Iu�

T+
�–1

y(T�) + Iu�

T+
�–1

y(s), y(s)
)

– f1(s, 0, 0)
∣
∣ds

+
(T� – T�–1)u�–2

�(u�)
(
(t2 – T�–1) – (t1 – T�–1)

)
∫ T�

T�–1

∣
∣f1(s, 0, 0)

∣
∣ds

≤ (T� – T�–1)u�–2

�(u�)
(
(t2 – T�–1) – (t1 – T�–1)

)

×
∫ T�

T�–1

s–δ
(
K

∣
∣–(T� – T�–1)–1(s – T�–1)Iu�

T+
�–1

y(T�) + Iu�

T+
�–1

y(s)
∣
∣ + L

∣
∣y(s)

∣
∣
)
) ds

+
f 	(T� – T�–1)u�–1

�(u�)
(
(t2 – T�–1) – (t1 – T�–1)

)

≤ (T� – T�–1)u�–2

�(u�)
(
(t2 – T�–1) – (t1 – T�–1)

)

×
∫ T�

T�–1

s–δ
(
K

∣
∣Iu�

T+
�–1

y(T�) + Iu�

T+
�–1

y(s)
∣
∣ + L

∣
∣y(s)

∣
∣
)
) ds

+
f 	(T� – T�–1)u�–1

�(u�)
(
(t2 – T�–1) – (t1 – T�–1)

)

≤ (T� – T�–1)u�–2

�(u�)
(
(t2 – T�–1) – (t1 – T�–1)

)(
2K

∥
∥Iu�

T+
�–1

y
∥
∥

E�
+ L‖y‖E�

)
∫ T�

T�–1

s–δ ds

+
f 	(T� – T�–1)u�–1

�(u�)
(
(t2 – T�–1) – (t1 – T�–1)

)

≤ (T� – T�–1)u�–2(T1–δ
� – T1–δ

�–1 )
(1 – δ)�(u�)

(
(t2 – T�–1) – (t1 – T�–1)

)

×
(

2K
(T� – T�–1)u�

�(u� + 1)
+ L

)

‖y‖E�

+
f 	(T� – T�–1)u�–1

�(u�)
(
(t2 – T�–1) – (t1 – T�–1)

)

≤
[

(T� – T�–1)u�–2(T1–δ
� – T1–δ

�–1 )
(1 – δ)�(u�)

(

2K
(T� – T�–1)u�

�(u� + 1)
+ L

)

‖y‖E�

+
f 	(T� – T�–1)u�–1

�(u�)

]
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× (
(t2 – T�–1) – (t1 – T�–1)

)
.

Hence ‖(W1y)(t2) – (W1y)(t1)‖E�
→ 0 as |t2 – t1| → 0. It implies that W1(BR�

) is equicon-
tinuous.

STEP 4: W2 is a strict contraction
For x(t), y(t) ∈ E�, we obtain

∣
∣(W2x)(t) – (W2y)(t)

∣
∣

=
∣
∣
∣
∣

1
�(u�)

∫ t

T�–1

(t – s)u�–1f1
(
s, –(T� – T�–1)–1(s – T�–1)Iu�

T+
�–1

x(T�) + Iu�

T+
�–1

x(s), x(s)
)

ds

–
1

�(u�)

∫ t

T�–1

(t – s)u�–1f1
(
s, –(T� – T�–1)–1(s – T�–1)Iu�

T+
�–1

y(T�) + Iu�

T+
�–1

y(s), y(s)
)

ds
∣
∣
∣
∣

≤ 1
�(u�)

∫ t

T�–1

(t – s)u�–1∣∣f1
(
s, –(T� – T�–1)–1(s – T�–1)Iu�

T+
�–1

x(T�) + Iu�

T+
�–1

x(s), x(s)
)

– f1
(
s, –(T� – T�–1)–1(s – T�–1)Iu�

T+
�–1

y(T�) + Iu�

T+
�–1

y(s), y(s)
)∣
∣ds

≤ (T� – T�–1)u�–1

�(u�)

∫ t

T�–1

s–δ
(
K

∣
∣(T� – T�–1)–1(s – T�–1)

(
Iu�

T+
�–1

(x – y)(T�)
)

+
(
Iu�

T+
�–1

(x – y)(s)
)∣
∣ + L

∣
∣(x – y)(s)

∣
∣
)

ds

≤ (T� – T�–1)u�–1

�(u�)

∫ t

T�–1

s–δ(K |(Iu�

T+
�–1

(x – y)(T�) + Iu�

T+
�–1

(x – y)(s)| + L
∣
∣(x – y)(s)

∣
∣
)

ds

≤ (T� – T�–1)u�–1

�(u�)
(2K‖(Iu�

T+
�–1

(x – y)‖E�
+ L‖x – y‖E�

)
∫ t

T�–1

s–δ ds

≤ (T� – T�–1)u�–1(T1–δ
� – T1–δ

�–1 )
(1 – δ)�(u�)

(

2K
(T� – T�–1)u�

�(u� + 1)
+ L

)

‖x – y‖E�
.

Consequently by (9), the operator W2 is a strict contraction.
Therefore, all conditions of Theorem 2.1 are fulfilled and thus there exists x̃� ∈ BR�

, such
that W1x̃� + W2x̃� = x̃�, which is a solution of the BVP (7). Since BR�

⊂ E�, the claim of
Theorem 3.1 is proved.

Now, we will prove the existence result for the BVP (1).
Introduce the following assumption:
(H2) Let f1 ∈ C(J × � × �,�) and there exists a number δ ∈ (0, 1) such that tδf1 ∈ C(J ×

� × �,�) and there exist constants K , L > 0, such that tδ|f1(t, y1, z1) – f1(t, y2, z2)| ≤
K |y1 – y2| + L|z1 – z2|, for any y1, y2, z1, z2 ∈ � and t ∈ J . �

Theorem 3.2 Let the conditions (H1), (H2) and inequality (9) be satisfied for all � ∈
{1, 2, . . . , n}.

Then the problem (1) possesses at least one solution in C(J ,�).

Proof For any � ∈ {1, 2, . . . , n} according to Theorem 3.1 the BVP (7) possesses at least one
solution x̃� ∈ E�.
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For any � ∈ {1, 2, . . . , n} we define the function

x� =

⎧
⎨

⎩

0, t ∈ [0, T�–1],

x̃�, t ∈ J�.

Thus, the function x� ∈ C([0, T�],�) solves the integral equation (6) for t ∈ J� with x�(0) =
0, x�(T�) = x̃�(T�) = 0.

Then the function

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t), t ∈ J1,

x2(t) =

⎧
⎨

⎩

0, t ∈ J1,

x̃2, t ∈ J2,
...

xn(t) =

⎧
⎨

⎩

0, t ∈ [0, T�–1],

x̃�, t ∈ J�,

(11)

is a solution of the BVP (1) in C(J ,�). �

4 Ulam–Hyers stability
Theorem 4.1 Let the conditions (H1), (H2) and inequality (9) be satisfied. Then BVP (1)
is (UH) stable.

Proof Let ε > 0 an arbitrary number and the function z(t) from z ∈ C(J�,�) satisfy inequal-
ity (4).

For any � ∈ {1, 2, . . . , n} we define the functions z1(t) ≡ z(t), t ∈ [0, T1] and for � =
2, 3, . . . , n:

z�(t) =

⎧
⎨

⎩

0, t ∈ [0, T�–1],

z(t), t ∈ J�.

For any � ∈ {1, 2, . . . , n} according to equality (5) for t ∈ J we get

cDu(t)
T�–1+ z�(t) =

∫ t

T�–1

(t – s)1–u�

�(2 – u�)
z(2)(s) ds.

Taking the (CFI) Iu�

T+
�–1

of both sides of the inequality (4), we obtain

∣
∣
∣
∣z�(t) +

(T� – T�–1)–1(t – T�–1)
�(u�)

×
∫ T�

T�–1

(T� – s)u�–1 f1
(
s, –(T� – T�–1)–1(s – T�–1)Iu�

T+
�–1

z�(T�) + Iu�

T+
�–1

z�(s), z�(s)
)

ds

–
1

�(u�)

∫ t

T�–1

(t – s)u�–1 f1
(
s, –(T� – T�–1)–1(s – T�–1)Iu�

T+
�–1

z�(T�)

+ Iu�

T+
�–1

z�(s), z�(s)
)

ds
∣
∣
∣
∣
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≤ ε

∫ t

T�–1

(t – s)u�–1

�(u�)
ds

≤ ε
(T� – T�–1)u�

�(u� + 1)
.

According to Theorem 3.2, BVP (1) has a solution x ∈ C(J ,�) defined by x(t) = x�(t) for
t ∈ J�,� = 1, 2, . . . , n, where

x� =

⎧
⎨

⎩

0, t ∈ [0, T�–1],

x̃�, t ∈ J�,
(12)

and x̃� ∈ E� is a solution of (7). According to Lemma 3.1 the integral equation

x̃�(t) = –
(T� – T�–1)–1(t – T�–1)

�(u�)

×
∫ T�

T�–1

(T� – s)u�–1 f1
(
s, –(T� – T�–1)–1(s – T�–1)Iu�

T+
�–1

x̃�(T�) + Iu�

T+
�–1

x̃�(s), x̃�(s)
)

ds

+
1

�(u�)

∫ t

T�–1

(t – s)u�–1 f1
(
s, –(T� – T�–1)–1(s – T�–1)Iu�

T+
�–1

x̃�(T�)

+ Iu�

T+
�–1

x̃�(s), x̃�(s)
)

ds (13)

holds.
Let t ∈ J�,� = 1, 2, . . . , n. Then by Eqs. (12) and (13) we get

∣
∣z(t) – x(t)

∣
∣

=
∣
∣z(t) – x�(t)

∣
∣

=
∣
∣z�(t) – x̃�(t)

∣
∣

=
∣
∣
∣
∣z�(t) +

(T� – T�–1)–1(t – T�–1)
�(u�)

×
∫ T�

T�–1

(T� – s)u�–1 f1
(
s, –(T� – T�–1)–1(s – T�–1)Iu�

T+
�–1

x̃�(T�)

+ Iu�

T+
�–1

x̃�(s), x̃�(s)
)

ds

–
1

�(u�)

∫ t

T�–1

(t – s)u�–1 f1
(
s, –(T� – T�–1)–1(s – T�–1)Iu�

T+
�–1

x̃�(T�)

+ Iu�

T+
�–1

x̃�(s), x̃�(s)
)

ds
∣
∣
∣
∣

+
(T� – T�–1)–1(t – T�–1)

�(u�)

×
∫ T�

T�–1

(T� – s)u�–1∣∣f1
(
s, –(T� – T�–1)–1(s – T�–1)Iu�

T+
�–1

z�(T�)

+ Iu�

T+
�–1

z�(s), z�(s)
)

ds – f1
(
s, –(T� – T�–1)–1(s – T�–1)Iu�

T+
�–1

x̃�(T�)

+ Iu�

T+
�–1

x̃�(s), x̃�(s)
)∣
∣ds
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+
1

�(u�)

∫ t

T�–1

(t – s)u�–1∣∣f1
(
s, –(T� – T�–1)–1(s – T�–1)Iu�

T+
�–1

z�(T�)

+ Iu�

T+
�–1

z�(s), z�(s)
)

ds

– f1
(
s, –(T� – T�–1)–1(s – T�–1)Iu�

T+
�–1

x̃�(T�) + Iu�

T+
�–1

x̃�(s), x̃�(s)
)∣
∣ds

≤ ε
(T� – T�–1)u�

�(u� + 1)
+

(T� – T�–1)–1(t – T�–1)
�(u�)

×
∫ T�

T�–1

(T� – s)u�–1s–δ
(
K

∣
∣(T� – T�–1)–1(s – T�–1)

(
Iu�

T+
�–1

(
z�(T�) – x̃�(T�)

))

+
(
Iu�

T+
�–1

(
z�(s) – x̃�(s)

))∣
∣ + L

∣
∣
(
z�(s) – x̃�(s)

)∣
∣
)

ds

+
1

�(u�)

∫ t

T�–1

(t – s)u�–1s–δ
(
K

∣
∣(T� – T�–1)–1(s – T�–1)

(
Iu�

T+
�–1

(
z�(T�) – x̃�(T�)

))

+
(
Iu�

T+
�–1

(
z�(s) – x̃�(s)

))∣
∣ + L

∣
∣
(
z�(s) – x̃�(s)

)∣
∣
)

ds

≤ ε
(T� – T�–1)u�

�(u� + 1)
+

2(T� – T�–1)u�–1

�(u�)

×
∫ T�

T�–1

s–δ
(
K

∣
∣
(
Iu�

T+
�–1

(
z�(T�) – x̃�(T�)

))
+

(
Iu�

T+
�–1

(
z�(s) – x̃�(s)

))∣
∣

+ L
∣
∣
(
z�(s) – x̃�(s)

)∣
∣
)

ds

≤ ε
(T� – T�–1)u�

�(u� + 1)

+
2(T� – T�–1)u�–1

�(u�)
(
2K

∥
∥Iu�

T+
�–1

(z� – x̃�)
∥
∥

E�
+ L‖z� – x̃�‖E�

)
∫ T�

T�–1

s–δ ds

≤ ε
(T� – T�–1)u�

�(u� + 1)
+

2(T� – T�–1)u�–1(T�
1–δ – T�–1

1–δ)
(1 – δ)�(u�)

×
(

2K
(T� – T�–1)u�

�(u� + 1)
‖z� – x̃�‖E�

+ L‖z� – x̃�‖E�

)

≤ ε
(T� – T�–1)u�

�(u� + 1)
+

2(T� – T�–1)u�–1(T�
1–δ – T�–1

1–δ)
(1 – δ)�(u�)

×
(

2K
(T� – T�–1)u�

�(u� + 1)
+ L

)

‖z� – x̃�‖E�

≤ ε
(T� – T�–1)u�

�(u� + 1)
+ μ‖z – x‖,

where

μ = max
�=1,2,...,n

2(T� – T�–1)u�–1(T�
1–δ – T�–1

1–δ)
(1 – δ)�(u�)

(

2K
(T� – T�–1)u�

�(u� + 1)
+ L

)

.

Then

‖z – x‖(1 – μ) ≤ (T� – T�–1)u�

�(u� + 1)
ε.
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We obtain, for each t ∈ J�,

∣
∣z(t) – x(t)

∣
∣ ≤ ‖z – x‖ ≤ (T� – T�–1)u�

(1 – μ)�(u� + 1)
ε := cf1ε.

Therefore, the BVP (1) is (UH) stable. �

5 Example
Let us consider the following fractional boundary value problem:

⎧
⎪⎨

⎪⎩

cDu(t)
0+ x(t) = t– 1

3 e–t

(ee
t2

1+t +4e2t+1)(1+|x(t)|+|cDu(t)
0+ x(t)|)

, t ∈ J := [0, 2],

x(0) = 0, x(2) = 0.
(14)

Let

f1(t, y, z) =
t– 1

3 e–t

(ee
t2

1+t + 4e2t + 1)(1 + y + z)
, (t, y, z) ∈ [0, 2] × [0, +∞) × [0, +∞).

u(t) =

⎧
⎨

⎩

3
2 , t ∈ J1 := [0, 1],
9
5 , t ∈ J2 := ]1, 2].

(15)

Then we have

t
1
3
∣
∣f1(t, y1, z1) – f1(t, y2, z2)

∣
∣

=
∣
∣
∣
∣

e–t

(ee
t2

1+t + 4e2t + 1)

(
1

1 + y1 + z1
–

1
1 + y2 + z2

)∣
∣
∣
∣

≤ e–t(|y1 – y2| + |z1 – z2|)
(ee

t2
1+t + 4e2t + 1)(1 + y1 + z1)(1 + y2 + z2)

≤ e–t

(ee
t2

1+t + 4e2t + 1)

(|y1 – y2| + |z1 – z2|
)

≤ 1
(e + 5)

|y1 – y2| +
1

(e + 5)
|z1 – z2|.

Hence the condition (H2) holds with δ = 1
3 and K = L = 1

e+5 .
By (15), according to (7) we consider two auxiliary BVPs for Caputo fractional differen-

tial equations of constant order,

⎧
⎪⎨

⎪⎩

cD
3
2
0+ x(t) = t– 1

3 e–t

(ee
t2

1+t +4e2t+1)(1+|x(t)|+|cD
3
2 x(t)|)

, t ∈ J1,

x(0) = 0, x(1) = 0
(16)

and
⎧
⎪⎨

⎪⎩

cD
9
5
1+ x(t) = t– 1

3 e–t

(ee
t2

1+t +4e2t+1)(1+|x(t)|+|cD
9
5 x(t)|)

, t ∈ J2,

x(1) = 0, x(2) = 0.
(17)



Benkerrouche et al. Boundary Value Problems         (2021) 2021:64 Page 15 of 16

Next, we prove that the condition (9) is fulfilled for � = 1. Indeed,

2(T1
1–δ – T0

1–δ)(T1 – T0)u1–1

(1 – δ)�(u1)

(
2K(T1 – T0)u1

�(u1 + 1)
+ L

)

=
1

2
3 (e + 5)�( 3

2 )

(
2

�( 5
2 )

+ 1
)

� 0.3664 < 1.

Accordingly the condition (9) is achieved. By Theorem 3.1, the problem (16) has a solution
x̃1 ∈ E1.

We prove that the condition (9) is fulfilled for � = 2. Indeed,

2(T2
1–δ – T1

1–δ)(T2 – T1)u2–1

(1 – δ)�(u2)

(
2K(T2 – T1)u2

�(u2 + 1)
+ L

)

=
2 2

3 – 1
2
3�( 9

5 )
1

e + 5

(
2

�( 14
5 )

+ 1
)

� 0.2682 < 1.

Thus, the condition (9) is satisfied.
According to Theorem 3.1, the BVP (17) possesses a solution x̃2 ∈ E2.
Then, by Theorem 3.2, the BVP (14) has a solution

x(t) =

⎧
⎨

⎩

x̃1(t), t ∈ J1,

x2(t), t ∈ J2,

where

x2(t) =

⎧
⎨

⎩

0, t ∈ J1,

x̃2(t), t ∈ J2.

According to Theorem 4.1, BVP (14) is (UH) stable.
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2. Benchohra, M., Lazrega, J.E.: Existence and uniqueness results for nonlinear implicit fractional differential equations

with boundary conditions. Rom. J. Math. Comput. Sci. 4(1), 60–72 (2014)
3. da Vanterler, J., Sousa, C., Capelas de Oliverira, E.: Two new fractional derivatives of variable order with non-singular

kernel and fractional differential equation. Comput. Appl. Math. 37, 5375–5394 (2018)
4. Gómez-Aguilar, J.F.: Analytical and numerical solutions of nonlinear alcoholism model via variable-order fractional

differential equations. Physica A 494, 52–57 (2018)
5. Jiahui, A., Pengyu, C.: Uniqueness of solutions to initial value problem of fractional differential equations of

variable-order. Dyn. Syst. Appl. 28(3), 607–623 (2019)
6. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland

Mathematics Studies, vol. 204. Elsevier Science B.V., Amsterdam (2006)
7. Samko, S.G.: Fractional integration and differentiation of variable order. Anal. Math. 21, 213–236 (1995)
8. Samko, S.G., Boss, B.: Integration and differentiation to a variable fractional order. Integral Transforms Spec. Funct. 1,

277–300 (1993)
9. Sun, H., Chen, W., Wei, H., Chen, Y.: A comparative study of constant-order and variable-order fractional models in

characterizing memory property of systems. Eur. Phys. J. Spec. Top. 193, 185–192 (2011)
10. Tavares, D., Almeida, R., Torres, D.F.M.: Caputo derivatives of fractional variable order numerical approximations.

Commun. Nonlinear Sci. Numer. Simul. 35, 69–87 (2016)
11. Valerio, D., Costa, J.S.: Variable-order fractional derivatives and their numerical approximations. Signal Process. 91,

470–483 (2011)
12. Yang, J., Yao, H., Wu, B.: An efficient numerical method for variable order fractional functional differential equation.

Appl. Math. Lett. 76, 221–226 (2018)
13. Zhang, S.: Existence of solutions for two point boundary value problems with singular differential equations of

variable order. Electron. J. Differ. Equ. 245, 1 (2013)
14. Zhang, S.: The uniqueness result of solutions to initial value problems of differential equations of variable-order. Rev.

R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 112, 407–423 (2018)
15. Zhang, S., Hu, L.: Unique existence result of approximate solution to initial value problem for fractional differential

equation of variable order involving the derivative arguments on the half-axis. Mathematics 7(286), 1–23 (2019)
16. Zhang, S., Hu, L.: The existence and uniqueness result of solutions to initial value problems of nonlinear diffusion

equations involving with the conformable variable. Azerb. J. Math. 9(1), 22–45 (2019)
17. Zhang, S., Hu, L.: The existence of solutions and generalized Lyapunov-type inequalities to boundary value problems

of differential equations of variable order. AIMS Math. 5(4), 2923–2943 (2020)
18. Zhang, S., Sun, S., Hu, L.: Approximate solutions to initial value problem for differential equation of variable order.

J. Fract. Calc. Appl. 9(2), 93–112 (2018)


	Implicit nonlinear fractional differential equations of variable order
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Existence of solutions
	Ulam-Hyers stability
	Example
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


