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Abstract
The main goal of this paper is investigating the existence of nonconstant positive
steady states of a linear prey–predator cross-diffusion system with
Beddington–DeAngelis and Tanner functional response. An analytical method and
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1 Introduction
We propose and study a predator–prey cross-diffusion system with the Beddington–
DeAngelis and Tanner functional response

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u
∂t – d1�u – d2�v = u(a – u – v

1+αu+βv ), x ∈ �, t > 0,
∂v
∂t + d3�u – d4�v = v(b – v

γ u ), x ∈ �, t > 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ (�≡) 0, x ∈ �,

(1.1)

where a, b, α, β , γ are positive constants. Here u and v stand for the population densities
of the prey and predator, respectively. The bounded domain � ∈ R

n (n ≥ 1) possesses a
smooth boundary ∂�; ν is the outward directional derivative normal to ∂�. The diffu-
sion rates are described by d1 > 0, d2 > 0, d3 > 0 and d4 > 0; a and b are the death rate
of the predator and the intrinsic growth rate of the prey, respectively. The smooth func-
tions u0 and v0 on � represent the initial population densities of prey and predator. The
corresponding ordinary differential system (ODS) of (1.1) is performed as

⎧
⎨

⎩

du
dt = u(a – u – v

1+αu+βv ),
dv
dt = v(b – v

γ u ),
(1.2)
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which was introduced by Luo [1] in recent years, and the globally asymptotical stability
of (1.2) has been discussed by constructing a feasible Lyapunov function. Recently, with
rapid development of biotechnology, we need to accurately illustrate the interaction be-
tween prey and predator in a real ecological environment such as hare and lynx, sparrow
hawk and sparrow, spider mite and mite, and so on. Such interesting natural phenomena
as the existence and global stability of interior periodic solutions and the global stability of
reaction–diffusion system have been described by this ODE model [1] or the correspond-
ing PDE system [2]. By utilizing the iteration method, Liu and Li [2] proved the globally
asymptotic stability of the corresponding parabolic PDE system.

The impact of prey-taxis leads to the linear cross-diffusion in model (1.1), which means
that the prey attraction to the predator may give rise to the migration of predator following
the gradient of the density function of prey. By utilizing –d3�u to describe this impact we
will incorporate d2�v into the first equation of system (1.1) to indicate the repelling effect
from predator to prey. The message about the location of predator can guide the prey
escape from them (see [3–5]).

The Beddington–DeAngelis functional response uv
1+αu+βv was firstly discovered by Bed-

dington [6] and DeAngelis et al. [7] and intensively investigated by many researchers in
mathematics, ecology, and biology (see [1, 2, 8, 9]). This functional response, in the de-
nominator, includes an additional term βv compared with Holling-II functional response.
This term illustrates the interaction effect among predators and provides a more general
situation to describe the interaction between prey and predator.

As far as we can survey, this is the first paper studying the steady state for a predator–
prey cross-diffusion system with the Beddington–DeAngelis and Tanner functional re-
sponse. For notational simplicity, we introduce some notations used in the rest of this
paper.

Notation
(1) We denote the eigenvalues sequence by 0 = λ0 ≤ λ1 ≤ · · · ≤ λk ≤ · · · for the elliptic

operator � on � with homogeneous Neumann boundary condition;
(2) The multiplicity of the eigenvalue λk is denoted by Mk ;
(3) The corresponding normalized eigenfunctions of λk are represented by the set

{Ekj : 1 ≤ j ≤Mk};
(4) A = C1

ν (�) ⊕ C1
ν (�), where C1

ν (�) � {
 ∈ C1(�) : ∂

∂ν

= 0 on ∂�};
(5) D = Du ⊕Dv, where Du � {
 ∈ C1

ν (�) : 
 < a in �} and
Dv � {
 ∈ C1

ν (�) : 
 < abγ in �};
(6) Q = S ⊕ S , where S � {
 ∈ C1

ν (�) : 
(x) ≥ 0, x ∈ �};
(7) D′ = D ∩Q.

The rest part of this paper is organized as follows. In Sect. 2, we provide the study of the
local stability of semitrivial or interior equilibrium of model (1.1). In Sect. 3, by utilizing
the fixed point index theory we investigate the existence of the nonconstant positive steady
state of system (1.1). Finally, in Sect. 4, we offer some conclusions on our main theoretical
results.
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2 Local stability
It is obvious via a direct calculation that model (1.1) possesses one semitrivial equilibrium
(a, 0) and one unique interior equilibrium (u∗, v∗), where

u∗ =
[aα – 1 + bγ (aβ – 1)] +

√
[aα – 1 + bγ (aβ – 1)]2 + 4a(α + bβγ )
2(α + bβγ )

, v∗ = bγ u∗.

We discuss the local stability of the semitrivial equilibrium (a, 0) and the interior equi-
librium (u∗, v∗) of system (1.1) as follows.

Lemma 2.1
(1) When a < b, (a, 0) is unstable.
(2) When bγ u∗[1+(2α+bβγ )u∗]

[1+(α+bβγ )u∗]2 < a + b and a > bγ u∗(α+bβγ )u∗
[1+(α+bβγ )u∗]2 , then the interior equilibrium

(u∗, v∗) is locally asymptotically stable.
(3) When a + b < bγ u∗[1+(2α+bβγ )u∗]

[1+(α+bβγ )u∗]2 , then the interior equilibrium (u∗, v∗) is unstable.

Proof At a constant solution E∗ = (u, v), the linearized issue of model (1.1) can be proposed
by

(
∂u
∂t
∂v
∂t

)

= L
(

u(t)
v(t)

)

=

(
d1 d2

–d3 d4

)(
�u
�v

)

+

⎛

⎝
a – 2u – v(1+βv)

(1+αu+βv)2 – u(1+αu)
(1+αu+βv)2

v2

γ u2 b – 2v
γ u

⎞

⎠

(
u(t)
v(t)

)

.

For notational simplicity, we denote

D =

(
d1 d2

–d3 d4

)

,

J(u, v) =

(
Fu(u, v) Fv(u, v)
Gu(u, v) Gv(u, v)

)

=

⎛

⎝
a – 2u – v(1+βv)

(1+αu+βv)2 – u(1+αu)
(1+αu+βv)2

v2

γ u2 b – 2v
γ u

⎞

⎠ .

In view of Theorem 5.1.1 of [10], it is obvious that E∗ = (u, v) is locally asymptotically stable
when all the eigenvalues of the operator L possess negative real parts. On the contrary,
E∗ = (u, v) is unstable. Thus the stability of the equilibrium is based on the study of the
characteristic equation

det(μI – Ji) = μ2 – trace Jiμ + det Ji = 0.

Here trace Ji = –λi(d1 + d4) + Fu(u, v) + Gv(u, v) and det Ji = (d1d4 + d2d3)λ2
i – [d1Gv(u, v) –

d2Gu(u, v) + d3Fv(u, v) + d4Fu(u, v)]λi + Fu(u, v)Gv(u, v) – Fv(u, v)Gu(u, v).
(1) When E∗ = (a, 0), we get

J(a, 0) =

(
–a – a

1+aα

0 b

)

.

If b > a, then for i = 0, we obtain trace Ji = –a + b > 0. Therefore (a, 0) is unstable.
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(2) When E∗ = (u∗, v∗), we have

J
(
u∗, v∗) =

(
–a + bγ u∗[1+(2α+bβγ )u∗]

[1+(α+bβγ )u∗]2 – u∗(1+αu∗)
[1+(α+bβγ )u∗]2

b2γ –b

)

�
(

F∗
u F∗

v

G∗
u G∗

v

)

.

Here –a < F∗
u < bγ u∗[1+(2α+bβγ )u∗]

[1+(α+bβγ )u∗]2 , – u∗
1+αu∗ < F∗

v < 0, G∗
u > 0, G∗

v < 0. Together with the hy-
pothesis of (2), we can observe that

F∗
u + G∗

v = –a +
bγ u∗[1 + (2α + bβγ )u∗]

[1 + (α + bβγ )u∗]2 – d < 0,

and then

trace Ji = –(d1 + d2)λi –
(
F∗

u + G∗
v
)

< 0.

In view of the hypothesis of (2), we can observe that

F∗
uG∗

v – F∗
v G∗

u = ab –
b2γ u∗[1 + (2α + bβγ )u∗]

[1 + (α + bβγ )u∗]2 +
b2γ u∗(1 + αu∗)

[1 + (α + bβγ )u∗]2

= ab –
b2γ u∗(α + bβγ )u∗

[1 + (α + bβγ )u∗]2 > 0.

We can find a sufficiently large eigenvalue d2 to guarantee that

det Ji = –(d1d4 + d2d3)λ2
i +

(
–d1G∗

v + d2G∗
u – d3G∗

v – d4F∗
u
)
λi

+ F∗
uG∗

v – F∗
v G∗

u > 0.

Thus the interior equilibrium (u∗, v∗) is locally asymptotically stable.
(3) When a + b < bγ u∗[1+(2α+bβγ )u∗]

[1+(α+bβγ )u∗]2 , we obtain

trace Ji = –a +
bγ u∗[1 + (2α + bβγ )u∗]

[1 + (α + bβγ )u∗]2 – d > 0.

Therefore (u∗, v∗) is unstable. This ends the proof of the lemma. �

3 Nonconstant positive steady states
In this section, we offer a rigorous study of interior solutions of the corresponding strongly
coupled elliptic model

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–d1�u – d2�v = u(a – u – v
1+αu+βv ), x ∈ �, t > 0,

d3�u – d4�v = v(b – v
γ u ), x ∈ �, t > 0,

∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ (�≡) 0, x ∈ �.

(3.1)

Meanwhile, we will also investigate the nonconstant positive steady states of model (1.1).
The existence of an interior solution of a linear cross-diffusion model has been studied by
utilizing the approach proposed by [11] (upper and lower solutions) and many others.
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Lemma 3.1 Any interior solution (u, v) for system (1.1) fulfills u(x), v(x) ≤ max{a, abγ }
in �.

Proof In view of the equation of u for model (3.1), we obtain

–�(d1u + d2v) = u
(

a – u –
v

1 + αu + βv

)

≤ u(a – u).

By the maximum principle proposed by [12] we have u(a – u) ≥ 0. Hence u ≤ a. Together
with the equation for u and the equation for v for system (3.1), we get

–�(–d3u + d4v) = v
(

b –
v

γ u

)

≤ bv –
v2

aγ
.

Applying the maximum principle in [12], we have bv – v2

aγ
≥ 0. Thus we obtain v ≤ abγ .

This ends the proof of the lemma. �

Next, we introduce the compact map CM ∈ C2(�)⊕C2(�) → C1(�)⊕C1(�) as follows:

CM(u, v) = (–D� + cI)–1

⎛

⎝
au – u2 – uv

1+αu+βv + cu

bv – v2

γ u + cv

⎞

⎠ .

Here we can choose a sufficiently large constant c > 0 guaranteeing that the functions
au – u2 – uv

1+αu+βv + cu and bv – v2

γ u + cv are increasing for u and v, respectively. We can
easily observe that system (3.1) is equivalent to (u, v) = CM(u, v), which implies that there
exists a nonconstant interior solution of system (3.1) representing a nonconstant interior
fixed point of CM in D′. When (a, 0) and (u∗, v∗) exist, we suppose that they stand for an
isolated fixed point of CM. On the contrary, there must exist a nonconstant fixed point in
IntD′ (the interior of D′). Therefore the associate indexes in Q are well defined. Based on
the method introduced by [13], we can directly calculate the fix point index of CM with
respect to Q over IntD′.

Lemma 3.2 If bγ u∗[1+(2α+bβγ )u∗]
[1+(α+bβγ )u∗]2 < a + b and a > bγ u∗(α+bβγ )u∗

[1+(α+bβγ )u∗]2 , then indexQ(CM, IntD′) = 1.

Proof We introduce the homotopic map, for η ∈ (0, 1), CMη � HM ∈ C2(�) ⊕ C2(�) →
C1(�) ⊕ C1(�) by

HM(u, v) = (–D� + cI)–1

⎛

⎝
au – u2 – ηuv

1+αu+βv + cu

bv – ηv2

γ u + cv

⎞

⎠ .

Utilizing a similar discussion as in Lemma 3.1, we can easily obtain that any interior fixed
point (u, v) for HM fulfills u(x), v(x) ≤ max{a, abγ } in �. Thus we can easily draw a con-
clusion that each fixed point for HM belongs to IntD′. In addition, the corresponding
index of CMη over the interior of D′ regarding Q is well defined. In view of the homo-
topy invariance theorem, we can obtain that indexQ(CM0, IntD′) = indexQ(CM1, IntD′) =
indexS (B, IntD), where

B(u, v) = (–D� + cI)–1

(
au – u2 + cu

bv + cv

)

.
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Based on the above discussion, we argue that indexS (B, IntD) = 1. To prove this, we pro-
pose the homotopic map

Bη(u, v) = (–D� + cI)–1

(
η(au – u2) + cu

ηbv + cv

)

for η ∈ [0, 1]. Then we can directly obtain that indexS (B0, IntD) = indexS (B1, IntD). Our
concern is the eigenvalue issue

B′
0(0, 0)(
,�)T = ρ(
,�)T , (
,�) �= (0, 0), (3.2)

for ρ > 0, where

B0(0, 0) = (–D� + cI)–1

(
c 0
0 c

)

.

The corresponding eigenfunction formulas for 
 and � can be performed as follows:


 =
∞∑

k=0

Mk∑

j=1

φkjEkj and � =
∞∑

k=0

Mk∑

j=1

ψkjEkj,

where φkj,ψkj ∈R. We easily rewrite system (3.2) as follows:

⎧
⎨

⎩

∑∞
k=0

∑Mk
j=1 [(d1λkρ + cρ – c)φkj + d2λkρψkj]Ekj = 0,

∑∞
k=0

∑Mk
j=1 [–d3λkρφkj + (d4λkρ + cρ – c)ψkj]Ekj = 0.

(3.3)

As we know, {Ekj : 1 ≤ j ≤ Mk} in L2(�) stands for a complete orthonormal basis. By
multiplying the above two equations by ϕkj and integrating over � we get the equation

(
d1λkρ + cρ – c d2λkρ

–d3λkρ d4λkρ + cρ – c

)(
φkj

ψkj

)

= 0.

Therefore

det

(
d1λkρ + cρ – c d2λkρ

–d3λkρ d4λkρ + cρ – c

)

=
[
(d1λk + c)(d4λk + c) + d2d3λ

2
k
]
ρ2 – c(d1λk + d4λk + 2c)ρ + c2

= 0.

Denoting

ρ± =
� ±

√

�
2 – 4[(d1λk + c)(d4λk + c) + d2d3λ

2
k]c2

2[(d1λk + c)(d4λk + c) + d2d3λ
2
k]

,
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where � = c(d1λk + d4λk + 2c), we have

ρ+ <
� +

√

�
2 – 4(d1λk + c)(d4λk + c)c2

2(d1λk + c)(d4λk + c)

=
c[(d1λk + c) + (d4λk + c) + |(d1λk + c) – (d4λk + c)|]

2(d1λk + c)(d4λk + c)
≤ 1.

Based on Lemma 13.1 of [14], we get indexS (B0, IntD) = 1. Hence indexS (B, IntD) =
indexS (B1, IntD) = 1. This finishes the proof of the lemma. �

Lemma 3.3 indexQ(CM, (a, 0)) = 0.

Proof Denote Q(a,0) = C1
ν (�) ⊕ S , W(a,0) = C1

ν (�) ⊕ {0}, and

CM′(a, 0) = (–D� + cI)–1

(
c – a – a

1+aα

0 b + c

)

.

Set CM′(a, 0)(
,�)T = (
,�)T ∈Q(a,0). Then we get

⎧
⎪⎪⎨

⎪⎪⎩

d1�
 + d2�� = a
 + a
1+aα

� in �,

d3�
 – d4�� = b� in �,
∂

∂ν

= ∂�
∂ν

= 0 on ∂�.

(3.4)

From the first equation of system (3.4) we have 
 = � = 0 in �. Thus I – CM′(a, 0)
represents an invertible matrix on Q(a,0). On the other hand, we can easily check that
CM′(a, 0) possesses property γ , which means that for (
,�) ≡ (0, 1) ∈ Q(a,0) \W(a,0) and
s = c

b+c ∈ (0, 1), [(
,�)T – sCM′(a, 0)(
,�)T ] ∈ W(a,0). Hence, applying Lemma 4.1(i) in
[13], we obtain a precise result. This finishes the proof of the lemma. �

Denote

Det(λ) := det

(
d1λ – F∗

u d2λ – F∗
v

–d3λ – G∗
u d4λ – G∗

v

)

= (d1d4 + d2d3)λ2 –
[
d1G∗

v – d2G∗
u + d3F∗

v + d4F∗
u
]
λ + F∗

uG∗
v – F∗

v G∗
u.

In the rest of the paper, we consider indexQ(CM, (u∗, v∗)) in the following three situations:
(1) For all λ > 0, Det(λ) > 0; (2) There exists, with multiplicity one, precisely a simple in-
terior solution for Det(λ) = 0; (3) There exist, with multiplicity one, two interior solutions
for Det(λ) = 0. Now we present our main theoretical result.

Theorem 3.1
(1) If Det(λ) > 0 for all λ > 0, then indexQ(CM, (u∗, v∗)) = 1;
(2) If Det(λ) = 0 has exactly a multiplicity-one simple positive solution λ∗ in an open

interval (λk∗ ,λk∗+1) for some nonnegative integer k∗, then

indexQ
(
CM,

(
u∗, v∗)) =

⎧
⎨

⎩

–1,
∑k∗

k=0 Mk is odd,

1,
∑k∗

k=0 Mk is even.
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In addition, when
∑k∗

k=0 Mk is odd, system (3.1) possesses at least one nonconstant
interior solution;

(3) Suppose that Det(λ) = 0 has two interior solutions λ∗
+ and λ∗

– in two open intervals
(λk∗

1
,λk∗

1 +1) and (λk∗
2
,λk∗

2 +1), respectively, where k∗
1 > k∗

2 ≥ 0. Then

indexQ
(
CM,

(
u∗, v∗)) =

⎧
⎨

⎩

–1,
∑k∗

2
k=k∗

1 +1 Mk is odd,

1,
∑k∗

2
k=k∗

1 +1 Mk is even.

In addition, when
∑k∗

2
k=k∗

1 +1 Mk is odd, system (3.1) possesses at least one nonconstant
interior solution;

(4) Suppose that a < bγ u∗[1+(2α+bβγ )u∗]
[1+(α+bβγ )u∗]2 and F∗

u
d1

∈ (λk∗ ,λk∗+1) for some nonnegative integer
k∗. Then there is a constant d′

4 > 0 such that for d′
4 < d4,

indexQ
(
CM,

(
u∗, v∗)) =

⎧
⎨

⎩

–1,
∑k∗

k=0 Mk is odd,

1,
∑k∗

k=0 Mk is even.

In addition, when
∑k∗

k=0 Mk is odd, system (3.1) possesses at least one nonconstant
interior solution.

Proof By applying the elliptic PDE theory and the eigenfunction theory, we prove that
indexQ(CM, (u∗, v∗)) = 1.

(1) First, note that Q(u∗ ,v∗) = W(u∗ ,v∗) = A and

CM′(u∗, v∗) = (–D� + cI)–1

(
c + F∗

u F∗
v

G∗
u c + G∗

v

)

.

Set CM′(u∗, v∗)(
,�)T = (
,�)T ∈ Q(u∗ ,v∗). Using the corresponding eigenfunction for-
mulas in Lemma 3.2 for 
 and � , we get

(
d1λk – F∗

u –d2λk – F∗
v

d3λk – G∗
u d4λk – G∗

v

)(
φkj

ψkj

)

= 0.

Hence Det(λk) = (d1d4 + d2d3)λ2
k – [d1G∗

v – d2G∗
u + d3F∗

v + d4F∗
u]λk + F∗

uG∗
v – F∗

v G∗
u > 0 since

Det(λ) > 0. This implies that I – CM′(u∗, v∗) is an invertible matrix on Q(u∗ ,v∗). Therefore
CM′(u∗, v∗) does not possess property γ on Q(u∗ ,v∗).

Now we offer a rigorous proof to guarantee that δ = 0. Here δ is described in Lemma 4.1
of [13]. For ρ > 0, we study the eigenvalue issue (CM′(u∗, v∗) – I)(
,�)T = ρ(
,�)T ,
(
,�) �= (0, 0), which means that for some positive constant ρ , the model

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(ρ + 1)(–d1�
 – d2��) = (F∗
u – ρc)
 + F∗

v � in �,

(ρ + 1)(d3�
 – d4��) = G∗
u
 + (G∗

v – ρc)� in �,
∂

∂ν

= ∂�
∂ν

= 0 on ∂�,


� �= 0 in �,

(3.5)
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has a nontrivial solution if and only if ρ satisfies the quadratic equation Det(Q(ρ,λk)) = 0,
where

Det
(
Q(ρ,λk)

)
:= det

(
(ρ + 1)d1λk + ρc – F∗

u (ρ + 1)d2λk – F∗
v

–(ρ + 1)d3λk – G∗
u (ρ + 1)d4λk + ρc – G∗

v

)

=
[
(d1λk + c)(d4λk + c) + d2d3λ

2
k
]
ρ2 + 2(d1d4 + d2d3)λ2

kρ

+
[(

–d1G∗
v – d2G∗

u + d3F∗
v – d4F∗

u
)
λk +

(
d1λk – F∗

u
)
c

+
(
d4λk – G∗

v
)
c
]
ρ + Det(λk).

For λk > 0, we obtain Det(λk) > 0. This implies that Det(Q(ρ,λk)) = 0 may have either pre-
cisely a multiplicity-two simple interior solution, or two multiplicity-one interior solu-
tions, or no interior solution. Thus we can conclude that for k ≥ 0, the total algebraic
multiplicity for Det(Q(ρ,λk)) = 0 equals zero or two, which means that δ = 0. Finally, we
obtain that indexQ(CM, (u∗, v∗)) = 1.

(2) In view of the assumption introduced by (2), we can observe that for a nonnegative
integer k, Det(λk) �= 0. Clearly, I –CM′(u∗, v∗) is an invertible matrix onQ(u∗ ,v∗). Meanwhile,
we can conclude that CM′(u∗, v∗) cannot possess property γ on Q(u∗ ,v∗). Next, we focus
on the total algebraic multiplicity δ for each eigenvalue of CM′(u∗, v∗) – I , which is greater
than zero. When λ0 = 0 (k = 0), we get Det(Q(ρ, 0)) = c2ρ2 – c(F∗

u + G∗
v )ρ + F∗

uG∗
v – F∗

v G∗
u = 0.

By the hypothesis of (2) we get F∗
uG∗

v – F∗
v G∗

u ≤ 0. Obviously, Det(Q(ρ, 0)) = 0 has exactly
a simple interior solution. Together with 1 ≤ k ≤ k∗ and the hypothesis in (2), wee get
Det(λk) < 0, and hence Det(Q(ρ,λk)) = 0 possesses precisely one positive simple solution.
If k ≥ k∗ + 1, then Det(λk) > 0, and hence Det(Q(ρ,λk)) = 0 may have either precisely one
multiplicity-two simple interior solution, or two multiplicity-one interior solutions, or no
interior solution. This discussion yields that

∑k∗
k=0 Mk +t = δ, where t is an even number or

0. In addition, suppose on the contrary that model (3.1) possesses no nonconstant interior
solution. By Lemma 3.2, Lemma 3.3, and the last discussion we get

1 = indexQ
(
CM, IntD′) = indexQ

(
CM, (a, 0)

)
+ indexQ

(
CM,

(
u∗, v∗))

= 0 + (–1) = –1.

This contradiction tells us that system (3.1) possesses at least one nonconstant interior
solution. The above argument derives the ideal outcome.

(3) The proof of this part is similar to that of part (2), and we omit it.
(4) Due to a < bγ u∗[1+(2α+bβγ )u∗]

[1+(α+bβγ )u∗]2 , we get F∗
u > 0. Let Det(λ) = 0, which means that

Det(λ) = (d1d4 + d2d3)λ2 – �λ + F∗
uG∗

v – F∗
v G∗

u = 0, (3.6)

where

� = d1G∗
v – d2G∗

u + d3F∗
v + d4F∗

u . (3.7)

By direct calculation we get that

lim
d4→∞

λ∗
+ = lim

d1→∞
� +

√
�2 – 4(d1d4 + d2d3)(F∗

uG∗
v – F∗

v G∗
u)

2(d1d4 + d2d3)
=

F∗
u

d1
,
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lim
d4→∞

λ∗
– = lim

d1→∞
� –

√
�2 – 4(d1d4 + d2d3)(F∗

uG∗
v – F∗

v G∗
u)

2(d1d4 + d2d3)
= 0.

Hence we can find a constant d′
4 > 0 guaranteeing λ∗

+ > λk∗ and λ∗
– < λ1 if d′

4 < d4 due
to F∗

u
d1

∈ (λk∗ ,λk∗+1). Therefore, for a nonnegative integer k, Det(λk) �= 0. We can observe
that I – CM′(u∗, v∗) is an invertible matrix on Q(u∗ ,v∗). Meanwhile, we can conclude that
CM′(u∗, v∗) cannot possess property γ onQ(u∗ ,v∗). On the other hand, note that Det(λ1) < 0
when

d4 > σ1 :=
d2d3λ

2
1 + (–d1G∗

v + d2G∗
u – d3F∗

v )λ1F∗
uG∗

v – F∗
v G∗

u
F∗

uλ1 – d1λ
2
1

and Det(λk∗ ) < 0 when

d4 > σ2 :=
d2d3λ

2
k∗ + (–d1G∗

v + d2G∗
u – d3F∗

v )λk∗F∗
uG∗

v – F∗
v G∗

u

F∗
uλk∗ – d1λ

2
k∗

.

We can take a constant d′
4 > max{σ1,σ2}. We easily verify that for each 1 ≤ k ≤ k∗,

Det(Q(ρ,λk)) = 0 has exactly one simple interior solution due to Det(λk) < 0. Mean-
while, together with k ≥ 1 + k∗ and Det(λk) > 0, Det(Q(ρ,λk)) = 0 has either precisely one
multiplicity-two simple interior solution, or two multiplicity-one interior solutions, or no
interior solution. According to the above discussion, we derive that

∑k∗
k=0 Mk + 0 = δ. In

addition, suppose on the contrary that model (3.1) possesses no nonconstant interior so-
lution. By Lemmas 3.2 and 3.3 and the last argument we get

1 = indexQ
(
CM, IntD′) = indexQ

(
CM, (a, 0)

)
+ indexQ

(
CM,

(
u∗, v∗))

= 0 + (–1) = –1.

This contradiction tells us that system (3.1) possesses at least one nonconstant interior
solution. The above argument derives the ideal outcome. This ends the proof of Theo-
rem 3.1. �

Example 1 Choosing a = 2, b = 2, α = 1, β = 1, and γ = 2, we obtain (u∗, v∗) = ( 5+
√

65
10 ,

10+2
√

65
5 ) ≈ (1.3062, 5.2249). Thus bγ u∗[1+(2α+bβγ )u∗]

[1+(α+bβγ )u∗]2 ≈ 0.8141 < a + b = 4 and a = 2 >
bγ u∗(α+bβγ )u∗
[1+(α+bβγ )u∗]2 ≈ 0.6017. Therefore system (1.1) possesses at least one nonconstant interior
solution.

4 Conclusion
In this paper, we introduce a complicated predator–prey linear cross-diffusion system
with the Beddington–DeAngelis and Tanner functional response and applied an effec-
tive rigorous approach to obtain the existence of nonconstant positive steady state of the
corresponding system. By considering Det(λ) in three situations we can easily compute
indexQ(CM, (u∗, v∗)). We proposed some parameter conditions to guarantee the local sta-
bility of the unique interior equilibrium.

It is worth noting that our methods in this paper can be applied to investigation of a
class of nonlinear prey-taxis model with more general functional responses. By utilizing
the fixed point index theory to get the existence of nonconstant interior steady states it
is necessary to provide an a priori estimate and regularity of steady states, which plays an
important role (see [15]).



Luo Boundary Value Problems          (2021) 2021:4 Page 11 of 11

Acknowledgements
The author would like to thank the anonymous referee for constructive comments, which led to an improvements of this
paper.

Funding
This work was supported in part by the National Natural Science Foundation of China (No. 1̇1671406).

Abbreviations
Not applicable.

Availability of data and materials
Not applicable.

Competing interests
The author declares that they have no competing interests.

Authors’ contributions
The author read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 7 July 2020 Accepted: 20 November 2020

References
1. Luo, D.: The study of global stability of a periodic Beddington–DeAngelis and Tanner predator–prey model. Results

Math. 101, 1–18 (2019)
2. Liu, N.W., Li, N.: Global stability of a predator–prey model with Beddington–DeAngelis and Tanner functional

response. Electron. J. Qual. Theory Differ. Equ. 2017, 35 (2017)
3. Shi, J., Xie, Z., Little, K.: Cross-diffusion induced instability and stability in reaction–diffusion systems. J. Appl. Anal.

Comput. 1(1), 95–119 (2011)
4. Farkas, M.: Two ways of modelling cross-diffusion. Nonlinear Anal. 30(2), 1225–1233 (1997)
5. Gambino, G., Lombardo, M.C., Lupo, S., Sammartino, M.: Super-critical and sub-critical bifurcations in a

reaction–diffusion Schnakenberg model with linear cross-diffusion. Ric. Mat. 65, 449–467 (2016)
6. Beddington, J.R.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim.

Ecol. 44, 331–340 (1975)
7. DeAngelis, D.L., Goldstein, R.A., O’Neill, R.V.: A model for trophic interaction. Ecology 56, 881–892 (1975)
8. Gala, S., Liu, Q., Ragusa, M.A.: A new regularity criterion for the nematic liquid crystal flows. Appl. Anal. 91(9),

1741–1747 (2012)
9. Benbernou, S., Gala, S., Ragusa, M.A.: On the regularity criteria for the 3D magnetohydrodynamic equations via two

components in terms of BMO space. Math. Methods Appl. Sci. 37(15), 2320–2325 (2014)
10. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math. Springer, Berlin (1981)
11. Ko, W., Ryu, K.: On a predator–prey system with cross diffusion representing the tendency of predators in the

presence of prey species. J. Math. Anal. Appl. 341, 1133–1142 (2008)
12. Lou, Y., Ni, W.: Diffusion, self-diffusion and cross-diffusion. J. Differ. Equ. 131, 79–131 (1996)
13. Li, C., Wang, X., Shao, Y.: Steady states of a predator–prey model with prey-taxis. Nonlinear Anal. 97, 155–168 (2014)
14. Amann, H.: Fixed point and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18, 620–709 (1976)
15. Zhang, L., Fu, S.: Global bifurcation for Holling–Tanner predator–prey model with prey taxis. Nonlinear Anal., Real

World Appl. 47, 460–472 (2019)


	Steady state for a predator-prey cross-diffusion system with the Beddington-DeAngelis and Tanner functional response
	Abstract
	Keywords

	Introduction
	Local stability
	Nonconstant positive steady states
	Conclusion
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


