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Abstract
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1 Introduction
Fractional differential equations are important since their nonlocal property is suitable
to characterize memory phenomena in economic, control, and material sciences. For the
basic theory of fractional calculus and fractional differential equations we refer to [1–
9]. Various types of fractional derivative and integral operator were studied: Riemann–
Liouville, Caputo, Hadamard, Erdelyi–Kober, Grünwald–Letnikov, Marchaud and Riesz
are just a few examples. Hilfer [10] proposed a generalized Riemann–Liouville (R-L) frac-
tional derivative, the so called Hilfer fractional derivative (HFD), which composites R-L
fractional derivative and Caputo fractional derivative. HFD is performed, for example,
in the theoretical simulation of dielectric relaxation in glass forming materials. Sousa
and Oliveira [11] proposed the ψ-HFD and established ψ-Hilfer fractional differential
equations. The fundamental discussion about existence and uniqueness of the solution
of a nonlinear fractional-order differential equation involving ψ-HFD along with differ-
ent types of initial conditions have been investigated in [12–18]. Asawasamrit et al. [19]
studied the nonlocal boundary value problems for fractional-order differential equations
with HFD subject to nonlocal integral boundary conditions. In [20], Saengthong et al. con-
sidered the existence results for Hilfer–Hadamard sequential fractional differential equa-
tions with two point boundary conditions. The study of a boundary value problem for
fractional-order ψ-HFD was done by Harikrishnan et al. [21]. There has been published
some significant work about the nonlinear boundary value problems for HFD, out of which
we mention only a few that are relating to this article; see [22–24].

The note by Langevin [25] on Brownian motion had a permanent impact on scientific
research and is still often cited. The Langevin equation is an effective tool of mathemati-
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cal physics, which can describe processes as regards time evolution of the velocity of the
Brownian motion [26–28]. Among the applications of the Langevin equation, one can use
modeling gait variability [29], financial markets [30] and described anomalous diffusion
[31]. The existence and stability results for Langevin equations with HFD was considered
in [32]. Several articles including a number of fractional derivatives have been considered
by authors and researchers in the fractional Langevin equation, for instance [33–35]. Re-
cently, three-point boundary value problems for Langevin equation with Hilfer fractional
derivative were studied in [36].

In this paper, we consider a boundary value problem of Langevin fractional differential
equations with ψ-HFD and nonlocal integral boundary conditions, given by

Dχ1,β1;ψ(
Dχ2,β2;ψ + k

)
x(t) = f

(
t, x(t)

)
, t ∈ J := [a, b], (1.1)

x(a) = 0, x(b) =
m∑

i=1

λiIδi ;ψx(τi), (1.2)

where Dχi ,βi ;ψ , i = 1, 2 is the ψ-HFD of order χi, 0 < χi < 1 and type βi, 0 ≤ βi ≤ 1, i = 1, 2,
1 < χ1 + χ2 ≤ 2, k ∈ R, a ≥ 0, f : J ×R → R is a continuous function, Iδi ;ψ is ψ-Riemann–
Liouville fractional integral of order δi > 0, λi ∈R, i = 1, 2, . . . , m and 0 ≤ a ≤ τ1 < τ2 < · · · <
τm ≤ b.

We prove two existence results by using Krasnosel’skĭi’s fixed point theorem and the
Leray–Schauder nonlinear alternative and one existence and uniqueness result via the Ba-
nach contraction mapping principle. The main results are presented in Sect. 3. Examples
illustrating the main results are also constructed. In Sect. 2 we recall some preliminary
facts which are needed in the following.

2 Preliminaries
We need some basic definitions and properties of fractional calculus that are used in this
article. Let C = C(J ,R) be the Banach space of all continuous functions from J into R with
the norm ‖x‖ := sup{|x(t)| : t ∈ J}.

Let ψ ∈ C1(J ,R) be an increasing function with ψ ′(t) �= 0 for all t ∈ J .

Definition 2.1 ([11]) Let χ > 0 (χ ∈ R), f ∈ L1(J ,R). Then the ψ-R-L fractional integral
of a function f with respect to ψ is defined by

Iχ ;ψ f (t) =
1

�(χ )

∫ t

a
ψ ′(s)

(
ψ(t) – ψ(s)

)χ–1f (s) ds.

Definition 2.2 ([11]) Let n – 1 < χ < n ∈N and f ∈ Cn(J ,R). Then the ψ-HFD Dχ ,β ;ψ (·) of
a function f of order χ and type 0 ≤ β ≤ 1, is defined by

Dχ ,β ;ψ f (t) = Iβ(n–χ );ψ
(

1
ψ ′(t)

d
dt

)n

I(1–β)(n–χ );ψ f (t).

Lemma 2.1 ([11]) If f ∈ Cn[a, b], n – 1 < χ < n and 0 ≤ β ≤ 1, then

(1) Iχ ;ψDχ ,β ;ψ f (t) = f (t) –
n∑

k=1

(ψ(t) – ψ(a))γ –k

�(γ – k + 1)
f [n–k]
ψ I(1–β)(n–χ );ψ f (a),
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where f [n–k]
ψ f (t) =

(
1

ψ ′(t)
d
dt

)n–k

f (t) and γ = χ + β(n – χ ).

(2) Dχ ,β ;ψ Iχ ;ψ f (t) = f (t).

Next, we derive an equivalent fractional integral equation for a linear variant of the
boundary value problem (1.1)–(1.2).

Lemma 2.2 Let a ≥ 0, 0 < χi < 1, γi = χi + βi(1 – χi), i = 1, 2, 1 < χ1 + χ2 ≤ 2, and h ∈
C([a, b],R). Then the function x is a solution of the boundary value problem:

Dχ1,β1;ψ(
Dχ2,β2;ψ + k

)
x(t) = h(t), (2.1)

x(a) = 0, x(b) =
m∑

i=1

λiIδi ;ψx(τi), (2.2)

if and only if

x(t) = Iχ1+χ2;ψh(t) – kIχ2;ψx(t) +
(ψ(t) – ψ(a))γ1+χ2–1


�(γ1 + χ2)

[ m∑

i=1

λiIχ1+χ2+δi ;ψh(τi)

– k
m∑

i=1

λiIχ2+δi ;ψx(τi) – Iχ1+χ2;ψh(b) + kIχ2;ψx(b)

]

, (2.3)

where it is assumed that


 =
(ψ(b) – ψ(a))γ1+χ2–1

�(γ1 + χ2)
–

m∑

i=1

λi

�(γ1 + χ2 + δi)
(
ψ(τi) – ψ(a)

)γ1+χ2+δi–1 �= 0.

Proof Applying the ψ-R-L fractional integral of order χ1 to both sides of (2.1) and using
Lemma 2.1 we obtain

Dχ2,β2;ψx(t) + kx(t) = Iχ1;ψh(t) +
c0

�(γ1)
(
ψ(t) – ψ(a)

)γ1–1, (2.4)

where c0 is an arbitrary constant and γ1 = χ1 + β1(1 – χ1).
Applying the ψ-R-L fractional integral of order χ2 to both sides of (2.4), we obtain

Iχ2;ψDχ2,β2;ψx(t) = Iχ1+χ2;ψh(t) – kIχ2;ψx(t)

+
c0

�(γ1 + χ2)
(
ψ(t) – ψ(a)

)γ1+χ2–1. (2.5)

Applying Lemma 2.1 to (2.5), we get

x(t) = Iχ1+χ2;ψh(t) – kIχ2;ψx(t) +
c0

�(γ1 + χ2)
(
ψ(t) – ψ(a)

)γ1+χ2–1

+
c1

�(γ2)
(
ψ(t) – ψ(a)

)γ2–1. (2.6)

Using x(a) = 0 in (2.6), we obtain c1 = 0, and hence we get

x(t) = Iχ1+χ2;ψh(t) – kIχ2;ψx(t) +
c0

�(γ1 + χ2)
(
ψ(t) – ψ(a)

)γ1+χ2–1. (2.7)



Nuchpong et al. Boundary Value Problems         (2021) 2021:34 Page 4 of 12

Next, by combining the second condition x(b) =
∑m

i=1 λiIδi ;ψx(τi) of (2.2) with (2.7), we
obtain

c0 =
1



[ m∑

i=1

λiIχ1+χ2+δi ;ψh(τi) – k
m∑

i=1

λiIχ2+δi ;ψx(τi) – Iχ1+χ2;ψh(b) + kIχ2;ψx(b)

]

.

Substituting c0 in (2.7) we get (2.3).
We can easily prove the converse by direct computation. The proof is completed. �

Fixed point theorems play a major role in establishing the existence theory for the prob-
lem (1.1)–(1.2). We collect here some well-known fixed point theorems used in this paper.

Lemma 2.3 (Banach contraction principle [37]) Let D be a non-empty closed subset of a
Banach space E. Then any contraction mapping T from D into itself has a unique fixed
point.

Lemma 2.4 (Krasnosel’skĭi’s fixed point theorem [38]) Let M be a closed, bounded,
convex, and non-empty subset of a Banach space. Let A, B be the operators such that
(i) Ax + By ∈M whenever x, y ∈M; (ii) A is compact and continuous; (iii) B is contraction
mapping. Then there exists z ∈M such that z = Az + bz.

Lemma 2.5 (Leray–Schauder nonlinear alternative [39]) Let E be a Banach space, C a
closed, convex subset of E, U an open subset of C and 0 ∈ U . Suppose that D : U → C is a
continuous, compact (that is, D(U) is a relatively compact subset of C) map. Then either

(i) D has a fixed point in U , or
(ii) there is a x ∈ ∂U (the boundary of U in C) and ν ∈ (0, 1) with x = νD(x).

3 Main results
In this section, we investigate the existence and uniqueness of solution for the boundary
value problem (1.1)–(1.2).

By Lemma 2.2 we define an operator N : C → C by

(N x)(t) = Iχ1+χ2;ψ f
(
t, x(t)

)
– kIχ2;ψx(t)

+
(ψ(t) – ψ(a))γ1+χ2–1


�(γ1 + χ2)

[ m∑

i=1

λiIχ1+λ2+δi ;ψ f
(
τi, x(τi)

)

– k
m∑

i=1

λiIχ2+δi ;ψx(τi) – Iχ1+χ2;ψ f
(
b, x(b)

)
+ kIχ2;ψx(b)

]

, t ∈ J . (3.1)

For the sake of brevity, we set


1 =
(ψ(b) – ψ(a))χ1+χ2

�(χ1 + χ2 + 1)
+

(ψ(b) – ψ(a))γ1+χ2–1

|
|�(γ1 + χ2)

×
[ m∑

i=1

|λi| (ψ(τi) – ψ(a))χ1+χ2+δi

�(χ1 + χ2 + δi + 1)
+

(ψ(b) – ψ(a))χ1+χ2

�(χ1 + χ2 + 1)

]

(3.2)
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and


2 = |k|
{

(ψ(b) – ψ(a))χ2

�(χ2 + 1)
+

(ψ(b) – ψ(a))γ1+χ2–1

|
|�(γ1 + χ2)

×
[ m∑

i=1

|λi| (ψ(τi) – ψ(a))χ2+δi

�(χ2 + δi + 1)
+

(ψ(b) – ψ(a))χ2

�(χ2 + 1)

]}

. (3.3)

3.1 Existence results
We prove our first existence result for the boundary value problem (1.1)–(1.2) by using
Krasnosel’skĭi’s fixed point theorem [38].

Theorem 3.1 Assume that:
(H1) f : J ×R →R is a continuous function such that |f (t, x(t))| ≤ ϕ(t), ∀(t, x) ∈ J ×R,

with ϕ ∈ C(J ,R).
(H2) 
2 < 1, where 
2 is given by (3.3).

Then there exists at least one solution for the boundary value problem (1.1)–(1.2) on J .

Proof We will show that the operator N defined by (3.1) satisfies the assumptions of
Krasnosel’skĭi’s fixed point theorem. We split the operator N into the sum of two op-
erators N1 and N2 on the closed ball Bρ = {x ∈ C : ‖x‖ ≤ ρ} with ρ ≥ (‖ϕ‖
1)/(1 – 
2),
supt∈J ϕ(t) = ‖ϕ‖, where

(N1x)(t) = Iχ1+χ2;ψ f
(
t, x(t)

)
+

(ψ(t) – ψ(a))γ1+χ2–1


�(γ1 + χ2)

×
[ m∑

i=1

λiIχ1+χ2+δi ;ψ f
(
τi, x(τi)

)
– Iχ1+χ2;ψ f

(
b, x(b)

)
]

, t ∈ J , (3.4)

and

(N2x)(t) = –kIχ2;ψx(t) +
(ψ(t) – ψ(a))γ1+χ2–1


�(γ1 + χ2)

×
[

–k
m∑

i=1

λiIχ2+δi ;ψx(τi) + kIχ2;ψx(b)

]

, t ∈ J . (3.5)

For any x, y ∈ Bρ , we have

∣∣(N1x)(t) + (N2y)(t)
∣∣

≤ sup
t∈J

{

Iχ1+χ2
∣
∣f

(
t, x(t)

)∣∣ + |k|Iχ2;ψ ∣
∣y(t)

∣
∣ +

(ψ(t) – ψ(a))γ1+χ2–1

|
|�(γ1 + χ2)

×
[ m∑

i=1

|λi|Iχ1+λ2+δi ;ψ
∣∣f

(
τi, x(τi)

)∣∣ + Iχ1+χ2;ψ ∣∣f
(
b, x(b)

)∣∣

+ |k|
m∑

i=1

|λi|Iχ2+δi ;ψ
∣∣y(τi)

∣∣ + |k|Iχ2;ψ ∣∣y(b)
∣∣
]}
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≤ ‖ϕ‖
{

(ψ(b) – ψ(a))χ1+χ2

�(χ1 + χ2 + 1)
+

(ψ(b) – ψ(a))γ1+χ2–1

|
|�(γ1 + χ2)

×
[ m∑

i=1

|λi| (ψ(τi) – ψ(a))χ1+χ2+δi

�(χ1 + χ2 + δi + 1)
+

(ψ(b) – ψ(a))χ1+χ2

�(χ1 + χ2 + 1)

]}

+ ‖y‖|k|
{

(ψ(b) – ψ(a))χ2

�(χ2 + 1)
+

(ψ(b) – ψ(a))γ1+χ2–1

|
|�(γ1 + γ2)

×
[ m∑

i=1

|λi| (ψ(τi) – ψ(a))χ2+δi

�(χ2 + δi + 1)
+

(ψ(b) – ψ(a))χ2

�(χ2 + 1)

]}

≤ ‖ϕ‖
1 + ρ
2 ≤ ρ,

and hence ‖N1x + N2y‖ ≤ ρ , which implies that N1x + N2y ∈ Bρ . By using (H2) it is easy
to prove that N2 is a contraction mapping.

The operator N1 is continuous, since f is continuous. It is uniformly bounded on Bρ as

‖N1x‖ ≤ 
1‖ϕ‖. (3.6)

Now, we prove that the operator N1 is compact. Setting sup(t,x)∈J×Bρ
|f (t, x)| = f < ∞, we

obtain

∣∣(N1x)(t2) – (N2x)(t1)
∣∣

≤ f
�(χ1 + χ2)

∣∣
∣∣

∫ t1

a

[
ψ ′(s)

(
ψ(t2) – ψ(s)

)χ1+χ2–1 – ψ ′(s)
(
ψ(t1) – ψ(s)

)χ1+χ2–1]ds

+
∫ t2

t1

ψ ′(s)
(
ψ(t2) – ψ(s)

)χ1+χ2–1 ds
∣∣
∣∣

+
(ψ(t2) – ψ(a))γ1+χ2–1 – (ψ(t1) – ψ(a))γ1+χ2–1

|
|�(γ1 + χ2)

×
[ m∑

i=1

|λi|f (ψ(τi) – ψ(a))χ1+χ2+δi

�(χ1 + χ2 + δi + 1)
+ f

(ψ(b) – ψ(a))χ1+χ2

�(χ1 + χ2 + 1)

]

≤ f
�(χ1 + χ2 + 1)

[
2
(
ψ(t2) – ψ(t1)

)χ1+χ2

+
∣∣(ψ(t2) – ψ(a)

)χ1+χ2 –
(
ψ(t1) – ψ(a)

)χ1+χ2 ∣∣]

+
(ψ(t2) – ψ(a))γ1+χ2–1 – (ψ(t1) – ψ(a))γ1+χ2–1

|
|�(γ1 + χ2)

×
[ m∑

i=1

|λi|f (ψ(τi) – ψ(a))χ1+χ2+δi

�(χ1 + χ2 + δi + 1)
+ f

(ψ(b) – ψ(a))χ1+χ2

�(χ1 + χ2 + 1)

]

,

which tends to zero as t2 – t1 → 0, independently of x ∈ Bρ . Thus, N1 is equicontinuous
and hence N1 is relatively compact on Bρ . By the Arzelá–Ascoli theorem, N1 is compact
on Bρ . It follows by Krasnosel’skĭi’s fixed point theorem (Lemma 2.4) that the problem
(1.1)–(1.2) has at least one solution on J . The proof is complete. �
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Example 3.1 Consider the boundary value problem of the Langevin equation with the
ψ-HFD of the form

D 1
2 , 1

3 ;et
(
D 3

4 , 1
2 ;et

+
1

12

)
x(t) =

2e 1
2 –t

2t + 15

( |x(t)|
1 + |x(t)|

)
+

1
3

, t ∈
[

1
2

,
5
2

]
, (3.7)

x
(

1
2

)
= 0, x

(
5
2

)
=

1
3

I
1
2 ;et

x(1) +
1
2

I
3
2 ;et

x
(

3
2

)
+

3
5

I
5
2 ;et

x(2). (3.8)

Here χ1 = 1/2, χ2 = 3/4, β1 = 1/3, β2 = 1/2, k = 1/12, a = 1/2, b = 5/2, m = 3, δ1 = 1/2, δ2 =
3/2, δ3 = 5/2, τ1 = 1, τ2 = 3/2, τ3 = 2, λ1 = 1/3, λ2 = 1/2, λ3 = 3/5 and ψ(t) = et . We see that
χ1 + χ2 = 5/4 ∈ (1, 2]. Using the given data, we get γ1 = 2/3, γ2 = 7/8, |
| ≈ 17.47973707,

1 ≈ 24.38179472 and 
2 ≈ 0.9594635717.

Observe that 
2 < 1 and we obtain

∣
∣f (t, x)

∣
∣ =

∣∣
∣∣

2e 1
2 –t

2t + 15

( |x|
1 + |x|

)
+

1
3

∣∣
∣∣ ≤ 2e 1

2 –t

2t + 15
+

1
3

:= φ(t).

Thus all the assumptions of Theorem 3.1 are satisfied. Therefore by its conclusion, the
boundary value problem (3.7)–(3.8) has at least one solution on [1/2, 5/2].

Our next existence result is based on the Leray–Schauder nonlinear alternative
(Lemma 2.5).

Theorem 3.2 Suppose that (H2) holds. In addition we assume that:
(H3) |f (t, x)| ≤ p(t)φ(|x|) for each (t, x) ∈ J ×R where φ : [0,∞) → (0,∞) is a

continuous nondecresing function and p ∈ C(J ,R+).
(H4) There exists a constant M > 0, such that

(1 – 
2)M
φ(M)‖p‖
1

> 1, (3.9)

where 
1, 
2 are given by (3.2) and (3.3), respectively.
Then there exists at least one solution for the boundary value problem (1.1)–(1.2) on J .

Proof We will prove that the operator N defined by (3.1) satisfies the hypothesis of the
Leray–Schauder nonlinear alternative. For this purpose, we first establish that operator N
maps bounded sets (balls) into a bounded set in C . Let Br = {x ∈ C : ‖x‖ ≤ r} be a bounded
ball with radius r in C . Then, for t ∈ J , we have

∣∣(N x)(t)
∣∣ ≤ sup

t∈J

{

Iχ1+χ2;ψ ∣∣f
(
t, x(t)

)∣∣ + |k|Iχ2;ψ ∣∣x(t)
∣∣

+
(ψ(t) – ψ(a))γ1+χ2–1


�(γ1 + χ2)

[ m∑

i=1

|λi|Iχ1+χ2+δi ;ψ
∣
∣f

(
τi, x(τi)

)∣∣

+ |k|
m∑

i=1

|λi|Iχ2+δi ;ψ
∣∣x(τi)

∣∣ + Iχ1+χ2;ψ ∣∣f
(
b, x(b)

)∣∣ + |k|Iχ2;ψ ∣∣x(b)
∣∣
]}

≤ ‖p‖φ(‖x‖)
{

(ψ(b) – ψ(a))χ1+χ2

�(χ1 + χ2 + 1)
+

(ψ(b) – ψ(a))γ1+χ2–1

|
|�(γ1 + χ2)
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×
[ m∑

i=1

|λi| (ψ(τi) – ψ(a))χ1+χ2+δi

�(χ1 + χ2 + δi + 1)
+

(ψ(b) – ψ(a))χ1+χ2

�(χ1 + χ2 + 1)

]}

+ ‖x‖|k|
{

(ψ(b) – ψ(a))χ2

�(χ2 + 1)
+

(ψ(b) – ψ(a))γ1+χ2–1

|
|�(γ1 + γ2)

×
[ m∑

i=1

|λi| (ψ(τi) – ψ(a))χ2+δi

�(χ2 + δi + 1)
+

(ψ(b) – ψ(a))χ2

�(χ2 + 1)

]}

= ‖p‖φ(‖x‖)
1 + ‖x‖
2,

and consequently

‖N x‖ ≤ ‖p‖φ(r)
1 + 
2r. (3.10)

Next, we will show that N maps bounded sets into equicontinuous sets of C . Let t1, t2 ∈ J
with t1 < t2 and x ∈ Br . Then we have

∣∣(N x)(t2) – (N x)(t1)
∣∣

≤ ‖p‖ψ(r)
�(χ1 + χ2 + 1)

[
2
(
ψ(t2) – ψ(t1)

)χ1+χ2

+
∣∣(ψ(t2) – ψ(a)

)χ1+χ2 –
(
ψ(t1) – ψ(a)

)χ1+χ2 ∣∣]

+
(ψ(t2) – ψ(a))γ1+χ2–1 – (ψ(t1) – ψ(a))γ1+χ2–1

|
|�(γ1 + χ2)

×
[ m∑

i=1

|λi|‖p‖ψ(r)
(ψ(τi) – ψ(a))χ1+χ2+δi

�(χ1 + χ2 + δi + 1)
+ ‖p‖ψ(r)

(ψ(b) – ψ(a))χ1+χ2

�(χ1 + χ2 + 1)

]

+
|k|r

�(χ2 + 1)
(
ψ(t2) – ψ(t1)

)χ2 +
(ψ(t2) – ψ(a))γ1+χ2–1 – (ψ(t1) – ψ(a))γ1+χ2–1

|
|�(γ1 + χ2)

×
[ m∑

i=1

|λi| (ψ(τi) – ψ(a))χ2+δi

�(χ2 + δi + 1)
+

(ψ(b) – ψ(a))χ2

�(χ2 + 1)

]

r.

As t1 → t2, the right hand side of the above inequality tends to zero independently of x ∈
Br . The set NBr is equicontinuous. Thus, we have proved that NBr is relatively compact.
By the Arzelá–Ascoli theorem, N is completely continuous.

Finally, we show that the set of all solutions to equations x = ωN x is bounded for ω ∈
(0, 1). Following the computation in the first step, we obtain

∣
∣x(t)

∣
∣ ≤ φ

(‖x‖)‖p‖
1 + ‖x‖
2, t ∈ [a, b],

which yields

(1 – 
2)‖x‖
φ(‖x‖)‖p‖
1

≤ 1.

According to (H4), there exists M > 0 satisfying ‖x‖ �= M. Introduce the set

U =
{

x ∈ C(J ,R) : ‖x‖ < M
}

, (3.11)
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and notice that U → C is continuous and completely continuous. From the choice of U
there is no x ∈ ∂U , such that x = ωN x for some ω ∈ (0, 1). As a result of the nonlinear
alternative of the Leray–Schauder type (Theorem 2.5) we deduce that N has a fixed point
x ∈ U , which is a solution of the boundary value problem (1.1)–(1.2). This completes the
proof. �

Example 3.2 Consider the boundary value problem of the Langevin equation with the
ψ-HFD of the form

D 2
3 , 4

5 ;log t
(
D 4

5 , 2
3 ;log t +

1
18

)
x(t)

=
3

3t + 1049

(
x2(t) +

1
2

e–x2(t) +
1
2

)
, t ∈

[
1
3

,
5
3

]
, (3.12)

x
(

1
3

)
= 0, x

(
5
3

)
=

1
5

I
3
7 ;log tx

(
2
3

)
+

2
5

I
4
7 ;log tx(1) +

3
5

I
5
7 ;log tx

(
4
3

)
. (3.13)

Here χ1 = 2/3, χ2 = 4/5, β1 = 4/5, β2 = 2/3, k = 1/18, a = 1/3, b = 5/3, m = 3, δ1 = 3/7,
δ2 = 4/7, δ3 = 5/7, τ1 = 2/3, τ2 = 1, τ3 = 4/3, λ1 = 1/5, λ2 = 2/5, λ3 = 3/5 and ψ(t) = log t.
Observe that χ1 + χ2 = 22/15 ∈ (1, 2].

With these values we found γ1 = γ2 = 14/15, |
| ≈ 0.2902990904, 
1 ≈ 14.08506960
and 
2 ≈ 0.9144444033 < 1. Notice that

∣
∣f (t, x)

∣
∣ =

∣∣
∣∣

3
3t + 1049

(
x2 +

1
2

e–x2
+

1
2

)∣∣
∣∣

≤
(

3
3t + 1049

)(
x2 + 1

)
:= p(t)φ(x),

which fulfills the hypothesis (H3) with ‖p‖ ≤ 1/350 and φ(M) = M2 + 1. Also (H4) is sat-
isfied for M ∈ (0.7025154750, 1.423456188). Hence by Theorem 3.2, the problem (3.12)–
(3.13) has at least one solution on [1/3, 5/3].

3.2 Uniqueness result
We shall use the Banach contraction mapping principle to prove the uniqueness of the
solutions of the boundary value problem (1.1)–(1.2).

Theorem 3.3 Assume that:
(H5) There exists a positive constant L > 0 such that |f (t, x) – f (t, y)| ≤L|x – y|, for each

t ∈ J and x, y ∈R.
Then the boundary value problem (1.1)–(1.2) has a unique solution on J , provided that

L
1 + 
2 < 1, (3.14)

where the constants 
1, 
2 are defined by (3.2) and (3.3) respectively.

Proof We want to prove that the operator N : C → C defined by (3.1) has a fixed point.
This fixed point is then a solution of the problem (1.1)–(1.2). Set supt∈J |f (t, 0)| = K < ∞,
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Br = {x ∈ C : ‖x‖ ≤ r} and choose r ≥ (K
1)/(1–L
1 –
2). Then we will show thatNBr ⊂
Br . For any x ∈ Br , we have

∣∣(N x)(t)
∣∣

≤ sup
t∈J

{

Iχ1+χ2;ψ(∣∣f
(
t, x(t)

)
– f (t, 0)

∣
∣ +

∣
∣f (t, 0)

∣
∣) + |k|Iχ2;ψ ∣

∣x(t)
∣
∣

+
(ψ(t) – ψ(a))γ1+χ2–1


�(γ1 + χ2)

[ m∑

i=1

|λi|Iχ1+χ2+δi ;ψ
(∣∣f

(
τi, x(τi)

)
– f (τi, 0)

∣∣ +
∣∣f (τi, 0)

∣∣)

+ |k|
m∑

i=1

|λi|Iχ2+δi ;ψ
∣
∣x(τi)

∣
∣ + Iχ1+χ2;ψ(∣∣f

(
b, x(b)

)
– f (b, 0)

∣
∣ +

∣
∣f (b, 0)

∣
∣)

+ |k|Iχ2;ψ ∣∣x(b)
∣∣
]}

≤ (
L‖x‖ + K

)
(

(ψ(b) – ψ(a))χ1+χ2

�(χ1 + χ2 + 1)
+

(ψ(b) – ψ(a))γ1+χ2–1

|
|�(γ1 + χ2)

×
[ m∑

i=1

|λi| (ψ(τi) – ψ(a))χ1+χ2+δi

�(χ1 + χ2 + δi + 1)
+

(ψ(b) – ψ(a))χ1+χ2

�(χ1 + χ2 + 1)

])

+ ‖x‖
(

|k|
{

(ψ(b) – ψ(a))χ2

�(χ2 + 1)
+

(ψ(b) – ψ(a))γ1+χ2–1

|
|�(γ1 + γ2)

×
[ m∑

i=1

|λi| (ψ(τi) – ψ(a))χ2+δi

�(χ2 + δi + 1)
+

(ψ(b) – ψ(a))χ2

�(χ2 + 1)

]})

≤ (Lr + K)
1 + r
2 < r.

Therefore ‖N x‖ ≤ r which implies that NBr ⊂ Br .
Now for x, y ∈ C , we have

∣∣(N x)(t) – (N y)(t)
∣∣

≤
(

(ψ(b) – ψ(a))χ1+χ2

�(χ1 + χ2 + 1)
+

(ψ(b) – ψ(a))γ1+χ2–1

|
|�(γ1 + χ2)

×
[ m∑

i=1

|λi| (ψ(τi) – ψ(a))χ1+χ2+δi

�(χ1 + χ2 + δi + 1)
+

(ψ(b) – ψ(a))χ1+χ2

�(χ1 + χ2 + 1)

])

L‖x – y‖

+ |k|
({

(ψ(b) – ψ(a))χ2

�(χ2 + 1)
+

(ψ(b) – ψ(a))γ1+χ2–1

|
|�(γ1 + γ2)

×
[ m∑

i=1

|λi| (ψ(τi) – ψ(a))χ2+δi

�(χ2 + δi + 1)
+

(ψ(b) – ψ(a))χ2

�(χ2 + 1)

]})

‖x – y‖

= (L
1 + 
2)‖x – y‖.

Therefore ‖(N x) – (N y)‖ ≤ (L
1 + 
2)‖x – y‖. As L
1 + 
2 < 1N is a contraction. By
the Banach contraction mapping principle (Lemma 2.3) we deduce that N has a fixed
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point, which is the unique solution of the boundary value problem (1.1)–(1.2). The proof
is finished. �

Example 3.3 Consider the boundary value problem of the Langevin equation with the
ψ-HFD of the form

D 3
7 , 2

7 ;t2+1
(
D 5

7 , 4
7 ;t2+1 +

1
13

)
x(t) =

2
4t + 31

(
x2(t) + 2|x(t)|

1 + |x(t)|
)

+
1
4

, t ∈
[

1
4

,
5
4

]
, (3.15)

x
(

1
4

)
= 0, x

(
5
4

)
=

3
8

I
2
3 ;t2+1x

(
1
2

)
+

5
8

I
4
3 ;t2+1x

(
3
4

)
+

7
8

I
5
3 ;t2+1x(1). (3.16)

Here χ1 = 3/7, χ2 = 5/7, β1 = 2/7, β2 = 4/7, k = 1/13, a = 1/4, b = 5/4, m = 3, δ1 = 2/3,
δ2 = 4/3, δ3 = 5/3, τ1 = 1/2, τ2 = 3/4, τ3 = 1, λ1 = 3/8, λ2 = 5/8, λ3 = 7/8 and ψ(t) = t2 + 1.
Note that χ1 + χ2 = 8/7 ∈ (1, 2].

With these values we found γ1 = 29/49, γ2 = 43/49, |
| ≈ 0.6572399879, 
1 ≈
4.725942806 and 
2 ≈ 0.3825052846 < 1 and L = 1/8 as

∣
∣f (t, x) – f (t, y)

∣
∣ ≤ 1

8
|x – y|, for any x, y ∈R.

Since L
1 + 
2 ≈ 0.9732481354 < 1, by Theorem 3.3, the problem (3.15)–(3.16) has a
unique solution on [1/4, 5/4].
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