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Abstract
This article is devoted to a study of the blow-up result for a system of coupled
viscoelastic wave equations. By establishing a new auxiliary function and using the
reduction to absurdity method, we obtain some sufficient conditions on initial data
such that the solution blows up in finite time at arbitrarily high initial energy. This
work generalizes and improves earlier results in the literature.
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1 Introduction
In this article, we investigate the blow-up property of the coupled viscoelastic wave equa-
tions of the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

|ut|ρutt – �u +
∫ t

0 g1(t – τ )�u(τ ) dτ + |ut|m–2ut = f1(u, v), x ∈ �, t > 0,

|vt|ρvtt – �v +
∫ t

0 g2(t – τ )�v(τ ) dτ + |vt|r–2vt = f2(u, v), x ∈ �, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ �,

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ �.

(1.1)

Here � is a bounded domain of Rn with a smooth boundary ∂�. ρ > 0, g1 and g2 are the
kernel of memory terms, the nonlinear terms f1 and f2 will be specified later. The problem
of (1.1) has been considered by many mathematics researchers and results in connection
with blow-up and decay have been extensively established.

For single viscoelastic wave equation, Messaoudi [11] discussed the following equation:

⎧
⎪⎪⎨

⎪⎪⎩

utt – �u +
∫ t

0 g(t – τ )�u(τ ) dτ + ut|ut|m–2 = u|u|p–2, x ∈ �, t > 0,

u(x, t) = 0, x ∈ ∂�, t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ �,

(1.2)
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where m ≥ 1, p ≥ 2, � is a bounded domain. The author studied the interaction between
the weak damping term ut|ut|m–2 and the nonlinear source term u|u|p–2, which was first
considered by Levine [9, 10] when m = 1, and found, under suitable conditions on g and
initial data, that the solutions exist globally for any initial data if m ≥ p and blow up in
finite time with negative initial energy if p > m. This blow-up result has been pushed by
the same author in [12], to certain solutions with positive initial energy. Recently, Song [19]
proved, by using the reduction to absurdity method, that the solutions of Eq. (1.2) blow
up in finite time with the initial data have arbitrarily high initial energy. In the case when
the nonlinear damping term ut|ut|m–2 is replaced by the strong damping term –�ut in Eq.
(1.2), Song and Zhong [21] showed, by using the potential well theory introduced by Payne
and Sattinger [16], that a blow-up result for solutions with positive initial energy. Later,
Song and Xue [20] improved the blow-up result in which the initial data have arbitrarily
high initial energy. In [22], Xu and Lian studied a nonlinear wave equation with weak and
strong damping terms and logarithmic source term, they established the local existence
of weak solution, showed the global existence, energy decay in the framework of potential
well and obtained the blow-up of the solution with sub-critical initial energy. Furthermore,
they in parallel extend all the conclusions for the sub-critical case to the critical case by
scaling technique. Besides, a high energy infinite time blow-up result is established. Within
a similar potential well framework, the semilinear pseudo parabolic equation [24] and
parabolic system [23] were discussed in depth.

In the same direction, Song [18] discussed the following initial-boundary value problem:

|ut|ρutt – �u +
∫ t

0
g(t – τ )�u(τ ) dτ + ut|ut|m–2 = u|u|p–2, x ∈ �, t > 0, (1.3)

where � is a bounded domain and ρ > 0, m ≥ 1, p > 2. By modifying the method used
in Messaoudi [12], the author proved that the solution blows up in finite time with initial
data have positive initial energy. Recently, He and Song [8] pushed the blow-up result to
certain solutions with arbitrary positive initial energy. When the nonlinear damping term
ut|ut|m–2 is substituted by the strong damping term –�ut , Hao et al. [7], inspired by the
method used in Song [19], proved that solutions with negative initial energy as well as
positive initial energy blow-up in finite time provided p > ρ + 2, and obtained, by using
the perturbed energy functional technique, that solutions exist globally for any initial data
provided p ≤ ρ + 2.

For a blow-up result in systems of hyperbolic equations, the coupled system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt – �u + ut|ut|m–1 = f1(u, v), x ∈ �, t > 0,

vtt – �v + vt|vt|r–1 = f2(u, v), x ∈ �, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ �,

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ �,

(1.4)

was considered by Agre and Rammaha [2], where m, r ≥ 1 and � is a bounded domain with
smooth boundary. The authors found, by using the same method as in [4], that any weak
solution blows up in finite time with negative initial energy. Furthermore, Said-Houari
[17] extended this blow-up result to positive initial energy.
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In the presence of the memory term, Han and Wang [5] considered the following system
of viscoelastic equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt – �u +
∫ t

0 g(t – τ )�u(τ ) dτ + ut|ut|m–1 = f1(u, v), x ∈ �, t > 0,

vtt – �v +
∫ t

0 h(t – τ )�v(τ ) dτ + vt|vt|r–1 = f2(u, v), x ∈ �, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ �,

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ �,

(1.5)

They obtained the local existence, global existence, uniqueness and a blow-up result for
certain solutions with negative initial energy. In [13], Messaoudi and Said-Houari ex-
tended this blow-up result to certain solutions with positive initial energy. Later, Zhao
and Wang [1] proved the finite time blow-up of solutions whose initial data have arbitrar-
ily high initial energy. In the same nature, Mustafa [14] considered a coupled system of
nonlinear viscoelastic equations, he proved the well-posedness and established a gener-
alized stability result for this system. More relevant knowledge we refer the reader to the
literature [15].

As far as we know, the problem of the blow-up phenomenon for system (1.1) with arbi-
trary positive initial energy has not been considered. Our aim in this paper is to extend the
research method for the blow-up phenomena used in [8] to the couple viscoelastic wave
system (1.1), while we should handle the additional difficulty caused by damping term, vis-
coelastic term and source term. In order to overcome the difficulty, we construct a suitable

auxiliary functions (u, ut |ut |ρ
ρ+1 ) + (v, vt |vt |ρ

ρ+1 ) – ( 1
ε∗

1
)

γ ∗
γ ∗–1 γ –1

γ
E(t) and combine the reduction to

absurdity method to derive contradiction, namely, we find suitable conditions on initial
data such that the solution of (1.1) blows up in finite time at arbitrary high initial energy
level.

This article is organized as follows. In Sect. 2, we present some material needed for our
work. Section 3 is devoted to the blow-up result.

2 Preliminaries
In this section, we give some material needed for our work. Firstly, let us make the follow-
ing assumptions.

(A1) gi : R+ → R+ (for i = 1, 2) are non-increasing differentiable functions satisfying

gi(0) > 0, 1 –
∫ ∞

0
gi(τ ) dτ = li > 0.

(A2) For nonlinear terms, we assume that

0 < ρ < +∞, n = 1, 2, 0 < ρ ≤ 2
n – 2

, n ≥ 3,

2 ≤ m, r < +∞, n = 1, 2, 2 ≤ m, r ≤ 2n
n – 2

, n ≥ 3.

(A3) For the functions f1 and f2, we note that

f1(u, v) =
[
a|u + v|2(p+1)(u + v) + b|u|pu|v|p+2],
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f2(u, v) =
[
a|u + v|2(p+1)(u + v) + b|v|pv|u|p+2], a, b > 0,

where

–1 < p < +∞, n = 1, 2, –1 < p ≤ 3 – n
n – 2

, n ≥ 3.

It is easy to verify that

uf1(u, v) + vf2(u, v) = 2(p + 2)F(u, v), ∀(u, v) ∈R
2,

where

F(u, v) =
1

2(p + 2)
[
a|u + v|2(p+2) + 2b|uv|p+2].

At present, we state the following local existence theorem which can be proved by com-
bining the arguments in [3, 6]. Here we omit the proof.

Theorem 2.1 Suppose that (A1), (A2), (A3) hold and u0, v0 ∈ H1
0 (�), u1, v1 ∈ L2(�) are

given, then system (1.1) possesses a unique local solution (u, v) such that

(u, v) ∈ C
(
[0, T]; H1

0 (�)
) × C

(
[0, T]; H1

0 (�)
)
,

(ut , vt) ∈ C
(
[0, T]; L2(�)

) ∩ Lm(
� × [0, T]

) × C
(
[0, T]; L2(�)

) ∩ Lr(� × [0, T]
)
,

for the maximum existence time T > 0, where T ∈ (0,∞].

The energy of the system (1.1) is

E(t) =
1

ρ + 2
(‖ut‖ρ+2

ρ+2 + ‖vt‖ρ+2
ρ+2

)
+

1
2

(

1 –
∫ t

0
g1(τ ) dτ

)

‖∇u‖2
2 –

∫

�

F(u, v) dx

+
1
2
[
(g1 ◦ ∇u) + (g2 ◦ ∇v)

]
+

1
2

(

1 –
∫ t

0
g2(τ ) dτ

)

‖∇v‖2
2,

where

(g ◦ ∇v)(t) =
∫ t

0
g(t – τ )

∥
∥v(t) – v(τ )

∥
∥2

2 dτ .

Lemma 2.2 Assume (A1) holds, and let (u, v) be a solution of system (1.1), then E(t) is
non-increasing, namely

dE(t)
dt

≤ –‖ut‖m
m – ‖vt‖r

r ≤ 0, ∀t ≥ 0. (2.1)

Proof Multiplying the first two equations in system (1.1) by ut , vt , respectively, and then
integrating over �, we get

d
dt

[
1

ρ + 2
(‖ut‖ρ+2

ρ+2 + ‖vt‖ρ+2
ρ+2

)
+

1
2
(‖∇u‖2

2 + ‖∇v‖2
2
)

–
∫

�

F(u, v) dx
]

= –‖ut‖m
m – ‖vt‖r

r +
∫ t

0
g1(t – τ )

∫

�

∇ut(t) · ∇u(τ ) dx dτ
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+
∫ t

0
g2(t – τ )

∫

�

∇vt(t) · ∇v(τ ) dx dτ , (2.2)

where

∫ t

0
g1(t – τ )

∫

�

∇ut(t) · ∇u(τ ) dx dτ

=
∫ t

0
g1(t – τ )

∫

�

∇ut(t) · [∇u(τ ) – ∇u(t)
]

dx dτ

+
∫ t

0
g1(t – τ )

∫

�

∇ut(t) · ∇u(t) dx dτ

= –
1
2

∫ t

0
g1(t – τ )

(
d
dt

∫

�

∣
∣∇u(τ ) – ∇u(t)

∣
∣2 dx

)

dτ

+
∫ t

0
g1(τ )

(
d
dt

1
2

∫

�

∣
∣∇u(t)

∣
∣2 dx

)

dτ

= –
1
2

d
dt

[∫ t

0
g1(t – τ )

∫

�

∣
∣∇u(τ ) – ∇u(t)

∣
∣2 dx dτ

]

+
1
2

d
dt

[∫ t

0
g1(τ )

∫

�

∣
∣∇u(t)

∣
∣2 dx dτ

]

+
1
2

∫ t

0
g ′

1(t – τ )
∫

�

∣
∣∇u(τ ) – ∇u(t)

∣
∣2 dx dτ –

1
2

g1(t)
∫

�

∣
∣∇u(t)

∣
∣2 dx. (2.3)

Similarly

∫ t

0
g2(t – τ )

∫

�

∇vt(t) · ∇v(τ ) dx dτ

= –
1
2

d
dt

[∫ t

0
g2(t – τ )

∫

�

∣
∣∇v(τ ) – ∇v(t)

∣
∣2 dx dτ

]

+
1
2

d
dt

[∫ t

0
g2(τ )

∫

�

∣
∣∇v(t)

∣
∣2 dx dτ

]

+
1
2

∫ t

0
g ′

2(t – τ )
∫

�

∣
∣∇v(τ ) – ∇v(t)

∣
∣2 dx dτ –

1
2

g2(t)
∫

�

∣
∣∇v(t)

∣
∣2 dx. (2.4)

By inserting (2.3) and (2.4) into (2.2), and combining (A1), we can obtain

d
dt

[
1

ρ + 2
(‖ut‖ρ+2

ρ+2 + ‖vt‖ρ+2
ρ+2

)
+

1
2

(

1 –
∫ t

0
g1(τ ) dτ

)

‖∇u‖2
2

+
(

1 –
∫ t

0
g2(τ ) dτ

)

‖∇v‖2
2

+
1
2
[
(g1 ◦ ∇u) + (g2 ◦ ∇v)

]
–

∫

�

F(u, v) dx
]

= –‖ut‖m
m – ‖vt‖r

r +
1
2
[(

g ′
1 ◦ ∇u

)
+

(
g ′

2 ◦ ∇v
)]

–
1
2

g1(t)‖∇u‖2
2 –

1
2

g2(t)‖∇v‖2
2,
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namely

E′(t) = –‖ut‖m
m – ‖vt‖r

r +
1
2
[(

g ′
1 ◦ ∇u

)
+

(
g ′

2 ◦ ∇v
)]1

2
g1(t)‖∇u‖2

2 –
1
2

g2(t)‖∇v‖2
2

≤ –‖ut‖m
m – ‖vt‖r

r ≤ 0. (2.5)
�

Lemma 2.3 ([1], Lemma 2) There exist two positive constants c0 and c1 such that

c0

2(p + 2)
(|u|2(p+2) + |v|2(p+2)) ≤ F(u, v) ≤ c1

2(p + 2)
(|u|2(p+2) + |v|2(p+2)).

Lemma 2.4 Assume 0 < π < α < γ hold, then we have the following inequality:

‖u‖α
α ≤ ‖u‖π

π + ‖u‖γ
γ .

Proof (1) When |u| > 1, then
∫

�
|u|α dx ≤ ∫

�
|u|γ dx ≤ ∫

�
|u|π dx +

∫

�
|u|γ dx is ture.

(2) When |u| ≤ 1, then
∫

�
|u|α dx ≤ ∫

�
|u|π dx ≤ ∫

�
|u|π dx +

∫

�
|u|γ dx is ture, where | · |

represents the absolute value. �

Lemma 2.5 Assume 0 < � < ς hold, then we have the following inequality:

‖u‖�
ς < ‖u‖ς

ς + 1.

Proof (1) Assume ‖u‖ς > 1 hold, then ‖u‖�
ς < ‖u‖ς

ς < ‖u‖ς
ς + 1 is ture.

(2) Assume ‖u‖ς ≤ 1 hold, then ‖u‖�
ς < ‖u‖ς

ς + 1 is ture. �

In order to obtain our main result, we need the following lemma which presents the
same one of (He and Song [8] Lemma 2.2) with suitable modification.

Lemma 2.6 ([8], Lemma 2.2) Assume that 2 < ρ + 2 < min{m, r} and max{m, r} < 2(p + 2).
Assume further that (A1)–(A3) hold and gi (i = 1, 2) satisfying (3.1). If there exists a number
t0 ≥ 0 such that E(t0) < 0, then the solution of the system (1.1) blows up in finite time.

3 Blow-up result
In this section, we discuss the blow-up phenomenon.

Theorem 3.1 Assume the conditions (A1)–(A3) and 2 < ρ + 2 < min{m, r}, max{m, r} <
2(p + 2) hold, and gi satisfies the condition

max

{∫ ∞

0
g1(τ ) dτ ,

∫ ∞

0
g2(τ ) dτ

}

<
p + 1

p + 1 + 1
4(p+2)

, (3.1)

for i = 1, 2. Let (u, v) be the solution of system (1.1), satisfying

∫

�

u(0)
ut(0)|ut(0)|ρ

ρ + 1
dx +

∫

�

v(0)
vt(0)|vt(0)|ρ

ρ + 1
dx > ME(0) > 0, (3.2)
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then (u, v) blows up in finite time, where

M =
(

1
ε∗

1

) γ ∗
γ ∗–1 γ – 1

γ

γ = max{m, r}, γ ∗ = min{m, r}, ε∗
1 > 0 is a constant such that ( 1

ε1
)

γ ∗
γ ∗–1 γ –1

γ
≥ 2(p+2)(1–ε)

β
, ε ∈

(0, 1) is a small enough constant such that

κ1(ε) =
(
(p + 2)(1 – ε) – 1

)
l1 –

1
4(p + 2)(1 – ε)

(1 – l1) > 0,

κ2(ε) =
(
(p + 2)(1 – ε) – 1

)
l2 –

1
4(p + 2)(1 – ε)

(1 – l2) > 0,

α = min

{

κ1(ε)λ –
εm

1
m

,κ2(ε)λ –
εr

1
r

, c0ε –
εm

1
m

, c0ε –
εr

1
r

}

,

β = min

{
1

ρ + 1
+

2(p + 2)(1 – ε)
ρ + 2

,α
}

,

and λ is the first eigenvalue of –�.

Proof Suppose that (u, v) is a global solution of system (1.1). Multiplying the first two equa-
tions of system (1.1) by u and v, respectively, and integrating over �, we obtain

(|ut|ρutt , u
)

+ ‖∇u‖2
2 +

∫

�

∫ t

0
g1(t – τ )�u(τ ) dτu(t) dx +

∫

�

uut|ut|m–2 dx

=
∫

�

uf1(u, v) dx, (3.3)

(|vt|ρvtt , v
)

+ ‖∇v‖2
2 +

∫

�

∫ t

0
g2(t – τ )�v(τ ) dτv(t) dx +

∫

�

vvt|vt|m–2 dx

=
∫

�

vf2(u, v) dx. (3.4)

Taking the derivative of (u, ut |ut |ρ
ρ+1 ) and (v, vt |vt |ρ

ρ+1 ), respectively, and combining (3.3) and
(3.4), we have

d
dt

(

u,
ut|ut|ρ
ρ + 1

)

=
1

ρ + 1
∥
∥ut(t)

∥
∥ρ+2

ρ+2 – ‖∇u‖2
2 +

∫ t

0
g1(t – τ )

∫

�

∇u(τ )∇u(t) dx dτ

–
∫

�

uut|ut|m–2 dx +
∫

�

uf1(u, v) dx, (3.5)

d
dt

(

v,
vt|vt|ρ
ρ + 1

)

=
1

ρ + 1
∥
∥vt(t)

∥
∥ρ+2

ρ+2 – ‖∇v‖2
2 +

∫ t

0
g2(t – τ )

∫

�

∇v(τ )∇v(t) dx dτ

–
∫

�

vvt|vt|r–2 dx +
∫

�

vf2(u, v) dx. (3.6)

For the third term on the right side of (3.5), we get

∫ t

0
g1(t – τ )

∫

�

∇u(τ )∇u(t) dx dτ =
∫ t

0
g1(t – τ )

∫

�

∇u(t)∇(
u(τ ) – u(t)

)
dx dτ
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+
∫ t

0
g1(t – τ )

∥
∥∇u(t)

∥
∥2

2 dτ

=
∫ t

0
g1(t – τ )

∫

�

∇u(t)
(∇u(τ ) – ∇u(t)

)
dx dτ

+
∫ t

0
g1(τ ) dτ

∥
∥∇u(t)

∥
∥2

2. (3.7)

In the same way, we have

∫ t

0
g2(t – τ )

∫

�

∇v(τ )∇v(t) dx dτ =
∫ t

0
g2(t – τ )

∫

�

∇v(t)
(∇v(τ ) – ∇v(t)

)
dx dτ

+
∫ t

0
g2(τ ) dτ

∥
∥∇v(t)

∥
∥2

2. (3.8)

Then, inserting (3.7) and (3.8) into (3.5) and (3.6), respectively,

d
dt

(

u,
ut|ut|ρ
ρ + 1

)

=
1

ρ + 1
∥
∥ut(t)

∥
∥ρ+2

ρ+2 – ‖∇u‖2
2 +

∫ t

0
g1(t – τ )

∫

�

∇u(t)
(∇u(τ ) – ∇u(t)

)
dx dτ

+
∫ t

0
g1(τ ) dτ

∥
∥∇u(t)

∥
∥2

2 –
∫

�

uut|ut|m–2 dx +
∫

�

uf1(u, v) dx, (3.9)

d
dt

(

v,
vt|vt|ρ
ρ + 1

)

=
1

ρ + 1
∥
∥vt(t)

∥
∥ρ+2

ρ+2 – ‖∇v‖2
2 +

∫ t

0
g2(t – τ )

∫

�

∇v(t)
(∇v(τ ) – ∇v(t)

)
dx dτ

+
∫ t

0
g2(τ ) dτ

∥
∥∇v(t)

∥
∥2

2 –
∫

�

vvt|vt|r–2 dx +
∫

�

vf2(u, v) dx. (3.10)

For the third term on the right side of (3.9), applying the Cauchy inequality, we obtain

∫ t

0
g1(t – τ )

∫

�

∇u(t)
(∇u(τ ) – ∇u(t)

)
dx dτ

≥ –
2(p + 2)(1 – ε)

2
(g1 ◦ ∇u)(t) –

1
4(p + 2)(1 – ε)

∫ t

0
g1(τ ) dτ‖∇u‖2

2, (3.11)

where ε ∈ (0, 1), similarly

∫ t

0
g2(t – τ )

∫

�

∇v(t)
(∇v(τ ) – ∇v(t)

)
dx dτ

≥ –
2(p + 2)(1 – ε)

2
(g2 ◦ ∇v)(t) –

1
4(p + 2)(1 – ε)

∫ t

0
g2(τ ) dτ‖∇v‖2

2. (3.12)

Inserting (3.11) and (3.12) into (3.9) and (3.10), respectively, we can get

d
dt

(

u,
ut|ut|ρ
ρ + 1

)

≥ 1
ρ + 1

∥
∥ut(t)

∥
∥ρ+2

ρ+2 – ‖∇u‖2
2 –

2(p + 2)(1 – ε)
2

(g1 ◦ ∇u)(t)
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+
∫ t

0
g1(τ ) dτ

∥
∥∇u(t)

∥
∥2

2 –
∫

�

uut|ut|m–2 dx +
∫

�

uf1(u, v) dx

–
1

4(p + 2)(1 – ε)

∫ t

0
g1(τ ) dτ‖∇u‖2

2, (3.13)

d
dt

(

v,
vt|vt|ρ
ρ + 1

)

≥ 1
ρ + 1

∥
∥vt(t)

∥
∥ρ+2

ρ+2 – ‖∇v‖2
2 –

2(p + 2)(1 – ε)
2

(g2 ◦ ∇v)(t)

+
∫ t

0
g2(τ ) dτ

∥
∥∇v(t)

∥
∥2

2 –
∫

�

vvt|vt|r–2 dx +
∫

�

vf2(u, v) dx

–
1

4(p + 2)(1 – ε)

∫ t

0
g2(τ ) dτ‖∇v‖2

2. (3.14)

Adding (3.13) and (3.14), we derive that

d
dt

(

u,
ut|ut|ρ
ρ + 1

)

+
d
dt

(

v,
vt|vt|ρ
ρ + 1

)

≥ 1
ρ + 1

(∥
∥ut(t)

∥
∥ρ+2

ρ+2 +
∥
∥vt(t)

∥
∥ρ+2

ρ+2

)
+ 2(p + 2)

∫

�

F(u, v) dx

–
(

1 –
∫ t

0
g1(τ ) dτ

)

‖∇u‖2
2 –

(

1 –
∫ t

0
g2(τ ) dτ

)

‖∇v‖2
2

–
2(p + 2)(1 – ε)

2
(
(g1 ◦ ∇u)(t) + (g2 ◦ ∇v)(t)

)

–
1

4(p + 2)(1 – ε)

(∫ t

0
g1(τ ) dτ‖∇u‖2

2 +
∫ t

0
g2(τ ) dτ‖∇v‖2

2

)

–
∫

�

uut|ut|m–2 dx –
∫

�

vvt|vt|r–2 dx. (3.15)

Adding 2(p + 2)(1 – ε)E(t) on the right side of (3.15), we can get

d
dt

(

u,
ut|ut|ρ
ρ + 1

)

+
d
dt

(

v,
vt|vt|ρ
ρ + 1

)

≥
(

1
ρ + 1

+
2(p + 2)(1 – ε)

ρ + 2

)
(∥
∥ut(t)

∥
∥ρ+2

ρ+2 +
∥
∥vt(t)

∥
∥ρ+2

ρ+2

)

+ 2(p + 2)ε
∫

�

F(u, v) – 2(p + 2)(1 – ε)E(t)

+
(
(p + 2)(1 – ε) – 1

)
(

1 –
∫ t

0
g1(τ ) dτ

)

‖∇u‖2
2

+
(
(p + 2)(1 – ε) – 1

)
(

1 –
∫ t

0
g2(τ ) dτ

)

‖∇v‖2
2

–
1

4(p + 2)(1 – ε)

(∫ t

0
g1(τ ) dτ‖∇u‖2

2 +
∫ t

0
g2(τ ) dτ‖∇v‖2

2

)

–
∫

�

uut|ut|m–2 dx –
∫

�

vvt|vt|r–2 dx. (3.16)
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For the last two terms on the right side of (3.16), applying the Hölder inequality and the
Young inequality, we arrive at

∣
∣
∣
∣

∫

�

|ut|m–2utu dx
∣
∣
∣
∣ ≤ εm

1 ‖u‖m
m

m
+

(
1
ε1

) m
m–1 (m – 1)‖ut‖m

m
m

, (3.17)

where ε1 > 0. By Lemma 2.4 and the conditions of the theorem, one can deduce that
‖u‖m

m ≤ ‖u‖2
2 + ‖u‖2(p+2)

2(p+2), then the inequality (3.17) can be rewritten as

∣
∣
∣
∣

∫

�

|ut|m–2utu dx
∣
∣
∣
∣ ≤ εm

1
m

(‖u‖2
2 + ‖u‖2(p+2)

2(p+2)
)

+
(

1
ε1

) m
m–1 (m – 1)‖ut‖m

m
m

, (3.18)

similarly, we have

∣
∣
∣
∣

∫

�

|vt|r–2vtv dx
∣
∣
∣
∣ ≤ εr

1
r

(‖v‖2
2 + ‖v‖2(p+2)

2(p+2)
)

+
(

1
ε1

) r
r–1 (r – 1)‖vt‖r

r
r

. (3.19)

Substituting (3.18) and (3.19) into (3.16), then we have

d
dt

(

u,
ut|ut|ρ
ρ + 1

)

+
d
dt

(

v,
vt|vt|ρ
ρ + 1

)

+
(

1
ε1

) m
m–1 (m – 1)‖ut‖m

m
m

+
(

1
ε1

) r
r–1 (r – 1)‖vt‖r

r
r

≥
(

1
ρ + 1

+
2(p + 2)(1 – ε)

ρ + 2

)
(∥
∥ut(t)

∥
∥ρ+2

ρ+2 +
∥
∥vt(t)

∥
∥ρ+2

ρ+2

)

+ 2(p + 2)ε
∫

�

F(u, v) – 2(p + 2)(1 – ε)E(t)

+
(
(p + 2)(1 – ε) – 1

)
(

1 –
∫ t

0
g1(τ ) dτ

)

‖∇u‖2
2

+
(
(p + 2)(1 – ε) – 1

)
(

1 –
∫ t

0
g2(τ ) dτ

)

‖∇v‖2
2

–
1

4(p + 2)(1 – ε)

(∫ t

0
g1(τ ) dτ‖∇u‖2

2 +
∫ t

0
g2(τ ) dτ‖∇v‖2

2

)

–
εr

1
r

(‖v‖2
2 + ‖v‖2(p+2)

2(p+2)
)

–
εm

1
m

(‖u‖2
2 + ‖u‖2(p+2)

2(p+2)
)
. (3.20)

Take γ = max{m, r}, γ ∗ = min{m, r}. Combining with (2.5), we know E′(t) ≤ –‖ut‖m
m –‖vt‖r

r ,
that is, –E′(t) ≥ ‖ut‖m

m + ‖vt‖r
r , then (3.20) can be rewritten as

d
dt

((

u,
ut|ut|ρ
ρ + 1

)

+
(

v,
vt|vt|ρ
ρ + 1

)

–
(

1
ε1

) γ ∗
γ ∗–1 γ – 1

γ
E(t)

)

≥ d
dt

((

u,
ut|ut|ρ
ρ + 1

)

+
(

v,
vt|vt|ρ
ρ + 1

))

+
(

1
ε1

) γ ∗
γ ∗–1 γ – 1

γ

(‖ut‖m
m + ‖vt‖r

r
)

≥ d
dt

(

u,
ut|ut|ρ
ρ + 1

)

+
d
dt

(

v,
vt|vt|ρ
ρ + 1

)

+
(

1
ε1

) m
m–1 (m – 1)‖ut‖m

m
m

+
(

1
ε1

) r
r–1 (r – 1)‖vt‖r

r
r
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≥
(

1
ρ + 1

+
2(p + 2)(1 – ε)

ρ + 2

)
(∥
∥ut(t)

∥
∥ρ+2

ρ+2 +
∥
∥vt(t)

∥
∥ρ+2

ρ+2

)

+ 2(p + 2)ε
∫

�

F(u, v) dx – 2(p + 2)(1 – ε)E(t)

+
(
(p + 2)(1 – ε) – 1

)
(

1 –
∫ t

0
g1(τ ) dτ

)

‖∇u‖2
2

+
(
(p + 2)(1 – ε) – 1

)
(

1 –
∫ t

0
g2(τ ) dτ

)

‖∇v‖2
2

–
1

4(p + 2)(1 – ε)

(∫ t

0
g1(τ ) dτ‖∇u‖2

2 +
∫ t

0
g2(τ ) dτ‖∇v‖2

2

)

–
εr

1
r

(‖v‖2
2 + ‖v‖2(p+2)

2(p+2)
)

–
εm

1
m

(‖u‖2
2 + ‖u‖2(p+2)

2(p+2)
)
. (3.21)

Combining Lemma 2.3 and the Poincaré inequality, we can deduce

d
dt

((

u,
ut|ut|ρ
ρ + 1

)

+
(

v,
vt|vt|ρ
ρ + 1

)

–
(

1
ε1

) γ ∗
γ ∗–1 γ – 1

γ
E(t)

)

≥
(

1
ρ + 1

+
2(p + 2)(1 – ε)

ρ + 2

)
(∥
∥ut(t)

∥
∥ρ+2

ρ+2 +
∥
∥vt(t)

∥
∥ρ+2

ρ+2

)

+ c0ε
(‖u‖2(p+2)

2(p+2) + ‖v‖2(p+2)
2(p+2)

)
– 2(p + 2)(1 – ε)E(t)

+
[
(
(p + 2)(1 – ε) – 1

)
(

1 –
∫ t

0
g1(τ ) dτ

)

–
1

4(p + 2)(1 – ε)

∫ t

0
g1(τ ) dτ

]

λ‖u‖2
2

+
[
(
(p + 2)(1 – ε) – 1

)
(

1 –
∫ t

0
g2(τ ) dτ

)

–
1

4(p + 2)(1 – ε)

∫ t

0
g2(τ ) dτ

]

λ‖v‖2
2

–
εr

1
r

(‖v‖2
2 + ‖v‖2(p+2)

2(p+2)
)

–
εm

1
m

(‖u‖2
2 + ‖u‖2(p+2)

2(p+2)
)

≥
(

1
ρ + 1

+
2(p + 2)(1 – ε)

ρ + 2

)
(∥
∥ut(t)

∥
∥ρ+2

ρ+2 +
∥
∥vt(t)

∥
∥ρ+2

ρ+2

)

+ c0ε
(‖u‖2(p+2)

2(p+2) + ‖v‖2(p+2)
2(p+2)

)
– 2(p + 2)(1 – ε)E(t)

+
[
(
(p + 2)(1 – ε) – 1

)
l1 –

1
4(p + 2)(1 – ε)

(1 – l1)
]

λ‖u‖2
2

+
[
(
(p + 2)(1 – ε) – 1

)
l2 –

1
4(p + 2)(1 – ε)

(1 – l2)
]

λ‖v‖2
2

–
εr

1
r

(‖v‖2
2 + ‖v‖2(p+2)

2(p+2)
)

–
εm

1
m

(‖u‖2
2 + ‖u‖2(p+2)

2(p+2)
)
, (3.22)

where λ is the first eigenvalue of –�, now we take

κ1(ε) =
(
(p + 2)(1 – ε) – 1

)
l1 –

1
4(p + 2)(1 – ε)

(1 – l1),

κ2(ε) =
(
(p + 2)(1 – ε) – 1

)
l2 –

1
4(p + 2)(1 – ε)

(1 – l2).
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Then (3.22) can be rewritten as

d
dt

((

u,
ut|ut|ρ
ρ + 1

)

+
(

v,
vt|vt|ρ
ρ + 1

)

–
(

1
ε1

) γ ∗
γ ∗–1 γ – 1

γ
E(t)

)

≥
(

1
ρ + 1

+
2(p + 2)(1 – ε)

ρ + 2

)
(∥
∥ut(t)

∥
∥ρ+2

ρ+2 +
∥
∥vt(t)

∥
∥ρ+2

ρ+2

)

+
(

κ1(ε)λ –
εm

1
m

)

‖u‖2
2 +

(

κ2(ε)λ –
εr

1
r

)

‖v‖2
2

+
(

c0ε –
εr

1
r

)

‖v‖2(p+2)
2(p+2) +

(

c0ε –
εm

1
m

)

‖u‖2(p+2)
2(p+2)

– 2(p + 2)(1 – ε)E(t). (3.23)

By the condition

max

{∫ ∞

0
g1(τ ) dτ ,

∫ ∞

0
g2(τ ) dτ

}

<
p + 1

p + 1 + 1
4(p+2)

,

we can obtain

(
(p + 2) – 1

)
l1 –

1
4(p + 2)

(1 – l1) > 0,

(
(p + 2) – 1

)
l2 –

1
4(p + 2)

(1 – l2) > 0.

Then we choose ε small enough such that

κ1(ε) =
(
(p + 2)(1 – ε) – 1

)
l1 –

1
4(p + 2)(1 – ε)

(1 – l1) > 0,

κ2(ε) =
(
(p + 2)(1 – ε) – 1

)
l2 –

1
4(p + 2)(1 – ε)

(1 – l2) > 0.

And we pick ε1 small enough such that

min

{

κ1(ε)λ –
εm

1
m

,κ2(ε)λ –
εr

1
r

}

> 0,

min

{

c0ε –
εm

1
m

, c0ε –
εr

1
r

}

> 0. (3.24)

Then we choose

α = min

{

κ1(ε)λ –
εm

1
m

,κ2(ε)λ –
εr

1
r

, c0ε –
εm

1
m

, c0ε –
εr

1
r

}

,

β = min

{
1

ρ + 1
+

2(p + 2)(1 – ε)
ρ + 2

,α
}

.
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Using Lemma 2.4, (3.23) can be deduced as

d
dt

((

u,
ut|ut|ρ
ρ + 1

)

+
(

v,
vt|vt|ρ
ρ + 1

)

–
(

1
ε1

) γ ∗
γ ∗–1 γ – 1

γ
E(t)

)

≥
(

1
ρ + 1

+
2(p + 2)(1 – ε)

ρ + 2

)
(∥
∥ut(t)

∥
∥ρ+2

ρ+2 +
∥
∥vt(t)

∥
∥ρ+2

ρ+2

)

+ α
(‖u‖2

2 + ‖u‖2(p+2)
2(p+2)

)
+ α

(‖v‖2
2 + ‖v‖2(p+2)

2(p+2)
)

– 2(p + 2)(1 – ε)E(t)

≥ β
(∥
∥ut(t)

∥
∥ρ+2

ρ+2 +
∥
∥vt(t)

∥
∥ρ+2

ρ+2

)

+ β
(‖u‖2

2 + ‖u‖2(p+2)
2(p+2)

)
+ β

(‖v‖2
2 + ‖v‖2(p+2)

2(p+2)
)

– 2(p + 2)(1 – ε)E(t)

≥ β
(∥
∥ut(t)

∥
∥ρ+2

ρ+2 +
∥
∥vt(t)

∥
∥ρ+2

ρ+2

)
+ β‖u‖ρ+2

ρ+2 + β‖v‖ρ+2
ρ+2 – 2(p + 2)(1 – ε)E(t). (3.25)

By applying the Hölder and Young inequalities, we can deduce that

(

u,
ut|ut|ρ
ρ + 1

)

≤ ‖u‖ρ+2
ρ+2 + ‖ut‖ρ+2

ρ+2,

then we have

d
dt

((

u,
ut|ut|ρ
ρ + 1

)

+
(

v,
vt|vt|ρ
ρ + 1

)

–
(

1
ε1

) γ ∗
γ ∗–1 γ – 1

γ
E(t)

)

≥ β

((

u,
ut|ut|ρ
ρ + 1

)

+
(

v,
vt|vt|ρ
ρ + 1

)

–
2(p + 2)(1 – ε)

β
E(t)

)

. (3.26)

It is easy to see that

(
1
ε1

) γ ∗
γ ∗–1 γ – 1

γ
→ +∞, ε1 → 0+,

and 2(p+2)(1–ε)
β

is a positive constant, hence there exists a constant ε∗
1 such that

(
1
ε1

) γ ∗
γ ∗–1 γ – 1

γ
≥ 2(p + 2)(1 – ε)

β
.

Therefore, we have

d
dt

((

u,
ut|ut|ρ
ρ + 1

)

+
(

v,
vt|vt|ρ
ρ + 1

)

–
(

1
ε∗

1

) γ ∗
γ ∗–1 γ – 1

γ
E(t)

)

≥ β

((

u,
ut|ut|ρ
ρ + 1

)

+
(

v,
vt|vt|ρ
ρ + 1

)

–
(

1
ε∗

1

) γ ∗
γ ∗–1 γ – 1

γ
E(t)

)

. (3.27)
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Take

H(t) =
(

u,
ut|ut|ρ
ρ + 1

)

+
(

v,
vt|vt|ρ
ρ + 1

)

–
(

1
ε∗

1

) γ ∗
γ ∗–1 γ – 1

γ
E(t),

from (3.2), we know

H(0) =
(

u(0),
ut(0)|ut(0)|ρ

ρ + 1

)

+
(

v(0),
vt(0)|vt(0)|ρ

ρ + 1

)

–
(

1
ε∗

1

) γ ∗
γ ∗–1 γ – 1

γ
E(0) > 0.

By calculating H ′(t) ≥ βH(t), we can get

H(t) ≥ eβtH(0), ∀t ≥ 0. (3.28)

Since (u, v) shows global existence, by Lemma 2.2 and Lemma 2.6, we have 0 < E(t) ≤
E(0), t ∈ [0, +∞), then

‖u‖ρ+2
ρ+2 + ‖ut‖ρ+2

ρ+2 + ‖v‖ρ+2
ρ+2 + ‖vt‖ρ+2

ρ+2 ≥
(

u,
ut|ut|ρ
ρ + 1

)

+
(

u,
ut|ut|ρ
ρ + 1

)

≥ eβtH(0). (3.29)

Using the Hölder inequality, Lemma 2.2 and Lemma 2.6, we have

∥
∥u(t)

∥
∥

ρ+2 + ‖v‖ρ+2

≤ ∥
∥u(0)

∥
∥

ρ+2 +
∥
∥v(0)

∥
∥

ρ+2 +
∫ t

0

∥
∥ut(τ )

∥
∥

ρ+2 dτ +
∫ t

0

∥
∥vt(τ )

∥
∥

ρ+2 dτ

≤ ∥
∥u(0)

∥
∥

ρ+2 +
∥
∥v(0)

∥
∥

ρ+2 + C1

∫ t

0

∥
∥ut(τ )

∥
∥

m dτ + C2

∫ t

0

∥
∥vt(τ )

∥
∥

r dτ

≤ ∥
∥u(0)

∥
∥

ρ+2 +
∥
∥v(0)

∥
∥

ρ+2 + C1t
m–1

m

(∫ t

0

∥
∥ut(τ )

∥
∥

m dτ

) 1
m

+ C2t
r–1

r

(∫ t

0

∥
∥vt(τ )

∥
∥

r dτ

) 1
r

≤ ∥
∥u(0)

∥
∥

ρ+2 +
∥
∥v(0)

∥
∥

ρ+2 + C1t
m–1

m
(
E(0) – E(t)

) 1
m + C2t

r–1
r

(
E(0) – E(t)

) 1
r

≤ ∥
∥u(0)

∥
∥

ρ+2 +
∥
∥v(0)

∥
∥

ρ+2 + C1t
m–1

m
(
E(0)

) 1
m + C2t

r–1
r

(
E(0)

) 1
r , (3.30)

where C1 and C2 are positive constants. By combining (3.29) and (3.30), we know ‖u‖ρ+2
ρ+2 +

‖v‖ρ+2
ρ+2 shows polynomial growth and ‖ut‖ρ+2

ρ+2 +‖vt‖ρ+2
ρ+2 shows exponential growth. By (2.5)

and E(t) being nonnegative, we can deduce

∫ t

0

∥
∥ut(τ )

∥
∥m

m dτ +
∫ t

0

∥
∥vt(τ )

∥
∥r

r dτ ≤ E(0), (3.31)
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and thanks to Lemma 2.5 and the assumption 2 < ρ + 2 < min{m, r}, we have

∥
∥ut(τ )

∥
∥ρ+2

m <
∥
∥ut(τ )

∥
∥m

m + 1,
∥
∥vt(τ )

∥
∥ρ+2

r <
∥
∥vt(τ )

∥
∥r

r + 1. (3.32)

By using the Sobolev embedding theorem and combining (3.31) and (3.32), we can get

∫ t

0

∥
∥ut(τ )

∥
∥ρ+2

ρ+2 dτ +
∫ t

0

∥
∥vt(τ )

∥
∥ρ+2

ρ+2 dτ

≤ C
(∫ t

0

∥
∥ut(τ )

∥
∥ρ+2

m dτ +
∫ t

0

∥
∥vt(τ )

∥
∥ρ+2

r dτ

)

≤ C
(∫ t

0

(∥
∥ut(τ )

∥
∥m

m + 1
)

dτ +
∫ t

0

(∥
∥vt(τ )

∥
∥r

r + 1
)

dτ

)

≤ CE(0) + 2Ct,

which contradicts with ‖ut‖ρ+2
ρ+2 +‖vt‖ρ+2

ρ+2 showing exponential growth. Hence the theorem
is proved. �
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