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Abstract
We study the coupled Choquard type system with lower critical exponents

⎧
⎪⎨

⎪⎩

–�u + λ1(x)u =μ1(Iα ∗ |u| N+α
N )|u| α

N –1u + β(Iα ∗ |v| N+α
N )|u| α

N –1u, x ∈R
N ,

–�v + λ2(x)v =μ2(Iα ∗ |v| N+α
N )|v| α

N –1v + β(Iα ∗ |u| N+α
N )|v| α

N –1v, x ∈ R
N ,

u, v ∈ H1(RN),

where N ≥ 3, μ1,μ2,β > 0, and λ1(x), λ2(x) are nonnegative functions. The existence
of at least one positive ground state of this system is proved under certain
assumptions on λ1, λ2.

Keywords: Choquard system; Lower critical exponent; Positive ground state

1 Introduction
In this paper, we consider the following coupled nonlinear equations of Choquard type:

⎧
⎪⎪⎨

⎪⎪⎩

–�u + λ1(x)u = μ1(Iα ∗ |u| N+α
N )|u| α

N –1u + β(Iα ∗ |v| N+α
N )|u| α

N –1u, x ∈R
N ,

–�v + λ2(x)v = μ2(Iα ∗ |v| N+α
N )|v| α

N –1v + β(Iα ∗ |u| N+α
N )|v| α

N –1v, x ∈R
N ,

u, v ∈ H1(RN ),

(1.1)

where N ≥ 3, α ∈ (0, N), μ1,μ2,β > 0, N+α
N is the lower critical exponent due to the Hardy–

Littlewood–Sobolev inequality (see [9, Theorem 3.1]), Iα : RN \ {0} �→R defined by

Iα =
�( N–α

2 )

2απ
N
2 �( α

2 )|x|N–α

is the Riesz potential, and λ1(x) and λ2(x) are nonnegative functions. Elliptic equations
of this type have wide application in physical problems, such as in Hartree–Fock theory
[8, 10, 12] and in nonlinear optics [13, 14]. The readers can refer to [2, 18, 19] for more
physical backgrounds.
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Mathematically, Choquard type equations have received considerable attention in the
past few years, see [1, 3–5, 7, 8, 11, 15–17] and the reference therein for scale equations.
There are also some results concerned with solutions of a nonlinearly coupled Choquard
system. In [21], Wang and Shi proved the existence of positive solutions of

⎧
⎪⎪⎨

⎪⎪⎩

–�u + λ1u = μ1(Iα ∗ |u|2)u + β(Iα ∗ |v|2)u, x ∈R
N ,

–�v + λ2v = μ2(Iα ∗ |v|2)v + β(Iα ∗ |u|2)v, x ∈R
N ,

u, v ∈ H1(RN ),

(1.2)

for λ1,λ2 > 0 and β ∈ (–∞,χ0)∪ (min{λ2μ,λ 1
2 ν}, +∞), where λ = λ2/λ1 and χ0 > 0 depends

on μ1, μ2, λ. Particularly, when λ1 = λ2 > 0, they showed that system (1.2) has a positive
ground state (

√
k0w0,

√
l0w0), where (k0, l0) is the solution of

⎧
⎨

⎩

μ1k + βl = 1,

μ2l + βk = 1,
(1.3)

and w0 is a positive ground state of

–�u + λ1u =
(
Iα ∗ |u|2)u, x ∈R

N , u ∈ H1(
R

N)
. (1.4)

In [22], Wang and Yang established the existence and nonexistence of normalized solu-
tions of system (1.2) with trapping potentials. In [20], Wang obtained the multiplicity of
nontrivial solutions of a nonlinearly coupled Choquard system with general subcritical
exponents and perturbations.

For a Choquard system with upper critical exponents, You, Wang, and Zhao [25, 26]
derived the existence of a positive ground state of the following system:

⎧
⎪⎪⎨

⎪⎪⎩

–�u + λ1u = μ1(Iα ∗ |u| N+α
N–2 )u

α+2
N–2 + β(Iα ∗ |v| N+α

N–2 )u
α+2
N–2 , x ∈ 
,

–�v + λ2v = μ2(Iα ∗ |v| N+α
N–2 )v

α+2
N–2 + β(Iα ∗ |u| N+α

N–2 )v
α+2
N–2 , x ∈ 
,

u, v ∈ H1
0 (
),

(1.5)

where N ≥ 5, 
 is a bounded smooth domain in R
N , –λ1(
) < λ1, λ2 < 0, and λ1(
) rep-

resents the first eigenvalue of –� on 
 with the Dirichlet boundary condition. More pre-
cisely, they obtained that system (1.5) has a positive ground state if

⎧
⎨

⎩

β ∈ (–β̄ , 0) ∪ (0, min{μ1,μ2}) ∪ (max{μ1,μ2}, +∞) for α = N – 4,

β ∈ (–∞, 0) ∪ ( α+2
N–2 max{μ1,μ2}, +∞) for α ∈ (0, N – 4).

For the special case –λ1(
) < λ1 = λ2 < 0, they proved that system (1.5) has a positive
ground state (

√
k̄w∗,

√
l̄w∗) if

⎧
⎨

⎩

β ∈ (0, min{μ1,μ2}) ∪ (max{μ1,μ2}, +∞) for α = N – 4,

β ∈ ( α+2
N–2 max{μ1,μ2}, +∞) for α ∈ (0, N – 4),
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where w∗ is a positive ground state of

–�u + λ1u =
(
Iα ∗ |u| N+α

N–2
)
u

α+2
N–2 , u ∈ H1

0 (
), (1.6)

and k̄, l̄ is a solution of

⎧
⎪⎪⎨

⎪⎪⎩

μ1k
α+2
N–2 + βk

α+4–N
2(N–2) l

N+α
2(N–2) = 1,

μ2l
α+2
N–2 + βk

N+α
2(N–2) l

α+4–N
2(N–2) = 1,

k, l > 0,

(1.7)

satisfying

k̄ = min
{

k|(k, l) solves (1.7)
}

.

In the current paper, we study the nonlinearly coupled system (1.1) with lower critical
exponents. Since system (1.1) with positive constant potentials has no nontrivial solution
in H := H1(RN ) × H1(RN ) by the Pohozaev identity, we assume that λ1, λ2 are functions
dependent on x ∈ R

N . We aim to prove the existence of positive ground states of system
(1.1). Furthermore, for the case λ1(x) = λ2(x) := λ(x), we will introduce an approach which
is different with [21, 25, 26] to prove that system (1.1) has a positive ground state of the
form (kw, lw), where w is a positive ground state of

–�u + λ(x)u =
(
Iα ∗ |u| N+α

N
)|u| α

N –1u, x ∈R
N , u ∈ H1(

R
N)

. (1.8)

For this purpose, we assume that
(C1) λi(x) ≥ 0 for all x ∈R

N , λi(x) ∈ L∞(RN ) and lim|x|→∞ λi(x) = 1, i = 1, 2;
(C2) lim inf|x|→∞(1 – λi(x))|x|2 ≥ N2(N–2)

4(N+1) , i = 1, 2.
Note that under assumptions (C1) and (C2), the scale equation

–�u + λi(x)u = μi
(
Iα ∗ |u| N+α

N
)|u| α

N –1u, x ∈R
N , u ∈ H1(

R
N)

, i = 1, 2, (1.9)

has a ground state wi, i = 1, 2 (see [16, Theorem 3,Theorem 6]). Moreover, we may assume
that wi is positive since |wi| is also a ground state of (1.9). Clearly, system (1.1) has a trivial
solution (0, 0) and two semi-trivial solutions (w1, 0) and (0, w2) for all β ∈R. Here we deal
with the nontrivial solution, that is, a solution (u, v) of (1.1) with u 
≡ 0 and v 
≡ 0. Denote
∫

RN ·dx by
∫ · for simplicity, and define the functional I : H �→R corresponding to system

(1.1) by

I(u, v) =
1
2

∫

|∇u|2 + λ1(x)u2 + |∇v|2 + λ2(x)v2

–
N

2(N + α)

∫ (

μ1
(
Iα ∗ |u| N+α

N
)|u| N+α

N + μ2
(
Iα ∗ |v| N+α

N
)|v| N+α

N

+ 2β
(
Iα ∗ |u| N+α

N
)|v| N+α

N

)

.
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Set

M =
{

(u, v) ∈ H , u, v 
≡ 0,
∫

|∇u|2 + λ1(x)u2 =
∫

μ1
(
Iα ∗ |u| N+α

N
)|u| N+α

N + β
(
Iα ∗ |u| N+α

N
)|v| N+α

N ,
∫

|∇v|2 + λ2(x)v2 =
∫

μ2
(
Iα ∗ |v| N+α

N
)|v| N+α

N + β
(
Iα ∗ |u| N+α

N
)|v| N+α

N

}

.

It is obvious that if (u, v) is a solution of system (1.1), then (u, v) ∈M. Define

B = inf
M

I(u, v).

A solution (u, v) of system (1.1) is called a positive solution if u > 0, v > 0 and a ground
state if I(u, v) = B. We first show that B is attained by some positive ground state of system
(1.1) in the case when λ1(x) = λ2(x) := λ(x).

Theorem 1.1 Assume that (C1) and (C2) hold. If λ1(x) = λ2(x) := λ(x), then (tmsmw, tmw)
is a positive ground state of system (1.1) for all β > 0, where w is a positive ground state

of (1.8), tm = (μ2 + βs
N+α

N
m )– N

2α , and sm > 0 is a minimum point of a function g(s) : R+ �→ R

defined by

g(s) =
1 + s2

(μ2 + μ1s
2(N+α)

N + 2βs
N+α

N )
N

N+α

. (1.10)

Remark 1.2 If we apply a method as in the proof of [25, Theorem 1.3] and [26, Theo-
rem 1.3] to our case, we can prove that system (1.1) has a ground state of the form (kw, lw)
only if β ≥ α

N max{μ1,μ2}. In the current paper, we use an alternative approach inspired
by [24], which is based on studying the minimum point of g(s), and we show that system
(1.1) possesses a ground state of this form for all β > 0.

Remark 1.3 The method we adopted in the proof of Theorem 1.1 is also valid for the upper
critical system (1.5). As we mentioned previously, system (1.5) has a ground state of the
form (kw∗, lw∗) if N ≥ 5, –λ1(
) < λ1 = λ2 < 0, and

⎧
⎨

⎩

β ∈ ( α+2
N–2 max{μ1,μ2}, +∞) for α ∈ (0, N – 4),

β ∈ (0, min{μ1,μ2}) ∪ (max{μ1,μ2}, +∞) for α = N – 4,

(see [25, Theorem 1.3] and [26, Theorem 1.3]). However, we can prove that under the same
assumptions on λ1, λ2, N , system (1.5) has a ground state in the same form if

⎧
⎨

⎩

β ∈ (0, +∞) for α ∈ (0, N – 4),

β ∈ (max{μ1,μ2}, +∞) for α = N – 4

(see Theorem A.1 in Appendix). Although our approach can only deal with the case β >
max{μ1,μ2} for α = N – 4, in the case α ∈ (0, N – 4), the existence of a ground state of
(kw∗, lw∗) type is obtained for all β > 0.
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Next, for any λ1(x), λ2(x) satisfying (C1) and (C2), we have the following result.

Theorem 1.4 Assume that (C1) and (C2) hold. Then system (1.1) has a positive ground
state for all β > 0.

In the proof of Theorem 1.4, we need to give an accurate estimate of the least energy so
as to overcome the lack of compactness and show that both components of the solution
we obtained are nontrivial. For this purpose, some results of equation (1.9) will be used.
Denote the functional associated with (1.9) by

Ii(u) =
1
2

∫

|∇u|2 + λi(x)u2 –
N

2(N + α)
μi

∫
(
Iα ∗ |u| N+α

N
)|u| N+α

N ,

and set

Ni =
{

u ∈ H1(
R

N) \ {0}|〈I ′
i (u), u

〉
= 0

}
, Bi = inf

Ni
Ii(u), i = 1, 2.

Then, from [16, Theorem 3,Theorem 6] and some calculation, we see that Bi is attained
and

Bi ≤ α

2(N + α)
μ

– N
α

i S
N+α

α
1 , (1.11)

where

S1 = inf
(u,v)∈L2(RN )\{0}

∫
u2

(
∫

(Iα ∗ |u| N+α
N )|u| N+α

N )
N

N+α

. (1.12)

By [9, Theorem 3.1], S1 has a unique minimizer

U∗(x) := C
(

a
a2 + |x – b|2

) N
2

. (1.13)

We should also study the minimizing problem

S0 = inf
(u,v)∈L

u 
≡0,v
≡0

((∫

(u2 + v2)
)

/((∫

μ1
(
Iα ∗ |u| N+α

N
)|u| N+α

N + μ2
(
Iα ∗ |v| N+α

N
)|v| N+α

N

+ 2β
(
Iα ∗ |u| N+α

N
)|v| N+α

N

) N
N+α

))

,

(1.14)

where L = L2(RN ) × L2(RN ). Problem (1.14) can be seen as an extension of the classical
problem (1.12). By a similar approach as in the proof of Theorem 1.1, we obtain the fol-
lowing result.



Wu Boundary Value Problems         (2021) 2021:13 Page 6 of 19

Theorem 1.5 If β > 0, then S0 = g(sm)S1, and (smU∗, U∗) is a solution of (1.14), where g(s)
is defined in (1.10) and sm is a minimum point of g(s). If β < 0, then

S0 =
(
μ

– N
α

1 + μ
– N

α
2

) α
N+α S1

and S0 is not attained.

Theorem 1.5 not only plays an important role in the proof of Theorem 1.4, but also
extends the classical results of [9, Theorem 3.1].

2 Proof of Theorem 1.1
In order to prove Theorem 1.1, we study the minimizing problem

A = inf
(u,v)∈H
u 
≡0,v
≡0

((∫

|∇u|2 + λ(x)u2 + |∇v|2 + λ(x)v2
)

/((∫

μ1
(
Iα ∗ |u| N+α

N
)|u| N+α

N + μ2
(
Iα ∗ |v| N+α

N
)|v| N+α

N

+ 2β
(
Iα ∗ |u| N+α

N
)|v| N+α

N

) N
N+α

))

.

Up to multiplication by a scalar, we know that a minimizer of A is a ground state of system
(1.1) for λ1(x) = λ2(x) := λ(x). Set

A1 = inf
u∈H1(RN )\{0}

∫ |∇u|2 + λ(x)u2

(
∫

(Iα ∗ |u| N+α
N )|u| N+α

N )
N

N+α

. (2.1)

Letting w be a solution of (1.8), we know that A1 is attained by w. By studying a function
g : R+ �→R defined by

g(s) =
1 + s2

(μ2 + μ1s
2(N+α)

N + 2βs
N+α

N )
N

N+α

,

we are able to obtain the relationship between A and A1 and show that A is attained.

Lemma 2.1 If β > 0, then there is sm > 0 such that g(sm) = mins≥0 g(s).

Proof By simple calculation, we have

g ′(s) =
2s(μ2 – μ1s

2α
N – βs

α–N
N + βs

N+α
N )

(μ2 + μ1s
2(N+α)

N + 2βs
N+α

N )
2N+α
N+α

.

Let h(s) = μ2 – μ1s
2α
N – βs

α–N
N + βs

N+α
N . If β > 0, then h(s) → –∞ as s → 0, and h(s) → +∞

as s → +∞. Thus, there exists sm > 0 such that h(sm) = 0 and g(sm) = mins≥0 g(s). �

Lemma 2.2 Assume that (C1) and (C2) hold. If β > 0, then A = g(sm)A1.
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Proof We follow a similar approach as in [6, Theorem 1.1] and [24, Lemma 2.1] to prove
this Lemma. For any z ∈ H1(RN ) \ {0}, we set (u, v) := (smz, z). Then it follows that

A ≤ (1 + s2
m)

∫ |∇z|2 + λ(x)z2

((μ2 + μ1s
2(N+α)

N
m + 2βs

N+α
N

m )
∫

(Iα ∗ |z| N+α
N )z

N+α
N )

N
N+α

, (2.2)

which indicates

A ≤ g(sm)A1. (2.3)

Let (un, vn) ∈ H be a minimizing sequence of A, and set ξn = τnun, where

τn =
( ∫

(Iα ∗ |vn| N+α
N )|vn| N+α

N

∫
(Iα ∗ |un| N+α

N )|un| N+α
N

) N
2(N+α)

.

Then we have
∫

(
Iα ∗ |ξn| N+α

N
)|ξn| N+α

N =
∫

(
Iα ∗ |vn| N+α

N
)|vn| N+α

N . (2.4)

From (2.4) and the property of the Riesz potential that Iα = I α
2

∗ I α
2

, we obtain
∫

(
Iα ∗ |ξn| N+α

N
)|vn| N+α

N

=
∫

(
I α

2
∗ |ξn| N+α

N
)(

I α
2

∗ |vn| N+α
N

)

≤
(∫

∣
∣I α

2
∗ |ξn| N+α

N
∣
∣2

) 1
2
(∫

∣
∣I α

2
∗ |vn| N+α

N
∣
∣2

) 1
2

=
(∫

(
Iα ∗ |ξn| N+α

N
)|ξn| N+α

N

) 1
2
(∫

(
Iα ∗ |vn| N+α

N
)|vn| N+α

N

) 1
2

=
∫

(
Iα ∗ |vn| N+α

N
)|vn| N+α

N .

(2.5)

By (2.4) and (2.5), we have

A + o(1)

=
(∫

|∇un|2 + λ(x)u2
n + |∇vn|2 + λ(x)v2

n

)

/((∫

μ1
(
Iα ∗ |un| N+α

N
)|un| N+α

N + μ2
(
Iα ∗ |vn| N+α

N
)|vn| N+α

N

+ 2β
(
Iα ∗ |un| N+α

N
)|vn| N+α

N

) N
N+α

)

≥ τ–2
n

∫ |∇ξn|2 + λ(x)ξ 2
n +

∫ |∇vn|2 + λ(x)v2
n

((μ2 + μ1τ
– 2(N+α)

N
n + 2βτ

– N+α
N

n )
∫

(Iα ∗ |ξn| N+α
N )|ξn| N+α

N )
N

N+α

= g
(
τ–1

n
)
A1 ≥ g(sm)A1.

(2.6)

Combining (2.3) with (2.6), we conclude that A = g(sm)A1. �
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Proof of Theorem 1.1 From the proof of Lemma 2.1, we see that there exists sm > 0 such
that h(sm) = 0, that is,

μ2 – μ1s
2α
N

m – βs
α–N

N
m + βs

N+α
N

m = 0. (2.7)

From (2.7), we get

μ1s
2(N+α)

N
m + βs

N+α
N

m = s2(μ1s
2α
N

m + βs
α–N

N
m

)
= s2(μ2 + βs

N+α
N

m
)
.

Then it follows

μ2 + μ1s
2(N+α)

N
m + 2βs

N+α
N

m = μ2 + βs
N+α

N
m +

(
μ1s

2(N+α)
N

m + βs
N+α

N
m

)
=

(
1 + s2)(μ2 + βs

N+α
N

m
)
,

which yields

g(sm) =
1 + s2

m

(μ2 + μ1s
2(N+α)

N
m + 2βs

N+α
N

m )
N

N+α

=
(1 + s2

m)
α

N+α

(μ2 + βs
N+α

N
m )

N
N+α

. (2.8)

Let tm = (1 + βs
N+α

N
m )– N

2α , then tm(smw, w) is a positive solution of system (1.1). Moreover,
by (2.7), (2.8), and Lemma 2.2, we have

B ≤ I
(
tm(smw, w)

)
=

α

2(N + α)
t2
m
(
1 + s2

m
)
∫

|∇w|2 + λ(x)w2

=
α

2(N + α)
(
1 + s2

m
)(

μ2 + βs
N+α

N
m

)– N
α A

N+α
α

1

=
α

2(N + α)
(
g(sm)A1

) N+α
α

=
α

2(N + α)
A

N+α
α .

On the other hand, ∀(u, v) ∈M, we have

I(u, v) =
α

2(N + α)

∫

|∇u|2 + λ(x)u2 + |∇v|2 + λ(x)v2 ≥ α

2(N + α)
A

N+α
α ,

which indicates that B ≥ α
2(N+α) A N+α

α . Thus, B = α
2(N+α) A N+α

α = I(tmsmw, tmw), that is,
(tmsmw, tmw) is a positive ground state of system (1.1). �

3 Proof of Theorem 1.5
In this section, we prove Theorem 1.5, which is essential in the proof of Theorem 1.4.
Recalling the definition of U∗, we have the following lemma.

Lemma 3.1 If β > 0, then S0 = g(sm)S1, and S0 is attained by (smU∗, U∗).

Proof By a similar approach as that in Lemma 2.2, we see that S0 = g(sm)S1. Then the
conclusion follows from

(1 + s2
m)

∫ |U∗|2

((μ2 + μ1s
2(N+α)

N
m + 2βs

N+α
N

m )
∫

(Iα ∗ |U∗| N+α
N )|U∗| N+α

N )
N

N+α

= g(sm)S1.
�
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Lemma 3.2 If β < 0, then S0 = (μ– N
α

1 + μ
– N

α
2 )

α
N+α S1, and S0 is not attained.

Proof Denote (u0, vy) := (μ– N
2α

1 U∗(x),μ– N
2α

2 U∗(x + e1y)), where e = (1, 0, . . . , 0) ∈ R
N . Then

v
N+α

N
y ⇀ 0 in L

2N
N+α (RN ) as y → +∞. Taking account of the fact that Iα ∗|u0| N+α

N ∈ L
2N

N–α (RN ),
we have

lim
y→+∞

∫
(
Iα ∗ |u0| N+α

N
)|vy| N+α

N = 0.

Then, for |y| sufficiently large,

S0 ≤
(∫

u2
0 + v2

y

)

/((∫

μ1
(
Iα ∗ |u0| N+α

N
)|u0| N+α

N + μ2
(
Iα ∗ |vy| N+α

N
)|vy| N+α

N

+ 2β
(
Iα ∗ |u0| N+α

N
)|vy| N+α

N

) N
N+α

)

=
(μ– N

α
1 + μ

– N
α

2 )
∫

U2∗

((μ– N
α

1 + μ
– N

α
2 )

∫
(Iα ∗ |U∗| N+α

N )|U∗| N+α
N + o(1))

N
N+α

.

By letting y → +∞, we get

S0 ≤ (
μ

– N
α

1 + μ
– N

α
2

) α
N+α S1.

On the other hand, since β < 0, we know that

S0 ≥ inf
(u,v)∈L
u 
=0,v
=0

∫
u2 + v2

(
∫

μ1(Iα ∗ |u| N+α
N )|u| N+α

N + μ2(Iα ∗ |v| N+α
N )|v| N+α

N )
N

N+α

≥ (μ– N
α

1 + μ
– N

α
2 )

∫
U∗

2

((μ– N
α

1 + μ
– N

α
2 )

∫
(Iα ∗ |U∗| N+α

N )|U∗| N+α
N )

N
N+α

=
(
μ

– N
α

1 + μ
– N

α
2

) α
N+α S1.

Therefore,

S0 =
(
μ

– N
α

1 + μ
– N

α
2

) α
N+α S1. (3.1)

If S0 is attained by (u, v) with u 
≡ 0, v 
≡ 0, then

S0 =
∫

u2 + v2

(
∫

μ1(Iα ∗ |u| N+α
N )|u| N+α

N + μ2(Iα ∗ |v| N+α
N )|v| N+α

N + 2β(Iα ∗ |u| N+α
N )|v| N+α

N )
N

N+α

>
∫

u2 + v2

(
∫

μ1(Iα ∗ |u| N+α
N )|u| N+α

N + μ2(Iα ∗ |v| N+α
N )|v| N+α

N )
N

N+α

≥ (
μ

– N
α

1 + μ
– N

α
2

) α
N+α S1,

which contradicts (3.1). Thus, the conclusion holds. �
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Proof of Theorem 1.5 By Lemmas 3.1 and 3.2, we see that Theorem 1.5 holds. �

4 Proof of Theorem 1.4
In this section, we define

B = inf
η∈�

max
t∈[0,1]

I
(
η(t)

)
,

where

� =
{
η ∈ C

(
[0, 1], H

)|η(0) = (0, 0), I
(
η(1)

)
< 0

}
.

Set

N =
{

(u, v) ∈ H \ {
(0, 0)

}|〈I ′(u, v), (u, v)
〉
= 0

}
.

By simple calculation and analysis, we see that for any (u, v) 
= (0, 0), there exists t0 > 0
such that t0(u, v) ∈ N and I(t0u, t0v) = maxt≥0 I(tu, tv). Then, as in the proof of [23, Theo-
rem 4.2], we know that

B = inf
(u,v)∈H\(0,0)

max
t≥0

I(tu, tv) = inf
N

I(u, v).

Moreover, since M⊂N , we have B ≤ B. We will show that B is attained by some positive
solution (u, v) of system (1.1). To begin with, we give an estimate of the upper bound of B,
which is important in recovering the compactness of the Palais–Smale sequence.

Lemma 4.1 Assume that (C1) and (C2) hold. If β > 0, then

B < min

{

B1, B2,
α

2(N + α)
S

N+α
α

0

}

.

Proof We first show that

B <
α

2(N + α)
S

N+α
α

0 . (4.1)

Recall (smU∗, U∗) defined in Theorem 1.5, and let t > 0 be the constant such that
t(smU∗, U∗) ∈N . Then, by Theorem 1.5 and direct calculation, we see that

B ≤ I
(
t(smU∗, U∗)

)

=
1
2

t2
∫

(
1 + s2

m
)|∇U∗|2 +

(
λ1(x)s2

m + λ2(x)
)
U2

∗

–
N

2(N + α)
t

2(N+α)
N

(
μ2 + μ1s

2(N+α)
N

m + 2βs
N+α

N
m

)
∫

(
Iα ∗ |U∗| N+α

N
)|U∗| N+α

N

=
1
2

t2
∫

(
1 + s2

m
)
U2

∗

–
N

2(N + α)
t

2(N+α)
N

(
μ2 + μ1s

2(N+α)
N

m + 2βs
N+α

N
m

)
∫

(
Iα ∗ |U∗| N+α

N
)|U∗| N+α

N
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+
1
2

t2
∫

s2
m|∇U∗|2 + s2

m
(
λ1(x) – 1

)
U2

∗ + |∇U∗|2 +
(
λ2(x) – 1

)
U2

∗

≤ α

2(N + α)
(
g(sm)S1

) N+α
α

+
1
2

t2
∫

(
1 + s2

m
)|∇U∗|2 + s2

m
(
λ1(x) – 1

)
U2

∗ +
(
λ2(x) – 1

)
U2

∗

=
α

2(N + α)
S

N+α
α

0 +
1
2

t2
∫

(
1 + s2

m
)|∇U∗|2 + s2

m
(
λ1(x) – 1

)
U2

∗ +
(
λ2(x) – 1

)
U2

∗ .

Denote φi(u) = 1
2
∫ |∇u|2 + (λi(x) – 1)u2, i = 1, 2. To get (4.1), it suffices to show

φi(U∗) < 0, i = 1, 2, (4.2)

for some b ∈R
N . By the fact that

∫ |x|2
(1 + |x|2)N+2 =

N – 2
4(N + 1)

∫ 1
x2(1 + x2)N ,

we obtain

∫

|∇U∗|2 =
N2(N – 2)
4(N + 1)

∫ |U∗|2
|x|2 .

After a transformation x = b + ay, we have

a2φi(U∗) =
∫ (

N2(N – 2)
4(N + 1)|y|2 – a2(1 – λi(b + ay)

)
)

C2

(1 + |y|2)N dy.

Then from (C2) we see that (4.2) holds for b = 0, and (4.1) follows.
Next, we show B < Bi, i = 1, 2. Let wi be a positive solution of (1.9) for i = 1, 2 and t(τ ) > 0

such that (
√

t(τ )w1,
√

t(τ )τw1) ∈N . Then

t(τ )
α
N =

∫ |∇w1|2 + λ1(x)w2
1 + τ 2(|∇w1|2 + λ2(x)w2

1)

(μ1 + 2βτ
N+α

N + μ2τ
2(N+α)

N )
∫

(Iα ∗ |w1| N+α
N )|w1| N+α

N
.

By simple calculation, we get

lim
τ→0+

t′(τ )
|τ | α

N –1τ
= –

2(N + α)
αμ1

β .

It follows that

t(τ ) = 1 –
2N
αμ1

βτ
N+α

N
(
1 + o(1)

)
, as τ → 0,

and

t(τ )
N+α

N = 1 –
2(N + α)

αμ1
βτ

N+α
N

(
1 + o(1)

)
, as τ → 0.
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Therefore,

B ≤ I
(√

t(τ )w1,
√

t(τ )τw1
)

=
α

2(N + α)
t(τ )

N+α
N

(
μ1 + 2βτ

N+α
N + μ2τ

2(N+α)
N

)
∫

(
Iα ∗ |w1| N+α

N
)|w1| N+α

N

=
α

2(N + α)

∫

μ1
(
Iα ∗ |w1| N+α

N
)|w1| N+α

N

–
N

N + α
βτ

N+α
N

∫
(
Iα ∗ |w1| N+α

N
)|w1| N+α

N + o
(
τ

N+α
N

)

< B1 for τ > 0 small enough.

Similarly, we have B < B2. �

Next, we prove a Brezis–Lieb type lemma.

Lemma 4.2 Let {(un, vn)} be a bounded sequence in H , and (un, vn) → (u, v) a.e on R
N as

n → ∞. Then
∫

(
Iα ∗ |un| N+α

N
)|vn| N+α

N –
∫

(
Iα ∗ |un – u| N+α

N
)|vn – v| N+α

N →
∫

(
Iα ∗ |u| N+α

N
)|v| N+α

N

as n → ∞.

Proof From the Brezis–Lieb lemma [23], we know that

|un| N+α
N – |un – u| N+α

N → |u| N+α
N , in L

2N
N+α

(
R

N)
,

|vn| N+α
N – |vn – v| N+α

N → |v| N+α
N , in L

2N
N+α

(
R

N)
,

as n → ∞. Then, according to the Hardy–Littlewood–Sobolev inequality, we have

Iα ∗ (|un| N+α
N – |un – u| N+α

N
) → Iα ∗ |u| N+α

N in L
2N

N–α
(
R

N)
,

Iα ∗ (|vn| N+α
N – |vn – v| N+α

N
) → Iα ∗ |v| N+α

N in L
2N

N–α
(
R

N)
,

as n → ∞. Observing that
∫

(
Iα ∗ |un| N+α

N
)|vn| N+α

N –
∫

(
Iα ∗ |un – u| N+α

N
)|vn – v| N+α

N

=
∫

Iα ∗ (|un| N+α
N – |un – u| N+α

N
)(|vn| N+α

N – |vn – v| N+α
N

)

+
∫

Iα ∗ (|vn| N+α
N – |vn – v| N+α

N
)|un – u| N+α

N

+
∫

Iα ∗ (|un| N+α
N – |un – u| N+α

N
)|vn – v| N+α

N ,

(4.3)

and

|un – u| N+α
N ⇀ 0, |vn – v| N+α

N ⇀ 0 in L
2N

N+α
(
R

N)
,

we see that the conclusion holds. �
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Proof of Theorem 1.4 According to the mountain pass theorem [23], we obtain that there
is {(un, vn)} ⊂N satisfying

I(un, vn) → B, I ′(un, vn) → 0 in H–1.

It follows that

B + o(1) ≥ I(un, vn) –
N

2(N + α)
〈
I ′(un, vn), (un, vn)

〉

=
α

2(N + α)

∫

|∇un|2 + λ1(x)u2
n + |∇vn|2 + λ2(x)v2

n

for n large enough, which combined with assumption (C1) implies that {(un, vn)} is
bounded in H . Then we may assume that

(un, vn) ⇀ (u, v) in H ,

(un, vn) → (u, v) in L2
loc

(
R

N) × L2
loc

(
R

N)
,

(un, vn) → (u, v) a.e on R
N .

Since |un| N+α
N and |vn| N+α

N are bounded in L
2N

N+α (RN ), we have

|un| N+α
N ⇀ |u| N+α

N , |vn| N+α
N ⇀ |v| N+α

N in L
2N

N+α
(
R

N)
.

Using the Hardy–Littlewood–Sobolev inequality, we obtain

Iα ∗ |un| N+α
N ⇀ Iα ∗ |u| N+α

N , Iα ∗ |vn| N+α
N ⇀ Iα ∗ |v| N+α

N in L
2N

N–α
(
R

N)
.

Observing that

|un| α
N –1un → |u| α

N –1u, |vn| α
N –1vn → |v| α

N –1v in L
2N
α

loc
(
R

N)
,

we have, for any φ ∈ C∞
0 (RN ),

∫
(
Iα ∗ |un| N+α

N
)|un| α

N –1unφ →
∫

(
Iα ∗ |u| N+α

N
)|u| α

N –1uφ,
∫

(
Iα ∗ |vn| N+α

N
)|vn| α

N –1vnφ →
∫

(
Iα ∗ |v| N+α

N
)|v| α

N –1vφ,
∫

(
Iα ∗ |un| N+α

N
)|vn| α

N –1vnφ →
∫

(
Iα ∗ |u| N+α

N
)|v| α

N –1vφ,
∫

(
Iα ∗ |vn| N+α

N
)|un| α

N –1unφ →
∫

(
Iα ∗ |v| N+α

N
)|u| α

N –1uφ,

(4.4)

as n → ∞. Taking account of I ′(un, vn) → 0, (4.4), and the fact that C∞
0 (RN ) is dense in

H1(RN ), we have I ′(u, v) = 0. Denote zn = un – u, ωn = vn – v, then (zn,ωn) ⇀ (0, 0) in H ,
(zn,ωn) → (0, 0) in L2

loc(RN )×L2
loc(RN ), and (zn,ωn) → (0, 0) a.e onR

N . By (C1), there exists
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R > 0 sufficiently large such that

∫

λ1(x)z2
n + λ2(x)ω2

n =
∫

RN \B(0,R)
z2

n + ω2
n +

∫

B(0,R)
λ1(x)z2

n + λ2(x)ω2
n + o(1)

=
∫

z2
n + ω2

n + o(1).
(4.5)

Denote

J(u, v) =
1
2

∫

|∇u|2 + u2 + |∇v|2 + v2

–
N

2(N + α)

∫
(
μ1

(
Iα ∗ |u| N+α

N
)|u| N+α

N + μ2
(
Iα ∗ |v| N+α

N
)|v| N+α

N

+ 2β
(
Iα ∗ |u| N+α

N
)|v| N+α

N
)
.

Combining (4.5) with Lemma 4.2, we have, for n large enough,

〈
J ′(zn, wn), (zn,ωn)

〉
=

〈
I ′(un, vn), (un, vn)

〉
–

〈
I ′(u, v), (u, v)

〉
= o(1) (4.6)

and

B + o(1) = I(un, vn) = I(u, v) + J(zn,ωn) + o(1). (4.7)

Set

Cn =
∫

|∇zn|2 + z2
n, Dn =

∫

|∇ωn|2 + ω2
n.

Then it follows

B = I(u, v) +
α

2(N + α)
(Cn + Dn) + o(1). (4.8)

We will show that u 
≡ 0, v 
≡ 0 by excluding the following three cases:
(i) (u, v) ≡ (0, 0). By (4.8), we know that

Cn + Dn > 0.

Denote

En =
∫

μ1
(
Iα ∗ |zn| N+α

N
)|zn| N+α

N , Fn =
∫

μ2
(
Iα ∗ |wn| N+α

N
)|wn| N+α

N .

If En → 0, then
∫

(Iα ∗ |wn| N+α
N )|zn| N+α

N → 0. So we have

∫

|∇zn|2 + z2
n + |∇wn|2 + w2

n =
∫

μ1
(
Iα ∗ |wn| N+α

N
)|wn| N+α

N + o(1).

≤ μ1S– N+α
N

1

(∫

|wn|2
) N+α

N
.
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≤ μ1S– N+α
N

1

(∫

|∇zn|2 + z2
n + |∇wn|2 + w2

n

) N+α
N

,

which implies

∫

|∇zn|2 + z2
n + |∇wn|2 + w2

n ≥ μ
– N

α
1 S

N+α
α

1 .

Then, by (4.8) and (1.11), we obtain

B = I(u, v) +
α

2(N + α)
(Cn + Dn) + o(1) ≥ α

2(N + α)
μ

– N
α

1 S
N+α

α
1 > B1,

which contradicts Lemma 4.1. Similarly, Fn → 0 also leads to a contradiction. Thus, En ≥ δ

and Fn ≥ δ for some δ > 0 and n large enough. Then there exists tn > 0 such that

〈
J ′(tnzn, tnωn), (tnzn, tnωn)

〉
= 0

and

J(tnzn, tnωn)

= max
sn≥0

J(snzn, snωn)

≥ max
sn≥0

1
2

s2
n

∫

|zn|2 + ω2
n

–
Ns

2(N+α)
N

n

2(N + α)

∫
(
μ1

(
Iα ∗ |zn| N+α

N
)|zn| N+α

N + μ2
(
Iα ∗ |ωn| N+α

N
)|ωn| N+α

N

+ 2β
(
Iα ∗ |zn| N+α

N
)|ωn| N+α

N
)

≥ α

2(N + α)
S

N+α
α

0 ,

(4.9)

where the last inequality follows by Theorem 1.5. Moreover, by (4.6), we have tn → 1. Then
we have

B = I(u, v) + J(zn,ωn) = J(tnzn, tnωn) ≥ α

2(N + α)
S

N+α
α

0 ,

which also contradicts Lemma 4.1.
(ii) u ≡ 0, v 
≡ 0. In this case, it is clear that v is a solution of (1.9) for i = 2. Then, by (4.7),

we have B ≥ I(0, v) ≥ B2, which contradicts Lemma 4.1.
(iii) v ≡ 0, u 
≡ 0. By similar arguments as in case (ii), we see that B ≥ B1, which also

contradicts Lemma 4.1.
Thus, we have proved that u 
≡ 0, v 
≡ 0, and I ′(u, v) = 0. Then I(u, v) ≥ B, which com-

bining with (4.7), (4.8) indicates I(u, v) = B. Hence, (u, v) is a ground state of system (1.1).
Moreover, since I(|u|, |v|) = B and (|u|, |v|) ∈ N , we know that (|u|, |v|) is also a ground
state of (1.1). By the strong maximum principle, we have |u| > 0, |v| > 0. Thus, system (1.1)
has a positive ground state (|u|, |v|). �
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Remark 4.3 Let (u, v) be a solution obtained in Theorem 1.4. Then it is obvious that (u, v) ∈
M. Moreover, since M ∈N , we have

B = I(u, v) ≤ B ≤ I(u, v),

which implies that B = B.

Appendix
Theorem A.1 Assume that N ≥ 5 and –λ1(
) < λ1 = λ2 < 0. If

⎧
⎨

⎩

β > 0, α ∈ (0, N – 4),

β > max{μ1,μ2}, α = N – 4.

Then system (1.5) has a positive ground state ζm(s∗
mw∗, w∗), where ζm = (μ2 +βs∗

m
N+α
N–2 )– N–2

2(α+2) ,
s∗

m is a minimum point of a function l(s) : R+ �→ R defined by

l(s) =
1 + s2

(μ1s
2(N+α)

N–2 + μ2 + 2βs
N+α
N–2 )

N–2
N+α

,

and w∗ is a positive ground state of (1.6).

In order to prove Theorem A.1, we define the functional associated with (1.5) by

E(u, v) =
1
2

∫




|∇u|2 + λ1u2 + |∇v|2 + λ2v2

–
N – 2

2(N + α)

∫




(
μ1

(
Iα ∗ |u| N+α

N–2
)|u| N+α

N–2 + μ2
(
Iα ∗ |v| N+α

N–2
)|v| N+α

N–2

+ 2β
(
Iα ∗ |u| N+α

N–2
)|v| N+α

N–2
)
.

Set H∗ = H1
0 (
) × H1

0 (
) and

M∗ =
{

(u, v) ∈ H∗, u, v 
≡ 0,
∫




|∇u|2 + λ1u2 =
∫




μ1
(
Iα ∗ |u| N+α

N–2
)|u| N+α

N–2 + β
(
Iα ∗ |u| N+α

N–2
)|v| N+α

N–2 ,

∫




|∇v|2 + λ2v2 =
∫




μ2
(
Iα ∗ |v| N+α

N–2
)|v| N+α

N–2 + β
(
Iα ∗ |u| N+α

N–2
)|v| N+α

N–2

}

,

and B∗ = infM∗ E(u, v). Set

A∗
0 = inf

(u,v)∈H∗
u 
≡0,v
≡0

((∫




|∇u|2 + λu2 + |∇v|2 + λv2
)

/((∫




μ1
(
Iα ∗ |u| N+α

N–2
)|u| N+α

N–2 + μ2
(
Iα ∗ |v| N+α

N–2
)|v| N+α

N–2

+ 2β
(
Iα ∗ |u| N+α

N–2
)|v| N+α

N–2

) N–2
N+α

))
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and

A∗
1 = inf

u∈H1
0 (
)\{(0)}

∫



|∇u|2 + λ1u2

(
∫



(Iα ∗ |u| N+α

N–2 )|u| N+α
N–2 )

N–2
N+α

.

By studying the minimum point of l(s) and analyzing as in the proof of Lemma 2.2, we
have the following.

Lemma A.2 Assume that N ≥ 5 and

⎧
⎨

⎩

β > 0 for α ∈ (0, N – 4),

β > max{μ1,μ2} for α = N – 4.

Then A∗
0 = l(s∗

m)A∗
1, where s∗

m is a minimum point of l(s).

Proof By some calculation, we have

l′(s) =
2s(μ2 + βs

N+α
N–2 – μ1s

2α+4
N–2 – βs

α–N+4
N–2 )

(μ1s
2(N+α)

N–2 + μ2 + 2βs
N+α
N–2 )

2(N–2)
N+α

.

Denote

p(s) =

⎧
⎨

⎩

μ2 + βs
N+α
N–2 – μ1s

2α+4
N–2 – βs

α–N+4
N–2 for α ∈ (0,α – 4),

μ2 – β – (μ1 – β)s2 for α = N – 4.

If N ≥ 5, α ∈ (0, N – 4), then p(s) → –∞ as s → 0, and p(s) → +∞ as s → +∞. So there
exists s∗

min > 0 such that p(s∗
min) = 0 and l(s∗

min) = mins≥0 l(s). If N ≥ 5, α = N – 4, and β >
max{μ1,μ2}, it is clear that p(s) has a zero point s∗

min > 0 such that l(s∗
min) = mins≥0 l(s).

Then, by a similar argument as in the proof of Lemma 2.2, we see that

A∗
0 = l

(
s∗

m
)
A∗

1. �

Proof of Theorem A.1 From Lemma A.2, we know that p(s∗
m) = 0. Then it follows that

μ1s∗
m

2(N+α)
N–2 + μ2 + 2βs∗

m
(N+α)
N–2 =

(
1 + s∗

m
2)(

μ2 + βs∗
m

(N+α)
N–2

)
.

By the definition of l(s), we have

l
(
s∗

m
)

=
(1 + s∗

m
2)

α+2
N+α

(μ2 + βs∗
m

(N+α)
N–2 )

N–2
N+α

.
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Let ζm = (μ2 + βs∗
m

N+α
N–2 )– N–2

2(α+2) , then ζm(s∗
mw∗, w∗) is a positive solution of system (1.5).

Moreover, by Lemma A.2 and direct calculation, we have

B∗ ≤ E
(
ζm

(
s∗

mw∗, w∗)) =
α + 2

2(N + α)
(
1 + s∗

m
2)

∫




∣
∣∇w∗∣∣2 + λ

∣
∣w∗∣∣2

=
α + 2

2(N + α)
(
1 + s∗

m
2)(

μ2 + βs∗
m

N+α
N–2

)– N–2
α+2 A∗

1
N+α
α+2

=
α + 2

2(N + α)
A∗ N+α

α+2 .

On the other hand, for any (u, v) ∈M∗, by Lemma A.2 again, we have

E(u, v) ≥ B∗ =
α + 2

2(N + α)
A∗ N+α

α+2 .

Thus, ζm(s∗
mw∗, w∗) is a positive ground state of (1.5). �

Remark A.3 For the case N ≥ 5, α = N – 4, and 0 < β < min{μ1,μ2}, we see from the
proof of Lemma A.2 that there exists s0 such that p(s0) = 0. Then, arguing as in the proof
of Theorem A.1, we see that (1.5) has a positive solution ζ0(s0w∗, w∗), where ζ0 = (μ2 +
βs0

N+α
N–2 )– N–2

2(α+2) . However, by our method, we do not know whether this solution is a ground
state or not.
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