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Abstract
In this work, we reformulate and investigate the well-known pantograph differential
equation by applying newly-defined conformable operators in both Caputo and
Riemann–Liouville settings simultaneously for the first time. In fact, we derive the
required existence criteria of solutions corresponding to the inclusion version of the
three-point Caputo conformable pantograph BVP subject to Riemann–Liouville
conformable integral conditions. To achieve this aim, we establish our main results in
some cases including the lower semi-continuous, the upper semi-continuous and the
Lipschitz set-valued maps. Eventually, the last part of the present research is devoted
to proposing two numerical simulative examples to confirm the consistency of our
findings.
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1 Introduction
Over the years, human beings have needed to be acquainted with various natural phe-
nomena more and more. One possible way to achieve this aim is to utilize the techniques
and tools available in mathematics and particularly the mathematical operators in mod-
eling of different processes. Numerous fractional operators have been introduced during
years and their applicability is becoming increasingly apparent to researchers every day
that passes. In this direction, it is better that we formulate and investigate various com-
plicated modelings of processes from all aspects by applying the fractional operators in
boundary problems.

In much of the literature we can see various complicated fractional modelings in which
one of the well-known fractional Caputo or the Riemann–Liouville operators has been
utilized (see for example, [1–13]). Also, some generalizations of these operators such as
the Hadamard, Caputo–Hadamard and Hilfer fractional operators were utilized by other
researchers in the next period and different modelings are investigated using these new
operators (see, for instance, [14–30]). Five years ago, a novel derivative in the fractional
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frame was formulated by Fabrizio and Caputo [31] in which the kernel has no singularity
in any point. This new operator is called the fractional Caputo–Fabrizio operator. Imme-
diately after this work, Nieto and Losada [32] turned to several important computational
aspects of this newly-defined operator. Some useful aspects of mentioned nonsingular op-
erator led to publishing of numerous research articles on the fractional modelings in this
context (see [33–41]).

More recently, Abdeljawad [42] extended some notions presented in [43] and studied
some applied specifications of the well-behaved conformable derivatives of arbitrary or-
der. Next, Jarad et al. [44] proceeded to answer this key problem if we can generalize the
usual fractional Riemann–Liouville integral provided that we obtain a unification to re-
maining useful operators such as Caputo, Riemann–Liouville, Hadamard, and Caputo–
Hadamard derivatives [45]. To achieve this purpose, they tried to derive two correspond-
ing integration and differentiation operators of arbitrary order based on the existing con-
formable operators. In this way, the authors first designed functional spaces and then veri-
fied some fundamental applied specifications of both newly-defined combined operators.

Until now, there have been published a limited number of papers based on these novel
operators. For example, the authors employed new Riemann–Liouville and Caputo con-
formable operators in the following BVP for the first time. Indeed, Aphithana, Ntouyas
and Tariboon [46] regraded a modern BVP including the Caputo conformable differential
equation along with integral conditions:

⎧
⎨

⎩

CCDζ ,ν∗
c φ(s) = f̂ ∗(s,φ(s)), (s ∈ [c, M])

φ(c) = ϑ1φ(ξ ) + ϑ2, φ(M) = ϑ3
RCI

ζ ,p∗
c φ(σ ),

so that CCDζ ,ν∗
c indicates the conformable derivative in the Caputo frame of order ν∗ ∈

(1, 2) along with ζ ∈ (0, 1]. Also, RCI
ζ ,p∗
c stands for the conformable integral in the

Riemann–Liouville frame of order p∗ > 0. The authors utilized several techniques to estab-
lish desired theorems. Furthermore, different types of Ulam stability of the proposed prob-
lem were studied by authors [46]. Recently, Baleanu, Etemad and Rezapour [47] turned to
the differential inclusion in the Caputo fractional conformable frame illustrated by

⎧
⎨

⎩

CCDζ ,ν∗
c φ(s) ∈ R̆(s,φ(s)) (s ∈ [c, M], c ≥ 0),

φ(c) = RCD
ζ ,p∗
c φ(ξ ) + μ1, φ(M) = RCI

ζ ,q∗
c φ(σ ) + μ2,

so that CCDζ ,ν∗
c , RCD

ζ ,p∗
c and RCI

ζ ,q∗
c stand for the Caputo- and the Riemann–Liouville

conformable derivatives and the Riemann–Liouville conformable integral of order q∗ > 0,
respectively. The main aim of the authors in that manuscript is to discuss the existence
aspects for mentioned BVP by employing several methods based on the α-ψ-contractives
and operators involving approximate endpoint specification [47].

One of the most famous categories of differential equations is related to the panto-
graph equation. This kind of equation is considered as proportional delay functional dif-
ferential equations and they have many applications in applied and pure mathematics.
In other words, pantograph equations arise in rather various contexts: control systems,
quantum mechanics, electrodynamics, probability, etc. For the first time, Balachandran et
al. [48] formulated a pantograph equation of fractional order and derived existence and
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also uniqueness criteria for the proposed problem. After that, different researchers studied
fractional pantograph equations with the help of various numerical methods such as the
operational method, the spectral-collocation method, and the Hermite wavelet method
[49–51]. Recently, other researchers investigated various versions of fractional pantograph
equations relying on analytical methods (see [52–54]). By taking into account the afore-
mentioned new operators introduced by Jarad et al. [44] and inspired by some existing
ideas in the above articles, in the current manuscript, for the first time, we formulate an in-
clusion version of the pantograph boundary problem in the fractional Caputo conformable
settings subject to three-point Riemann–Liouville conformable integral conditions as fol-
lows:

⎧
⎨

⎩

CCDζ ,ν∗
c φ(s) ∈ Õ(s,φ(s),φ(λ∗s)) (s ∈ [c, M], c ≥ 0),

φ(c) = 0, μ∗
1φ(M) + μ∗

2
RCIζ ,θ∗

c φ(σ ) = ξ ∗ (1)

so that CCDζ ,ν∗
c indicates the derivative in the Caputo conformable settings of order ν∗ ∈

(1, 2) along with ζ ∈ (0, 1] and RCIζ ,θ∗
c stands for the integral in the Riemann–Liouville

conformable frame of order θ∗ > 0. Furthermore, σ ∈ (c, M), μ∗
1,μ∗

2, ξ ∗ ∈ R, λ∗ ∈ (0, 1) and
Õ : [c, M] ×R×R→P(R) is a multifunction furnished with several necessary specifica-
tions which are indicated in the rest of the manuscript. It is important that the reader pays
attention to the fact that this structure of a pantograph inclusion problem in the Caputo
conformable operators is novel and such a kind of construction has not been discussed
in any literature so far. In fact, we reformulate the well-known pantograph differential
equation by applying newly-defined conformable operators in both Caputo and Riemann–
Liouville settings simultaneously for the first time. We demonstrate the contents of the
current research manuscript as follows. In Sect. 2, we briefly review fundamental and aux-
iliary concepts and notions. In Sect. 3, we employ some well-known analytical techniques
to establish existence criteria corresponding to the given pantograph inclusion BVP (1).
In this way, we deduce key results in three cases including the lower semi-continuous, the
upper semi-continuous and the Lipschitz set-valued maps. In fact, we derive desired ex-
istence results for three different structures considered on the set-valued maps and this
cover a vast range of multifunctions satisfying our given conditions. the last part of the
present research is devoted to proposing two numerical simulative examples to demon-
strate the consistency of the analytical findings.

2 Auxiliary notions
Now, we review some fundamental and auxiliary notions and some specifications of the
fractional Riemann–Liouville and Caputo conformable operators. As we see in much of
the literature, the concept of the Riemann–Liouville integral of order ν∗ > 0 for a real
function φ : [0, +∞) →R is illustrated by RIν∗

0 φ(s) =
∫ s

0
(s–q)ν

∗–1

�(ν∗) φ(q) dq such that the RHS
integral possesses finite values [55, 56]. In the current position, we assume that ν∗ ∈ (k –
1, k) so that k = [ν∗] + 1. For a given function φ ∈AC(k)

R
([0, +∞)), the fractional derivative

in the Caputo settings is defined by

C
D

ν∗
0 φ(s) =

∫ s

0

(s – q)k–ν∗–1

�(k – ν∗)
φ(k)(q) dq
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so that the existing R.H.S integral involves the finite values [55, 56]. Subsequently, the left
conformable derivative at s0 = c for φ : [c,∞) →R along with ζ ∈ (0, 1] was introduced as

D
ζ
c φ(s) = lim

λ→0

φ(s + λ(s – c)1–ζ ) – φ(s)
λ

provided that the limit exists [43]. Notice that, if Dζ
c φ(s) exists on (c, d), in this case we

have D
ζ
c φ(c) = lims→c+ D

ζ
c φ(s). Also, if we assume that the given function φ is differen-

tiable, then it is clear that Dζ
c φ(s) = (s – c)1–ζ φ′(s). The left conformable integral of φ along

with ζ ∈ (0, 1] is defined in the form I
ζ
c φ(s) =

∫ s
c φ(q) dq

(q–c)1–ζ whenever the RHS integral
is finite-valued [43]. Jarad et al. [44] presented a new formulation of integro-derivative
operators which generalize conformable operators to fractional orders in both Riemann–
Liouville and Caputo settings. To see this, let ν∗ ∈ C with Re(ν∗) ≥ 0. In this phase, the
Riemann–Liouville conformable integral for φ of order ν∗ along with ζ ∈ (0, 1] is intro-
duced as follows:

RC
I

ζ ,ν∗
c φ(s) =

1
�(ν∗)

∫ s

c

(
(s – c)ζ – (q – c)ζ

ζ

)ν∗–1

φ(q)
dq

(q – c)1–ζ

so that the RHS integral is finite [44]. One can simply deduce that, if c = 0 and ζ = 1, then
RCIζ ,ν∗

c φ(s) is reduced to the standard Riemann–Liouville integral RIν∗
0 φ(s). Moreover,

the Riemann–Liouville conformable derivative for φ of order ν∗ along with ζ ∈ (0, 1] is
formulated as

RC
D

ζ ,ν∗
c φ(s) = D

ζ ,k
c

(RC
I

ζ ,k–ν∗
c φ

)
(s)

=
D

ζ ,k
c

�(k – ν∗)

∫ s

c

(
(s – c)ζ – (q – c)ζ

ζ

)k–ν∗–1

φ(q)
dq

(q – c)1–ζ
,

where k = [Re(ν∗)] + 1 and also D
ζ ,k
c =

k times
︷ ︸︸ ︷

D
ζ
cD

ζ
c . . .Dζ

c so that D
ζ
c illustrates the left con-

formable derivative with ζ ∈ (0, 1] [44]. In similar way, one can simply see that, if c = 0
and ζ = 1, then RCDζ ,ν∗

c φ(s) is reduced to the standard Riemann–Liouville derivative
RDν∗

0 φ(s). In the rest, we intend to recall the definition of a similar notion in the framework
of the Caputo. To do this, build Lζ (c) := {h∗ : [c, d] → R : Iζ

c h∗(s) exists for each s ∈ [c, d]}
for ζ ∈ (0, 1] and take

Iζ

(
[c, d]

)
:=

{
φ : [c, d] →R : φ(s) = I

ζ
c h∗(s) + φ(c), for some h∗ ∈Lζ (c)

}
,

where Iζ
c h∗(s) =

∫ s
c h∗(q) dζ (q, c) =

∫ s
c h∗(q) dq

(q–c)1–ζ is the left conformable integral of h∗ [42].
For k ∈ N, define Ck

c,ζ ([c, d]) := {φ : [c, d] → R : Dζ ,k–1
c φ ∈ Iζ ([c, d])}. In this phase, the Ca-

puto conformable derivative for φ ∈ Ck
c,ζ ([c, d]) of order ν∗ along with ζ ∈ (0, 1] is illus-

trated as

CC
D

ζ ,ν∗
c φ(s) = RC

I
ζ ,k–ν∗
c

(
D

ζ ,k
c φ

)
(s)

=
1

�(k – ν∗)

∫ s

c

(
(s – c)ζ – (q – c)ζ

ζ

)k–ν∗–1

D
ζ ,k
c φ(q)

dq
(q – c)1–ζ
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such that k = [Re(ν∗)] + 1 [44]. It is clear that CCDζ ,ν∗
c φ(s) = CDν∗

0 φ(s) when we have c = 0
and ζ = 1.

Lemma 1 ([44]) Take Re(ν∗) > 0, Re(
 ∗) > 0 and Re(σ ) > 0. Then, for ζ ∈ (0, 1] and for
each s > c, the following hold:

(i1) RCIζ ,ν∗
c (RCIζ ,
∗

c φ)(s) = (RCIζ ,ν∗+
∗
c φ)(s),

(i2) RCIζ ,ν∗
c (s – c)ζ (σ–1)(z) = 1

ζ ν∗ �(σ )
�(σ+ν∗) (z – c)ζ (σ+ν∗–1),

(i3) RCDζ ,ν∗
c (s – c)ζ (σ–1)(z) = ζ ν∗ �(σ )

�(σ–ν∗) (z – c)ζ (σ–ν∗–1),
(i4) RCDζ ,ν∗

c (RCI
ζ ,
∗
c φ)(s) = (RCI

ζ ,
∗–ν∗
c φ)(s)(Re(ν∗) < Re(
 ∗)).

Lemma 2 ([46]) Take k – 1 < Re(ν∗) < k and φ ∈ Ck
c,ζ ([c, d]). Then, for ζ ∈ (0, 1], the follow-

ing identity is valid:

RC
I

ζ ,ν∗
c

(CC
D

ζ ,ν∗
c φ

)
(s) = φ(s) –

k–1∑

j=0

D
ζ ,j
c φ(c)
ζ jj!

(s – c)jζ .

In the light of the above lemma, one can deduce that the general solution of the homo-
geneous equation (CCDζ ,ν∗

c φ)(s) = 0 is obtained as follows:

φ(s) =
k–1∑

j=0

r̂∗
j (s – c)jζ = r̂∗

0 + r̂∗
1(s – c)ζ + r̂∗

2(s – c)2ζ + · · · + r̂∗
k–1(s – c)(k–1)ζ ,

such that k – 1 < Re(ν∗) < k and r̂∗
0 , r̂∗

1 , . . . , r̂∗
k–1 ∈R.

In the sequel, we intend to devote the rest of this section to reviewing some primary
definitions and key properties on the set-valued maps. To achieve this goal, we regard the
normed space (Y,‖ · ‖Y). In addition to this, we introduce the notations P(Y), Pcls(Y),
Pbnd(Y), Pcmp(Y) and Pcvx(Y) for the illustration of the collection of all nonempty sub-
sets, all closed subsets, all bounded subsets, all compact subsets and all convex subsets
of Y, respectively. An element φ∗ ∈ Y is defined to be a fixed point for Õ : Y → P(Y)
when we have φ∗ ∈ Õ(φ∗) [57]. In this case, we illustrate the set of all fixed points of Õ
by symbol FIX(Õ) [57]. In the subsequent text, the Pompeiu–Hausdorff metric PHdY :
P(Y) ×P(Y) →R∪ {∞} is given by

PHdY (E1,E2) = max
{

sup
b1∈E1

dY(b1,E2), sup
b2∈E2

dY(E1, b2)
}

so that dY(E1, b2) = infb1∈E1 dY(b1, b2) and dY(b1,E2) = infb2∈E2 dY(b1, b2) [57]. We say that
Õ : Y→Pcls(Y) is Lipschitzian furnished with real constant ĉ > 0 whenever the inequality
PHdY (Õ(φ), Õ(φ′)) ≤ ĉdY(φ,φ′) is valid for each φ,φ′ ∈Y. Notice that a Lipschitz map Õ

is defined to be a contraction if ĉ ∈ (0, 1) [57]. The multifunction Õ is called completely
continuous if Õ(K) is relatively compact for any K ∈Pbnd(Y) and also Õ : [0, 1] →Pcls(R)
is measurable if z �−→ dY(a, Õ(z)) is measurable for each a ∈R [57, 58]. In addition to the
above notions, we say that Õ possesses an upper semi-continuity specification if for each
φ∗ ∈Y, the set Õ(φ∗) belongs to Pcls(Y) and, for every open set V which contains Õ(φ∗),
there exists a neighborhood U∗

0 of φ∗ so that Õ(U∗
0 ) ⊆V [57].

The graph of Õ : Y→Pcls(X) is regarded by GR(Õ) = {(φ, x) ∈Y×X : x ∈ Õ(φ)}. Also,
GR(Õ) is called closed if for both convergent sequences {φn}n≥1 in Y and {xn}n≥1 in X



Thabet et al. Boundary Value Problems        (2020) 2020:171 Page 6 of 21

along with φn → φ0, xn → x0 and xn ∈ Õ(φn), we have x0 ∈ Õ(φ0) [57, 58]. With due atten-
tion to [57], it is concluded that, if Õ : Y → Pcls(X) is a set-valued map having the upper
semi-continuity property, then GR(Õ) is a closed subset of Y×X. In the opposite direc-
tion, if Õ possesses the complete continuity and closed graph specifications, in this case, Õ
has an upper semi-continuity property [57]. Moreover, it is clear that Õ is convex-valued
if Õ(φ) ∈ Pcvx(Y) for any φ ∈ Y. We illustrate the family of all existing selections of Õ at
φ ∈ CR([0, 1]) as

(SEL)
Õ,φ :=

{
κ̂ ∈L1

R

(
[0, 1]

)
: κ̂(s) ∈ Õ

(
s,φ(s)

)}

for each s ∈ [0, 1] (a.e.) [57, 58]. It is necessary to pay attention to the fact that by assum-
ing Õ to be an arbitrary multi-valued function, then, for any φ ∈ CY([0, 1]), we find that
(SEL)

Õ,φ is nonempty if dim(Y) is finite [57]. The multi-valued map Õ : [0, 1]×R →P(R)
is supposed to be Carathéodory whenever s �→ Õ(s,φ) is measurable for every φ ∈ R

and φ �→ Õ(s,φ) is upper semi-continuous for all φ ∈ [0, 1] (a.e.) [57, 58]. In addition, a
Carathéodory map Õ : [0, 1]×R →P(R) is defined to beL1-Carathéodory if for any γ > 0,
a function ϕγ ∈ L1

R+ ([0, 1]) exists provided that ‖Õ(s,φ)‖ = sups∈[0,1]{|p| : p ∈ Õ(s,φ)} ≤
ϕγ (s) for each |φ| ≤ γ and for almost any s ∈ [0, 1] [57, 58].

A set A is defined to be (L⊗B)-measurable whenever A is contained in the σ -algebra
generated by all sets M × Q in which M denotes Lebesgue measurable subset in [0, M]
and Q stands for the Borel measurable subset of R [58]. A subset A of L1

R
([0, 1]) is sup-

posed to be decomposable whenever for each φ1,φ2 ∈ A and M ⊂ [0, M], an inclusion
φ2χM + φ1χ([0,M]–M) ∈ A holds so that χ indicates the characteristic function [58]. Now,
the multifunction Õ : Y → Pcls(Y) is supposed to be lower semi-continuous (l.s.c.) if
{φ ∈ Y : Õ(φ) ∩ B �= ∅} is an open set for every open subset B of Y [58]. Now, we re-
gard Y as a separable Banach space and Õ : Y→P(L1

R
([0, M])) as an arbitrary set-valued

map. Then Õ is an operator having (BC)-property if Õ is lower semi-continuous and it
possesses nonempty closed and decomposable values [58]. For Õ : [0, M] ×R →Pcmp(R),
we assign a set-valued operator N : Y→P(L1

R
([0, M])) by taking

N(x) =
{
φ ∈L1

R

(
[0, M]

)
: φ(s) ∈ Õ

(
s,φ(s)

)
for a.e. s ∈ [0, M]

}
.

Then N is said to be a Niemytzki operator associated with Õ [58]. Moreover, Õ : [0, M] ×
R →Pcmp(R) is said to be of lower semi-continuous type (l.s.c. type) whenever its relevant
Niemytzki operator N is lower semi-continuous and involves nonempty closed decom-
posable values [58]. The next theorems are regarded as our required tools for verifying
desired results in the current research.

Theorem 3 (Bohnenblust—Karlin theorem, [59]) Regard Y as a Banach space and E �= ∅
as a subset contained in Y which is convex, bounded and closed. Assume that Õ : E −→
Pcls,cmp(Y) is upper semi-continuous provided that Õ(E) ⊂ E and Õ(E) is compact. Then
Õ possesses a fixed point.

Theorem 4 (Closed graph theorem, [60]) Regard Y as a separable Banach space, Õ :
[0, 1] × Y → Pcmp,cvx(Y) as an L1-Carathéodory multifunction and ϒ∗ : L1

Y
([0, 1]) →

CY([0, 1]) as a linear continuous map. In this phase, ϒ∗ ◦ (SEL)
Õ

: CY([0, 1]) →
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Pcmp,cvx(CY([0, 1])) is another operator in CY([0, 1])×CY([0, 1]) by φ �→ (ϒ∗ ◦(SEL)
Õ

)(φ) =
ϒ∗((SEL)

Õ,φ) involving the closed graph specification.

Theorem 5 (Martelli theorem, [61]) The space Y is supposed to be Banach space and the
set-valued map Õ : E −→ Pbnd,cls,cvx(Y) is assumed to be completely continuous. If the set
� = {φ ∈Y : ηφ ∈ Õ(φ),η > 1} is bounded, then a fixed point exists for Õ.

Theorem 6 (Nonlinear alternative theorem for Kakutani mappings, [62]) Regard Y as
a Banach space and E �= ∅ as a subset contained in Y which is convex and closed. Also,
let U be an open subset contained in E and 0 ∈ U. By assuming Õ : U −→ Pcmp,cvx(E) as a
compact and upper semi-continuous mapping, we have

(i) a fixed point exists for Õ in U, or
(ii) v∗ ∈ partialU and η ∈ (0, 1) exist for which v∗ ∈ ηÕ(v∗).

Theorem 7 (Bressan and Colombo theorem, [63]) The Banach space Y is supposed to be
separable and Õ : Y → P(L1

R
([0, M])) is a set-valued map having (BC)-property. Then Õ

possesses a continuous selection, i.e. a continuous map ğ : Y→L1
R

([0, M]) exists provided
that ğ(y) ∈ Õ(y) for any y ∈Y.

Theorem 8 (Covitz and Nadler theorem, [64]) Regard Y as a Banach space. If Õ : Y−→
Pcls(E) is a contraction, then FIX(Õ) is a nonempty set.

3 Main results
After reviewing and introducing some auxiliary concepts in previous sections, we proceed
to deduce desired existence theorems. To arrive at this goal, we regard the norm ‖φ‖Y =
sups∈[c,M] |φ(s)| on the space Y = {φ(s) : φ(s) ∈ CR([c, M])}. Then (Y,‖ · ‖Y) is a Banach
space. Besides, keep in mind the following for convenience in the computations:

�̃ = μ∗
1(M – c)ζ + μ∗

2
(σ – c)ζ (1+θ∗)

ζ θ∗
�(2 + θ∗)

�= 0, (2)

X̃ =
(M – c)ζν∗

ζ ν∗
�(1 + ν∗)

+
(M – c)ζ

˜|�|
[
∣
∣μ∗

1
∣
∣ (M – c)ζν∗

ζ ν∗
�(1 + ν∗)

+
∣
∣μ∗

2
∣
∣ (σ – c)ζ (ν∗+θ∗)

ζ (ν∗+θ∗)�(1 + ν∗ + θ∗)

]

. (3)

In the next result, we derive an integral construction for the solution of the proposed
three-point Caputo conformable pantograph BVP (1).

Lemma 9 Regard �̆ ∈Y. In this phase, φ0 is regarded as a solution for the fractional linear
differential equation in the Caputo conformable settings

CC
D

ζ ,ν∗
c φ(s) = �̆(s),

(
s ∈ [c, M], c ≥ 0

)
(4)

subject to three-point Riemann–Liouville conformable integral boundary conditions

φ(c) = 0, μ∗
1φ(M) + μ∗

2
RC

I
ζ ,θ∗
c φ(σ ) = ξ ∗, (5)

iff φ0 satisfies integral equation

φ(s) =
1

�(ν∗)

∫ s

c

(
(s – c)ζ – (q – c)ζ

ζ

)ν∗–1

�̆(q)
dq

(q – c)1–ζ
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+
(s – c)ζ

�̃

[

ξ ∗ –
μ∗

1
�(ν∗)

∫ M

c

(
(M – c)ζ – (q – c)ζ

ζ

)ν∗–1

�̆(q)
dq

(q – c)1–ζ

–
μ∗

2
�(ν∗ + θ∗)

∫ σ

c

(
(σ – c)ζ – (q – c)ζ

ζ

)ν∗+θ∗–1

�̆(q)
dq

(q – c)1–ζ

]

, (6)

where a nonzero constant �̃ is defined by (2).

Proof First, we regard φ0 as a function which satisfies the Caputo conformable equation
(4). Then we see that CCDζ ,ν∗

c φ0(s) = �̆(s). Now, we integrate both sides of the latter equa-
tion in the ν∗th order Riemann–Liouville conformable settings. We have

φ0(s) =
1

�(ν∗)

∫ s

c

(
(s – c)ζ – (q – c)ζ

ζ

)ν∗–1

�̆(q)
dq

(q – c)1–ζ
+ r̂∗

0 + r̂∗
1(s – c)ζ (7)

so that we wish to find constant coefficients r̂∗
0 , r̂∗

1 ∈R. Prior to seeking these constants, by
taking the integral of the Riemann–Liouville conformable type with respect to s on both
sides of (7), we obtain

RC
I

ζ ,θ∗
c φ0(s) =

1
�(ν∗ + θ∗)

∫ s

c

(
(s – c)ζ – (q – c)ζ

ζ

)ν∗+θ∗–1

�̆(q)
dq

(q – c)1–ζ

+ r̂∗
0

(s – c)ζθ∗

ζ θ∗
�(1 + θ∗)

+ r̂∗
1

(s – c)ζ (1+θ∗)

ζ θ∗
�(2 + θ∗)

.

The first boundary condition causes r̂∗
0 to be zero. Now, according to the second integral

boundary condition, we get

r̂∗
1 =

1
�̃

[

ξ ∗ –
μ∗

1
�(ν∗)

∫ M

c

(
(M – c)ζ – (q – c)ζ

ζ

)ν∗–1

�̆(q)
dq

(q – c)1–ζ

–
μ∗

2
�(ν∗ + θ∗)

∫ σ

c

(
(σ – c)ζ – (q – c)ζ

ζ

)ν∗+θ∗–1

�̆(q)
dq

(q – c)1–ζ

]

.

By inserting the obtained values r̂∗
0 and r̂∗

1 into (7), we obtain

φ0(s) =
1

�(ν∗)

∫ s

c

(
(s – c)ζ – (q – c)ζ

ζ

)ν∗–1

�̆(q)
dq

(q – c)1–ζ

+
(s – c)ζ

�̃

[

ξ ∗ –
μ∗

1
�(ν∗)

∫ M

c

(
(M – c)ζ – (q – c)ζ

ζ

)ν∗–1

�̆(q)
dq

(q – c)1–ζ

–
μ∗

2
�(ν∗ + θ∗)

∫ σ

c

(
(σ – c)ζ – (q – c)ζ

ζ

)ν∗+θ∗–1

�̆(q)
dq

(q – c)1–ζ

]

,

indicating that φ0 satisfies (6). In the reverse direction, we can simply verify that φ0 satis-
fies the given three-point Caputo conformable problem (4)–(5) whenever φ0 satisfies the
integral equation (6). �

In this position, we deal with several existence criteria for the proposed pantograph
fractional BVP (1) in the Caputo conformable settings. With due attention to Lemma 9, a
function φ ∈ AC2

R
([c, M]) is regarded as a solution for the pantograph inclusion problem
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(1) in the Caputo conformable frame if φ satisfies the given boundary conditions (1) and
also a function ğ ∈L1

R
([c, M]) exists with ğ ∈ Õ(s,φ(s),φ(λ∗s)) for any (a.e.) s ∈ [c, M] and

φ(s) =
1

�(ν∗)

∫ s

c

(
(s – c)ζ – (q – c)ζ

ζ

)ν∗–1

ğ(q)
dq

(q – c)1–ζ

+
(s – c)ζ

�̃

[

ξ ∗ –
μ∗

1
�(ν∗)

∫ M

c

(
(M – c)ζ – (q – c)ζ

ζ

)ν∗–1

ğ(q)
dq

(q – c)1–ζ

–
μ∗

2
�(ν∗ + θ∗)

∫ σ

c

(
(σ – c)ζ – (q – c)ζ

ζ

)ν∗+θ∗–1

ğ(q)
dq

(q – c)1–ζ

]

. (8)

3.1 The upper semi-continuity case
Here, we assume that values of the set-valued map Õ belong to Pcvx(Y). The first existence
criterion is derived due to both Bohnenblust–Karlin’s theorem, Theorem 3, and the closed
graph theorem, Theorem 4.

Theorem 10 Let the following be valid:
(HP1) Õ : [c, M] ×Y×Y→Pcmp,cvx(Y) is Carathéodory.
(HP2) For each μ > 0, a function ϕμ ∈L1

R+ ([c, M]) exists provided that

∥
∥Õ(s,φ, φ̄)

∥
∥ = sup

{|ğ| : ğ ∈ Õ(s,φ, φ̄)
} ≤ ϕμ(s)

for any φ, φ̄ ∈Y with ‖φ‖Y,‖φ̄‖Y ≤ μ and for a.e. s ∈ [c, M].
Then at least one solution exists on [c, M] for three-point Caputo conformable pantograph
BVP (1) if

�

{
(M – c)ζ (ν∗–1)

ζ (ν∗–1)�(ν∗)
+

(M – c)ζ

˜|�|
[
∣
∣μ∗

1
∣
∣ (M – c)ζ (ν∗–1)

ζ (ν∗–1)�(ν∗)

+
∣
∣μ∗

2
∣
∣ (σ – c)ζ (ν∗+θ∗–1)

ζ (ν∗+θ∗–1)�(ν∗ + θ∗)

]}

< 1, (9)

where lim infμ→∞
∫ M

c
ϕμ(q)

μ
dq = � < ∞.

Proof To transform the given Caputo conformable pantograph BVP (1) into a well-known
fixed point problem, we regard a multifunction � : Y→P(Y) formulated by

�(φ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ ∈Y :

ψ(s) = 1
�(ν∗)

∫ s
c ( (s–c)ζ –(q–c)ζ

ζ
)ν∗–1ğ(q) dq

(q–c)1–ζ

+ (s–c)ζ
�̃

[ξ ∗ – μ∗
1

�(ν∗)
∫ M

c ( (M–c)ζ –(q–c)ζ
ζ

)ν∗–1

× ğ(q) dq
(q–c)1–ζ – μ∗

2
�(ν∗+θ∗)

∫ σ

c ( (σ–c)ζ –(q–c)ζ
ζ

)ν∗+θ∗–1

× ğ(q) dq
(q–c)1–ζ ] (ğ ∈ SEL

Õ,φ).

(10)

We claim that � satisfies all existing hypotheses of Theorem 3 and so � possesses a fixed
point which is regarded as a solution function for the proposed Caputo conformable pan-
tograph BVP (1). In the first stage, we are going to check the convexity of �(φ) for each
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φ ∈ Y. For this purpose, let ψ1,ψ2 ∈ �(φ). Then there are two functions ğ1, ğ2 ∈ SEL
Õ,φ

so that, for any s ∈ [c, M], we get

ψi(s) =
1

�(ν∗)

∫ s

c

(
(s – c)ζ – (q – c)ζ

ζ

)ν∗–1

ği(q)
dq

(q – c)1–ζ

+
(s – c)ζ

�̃

[

ξ ∗ –
μ∗

1
�(ν∗)

∫ M

c

(
(M – c)ζ – (q – c)ζ

ζ

)ν∗–1

ği(q)
dq

(q – c)1–ζ

–
μ∗

2
�(ν∗ + θ∗)

∫ σ

c

(
(σ – c)ζ – (q – c)ζ

ζ

)ν∗+θ∗–1

ği(q)
dq

(q – c)1–ζ

]

(i = 1, 2).

Take 0 ≤ κ ≤ 1. In this phase, for any s ∈ [c, M], one may write

[
κψ1 + (1 – κ)ψ2

]
(s)

=
1

�(ν∗)

∫ s

c

(
(s – c)ζ – (q – c)ζ

ζ

)ν∗–1[
κ ğ1(q) + (1 – κ)ğ2(q)

] dq
(q – c)1–ζ

+
(s – c)ζ

�̃

[

ξ ∗ –
μ∗

1
�(ν∗)

∫ M

c

(
(M – c)ζ – (q – c)ζ

ζ

)ν∗–1

× [
κ ğ1(q) + (1 – κ)ğ2(q)

] dq
(q – c)1–ζ

–
μ∗

2
�(ν∗ + θ∗)

×
∫ σ

c

(
(σ – c)ζ – (q – c)ζ

ζ

)ν∗+θ∗–1[
κ ğ1(q) + (1 – κ)ğ2(q)

] dq
(q – c)1–ζ

]

.

As SEL
Õ,φ is convex (Õ is convex-valued), so it is deduced that [κψ1 + (1 – κ)ψ2] ∈ �(φ).

Next, we verify that � is a bounded operator on Bμ, where Bμ = {φ ∈ Y : ‖φ‖Y ≤ μ} for
every constant μ > 0. Obviously, Bμ is a convex bounded and closed set belonging to Y.
We claim that μ ∈ R

+ exists so that �(Bμ) ⊆ Bμ. To confirm this claim, we assume that,
for any μ ∈ R

+, there is a function φμ ∈ Bμ and ψμ ∈ �(φμ) with ‖�(φμ)‖Y > μ and

ψμ(s) =
1

�(ν∗)

∫ s

c

(
(s – c)ζ – (q – c)ζ

ζ

)ν∗–1

ğμ(q)
dq

(q – c)1–ζ

+
(s – c)ζ

�̃

[

ξ ∗ –
μ∗

1
�(ν∗)

∫ M

c

(
(M – c)ζ – (q – c)ζ

ζ

)ν∗–1

ğμ(q)
dq

(q – c)1–ζ

–
μ∗

2
�(ν∗ + θ∗)

∫ σ

c

(
(σ – c)ζ – (q – c)ζ

ζ

)ν∗+θ∗–1

ğμ(q)
dq

(q – c)1–ζ

]

for ğμ ∈ SEL
Õ,φ . Then, for any s ∈ [c, M], we get

∣
∣�(φμ)(s)

∣
∣ ≤ 1

�(ν∗)

∫ s

c

(
(s – c)ζ – (q – c)ζ

ζ

)ν∗–1∣
∣ğμ(q)

∣
∣ dq
(q – c)1–ζ

+
(s – c)ζ

˜|�|
[
∣
∣ξ ∗∣∣ +

|μ∗
1|

�(ν∗)

∫ M

c

(
(M – c)ζ – (q – c)ζ

ζ

)ν∗–1∣
∣ğμ(q)

∣
∣ dq
(q – c)1–ζ

+
|μ∗

2|
�(ν∗ + θ∗)

∫ σ

c

(
(σ – c)ζ – (q – c)ζ

ζ

)ν∗+θ∗–1∣
∣ğμ(q)

∣
∣ dq
(q – c)1–ζ

]

.
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In view of hypothesis (HP2) and taking the supremum, we obtain

μ <
∥
∥�(φμ)

∥
∥
Y

≤ (M – c)ζ

˜|�|
∣
∣ξ ∗∣∣ +

{
(M – c)ζ (ν∗–1)

ζ (ν∗–1)�(ν∗)

+
(M – c)ζ

˜|�|
[
∣
∣μ∗

1
∣
∣ (M – c)ζ (ν∗–1)

ζ (ν∗–1)�(ν∗)
+

∣
∣μ∗

2
∣
∣ (σ – c)ζ (ν∗+θ∗–1)

ζ (ν∗+θ∗–1)�(ν∗ + θ∗)

]}

×
∫ M

c
ϕμ(rq) dq. (11)

In the following, we multiply both sides of (11) by 1/μ and take the lower limit of it when
μ goes to infinity. Then we find that

1 ≤ �

{
(M – c)ζ (ν∗–1)

ζ (ν∗–1)�(ν∗)
+

(M – c)ζ

˜|�|
[
∣
∣μ∗

1
∣
∣ (M – c)ζ (ν∗–1)

ζ (ν∗–1)�(ν∗)
+

∣
∣μ∗

2
∣
∣ (σ – c)ζ (ν∗+θ∗–1)

ζ (ν∗+θ∗–1)�(ν∗ + θ∗)

]}

,

and this is a contradiction by considering the condition (9). Therefore there is μ ∈ R
+

provided that �(Bμ) ⊆ Bμ. This means that � is a set-valued map from Bμ to Bμ.
In the sequel, we check that �(φ) is equi-continuous. Let φ be arbitrary member belong-

ing to Bμ and ψ ∈ �(φ). In this case, there exists ğ ∈ SEL
Õ,φ so that, for each s ∈ [c, M],

we have

ψ(s) =
1

�(ν∗)

∫ s

c

(
(s – c)ζ – (q – c)ζ

ζ

)ν∗–1

ğ(q)
dq

(q – c)1–ζ

+
(s – c)ζ

�̃

[

ξ ∗ –
μ∗

1
�(ν∗)

∫ M

c

(
(M – c)ζ – (q – c)ζ

ζ

)ν∗–1

ğ(q)
dq

(q – c)1–ζ

–
μ∗

2
�(ν∗ + θ∗)

∫ σ

c

(
(σ – c)ζ – (q – c)ζ

ζ

)ν∗+θ∗–1

ğ(q)
dq

(q – c)1–ζ

]

.

Therefore for any s′, s′′ ∈ [c, M] with s′ < s′′, we get

∣
∣ψ

(
s′′) – ψ

(
s′)∣∣

≤
∣
∣
∣
∣

1
�(ν∗)

∫ s′′

c

(
(s′′ – c)ζ – (r – c)ζ

ζ

)ν∗–1

ğ(q)
dq

(q – c)1–ζ

–
1

�(ν∗)

∫ s′

c

(
(s′ – c)ζ – (q – c)ζ

ζ

)ν∗–1

ğ(q)
dq

(q – c)1–ζ

∣
∣
∣
∣

+
(s′′ – c)ζ – (s′ – c)ζ

|�̃|
[
∣
∣ξ ∗∣∣ +

|μ∗
1|

�(ν∗)

∫ M

c

(
(M – c)ζ – (q – c)ζ

ζ

)ν∗–1

× ∣
∣ğ(q)

∣
∣ dq
(q – c)1–ζ

]

≤
∣
∣
∣
∣

1
�(ν∗)

∫ s′

c

{(
(s′′ – c)ζ – (q – c)ζ

ζ

)ν∗–1

–
(

(s′ – c)ζ – (q – c)ζ

ζ

)ν∗–1}

× ğ(q)
dq

(q – c)1–ζ

∣
∣
∣
∣ +

∣
∣
∣
∣

1
�(ν∗)

∫ s′′

s′

(
(s′′ – c)ζ – (q – c)ζ

ζ

)ν∗–1

ğ(q)
dq

(q – c)1–ζ

∣
∣
∣
∣

+
(s′′ – c)ζ – (s′ – c)ζ

|�̃|
[
∣
∣ξ ∗∣∣ +

|μ∗
1|

�(ν∗)

∫ M

c

(
(M – c)ζ – (q – c)ζ

ζ

)ν∗–1
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× ∣
∣ğ(q)

∣
∣ dq
(q – c)1–ζ

]

.

As s′ → s′′, we realize that the RHS of the latter inequality approaches 0 without any de-
pendence to φ ∈ Bμ. This points to the fact that � is equi-continuous. By virtue of the
well-known Ascoli–Arzelá theorem, we deduce that the set-valued map � possesses a
complete continuity specification.

Eventually, we verify that � possesses a closed graph. To reach this goal, let φn → φ∗,
ψn ∈ �(φn) and ψn → ψ∗. Also, choose ğn ∈ SEL

Õ,φn
. Our aim is to prove ψ∗ ∈ �(φ∗).

Hence, for each s ∈ [c, M], we have

ψn(s) =
1

�(ν∗)

∫ s

c

(
(s – c)ζ – (q – c)ζ

ζ

)ν∗–1

ğn(q)
dq

(q – c)1–ζ

+
(s – c)ζ

�̃

[

ξ ∗ –
μ∗

1
�(ν∗)

∫ M

c

(
(M – c)ζ – (q – c)ζ

ζ

)ν∗–1

ğn(q)
dq

(q – c)1–ζ

–
μ∗

2
�(ν∗ + θ∗)

∫ σ

c

(
(σ – c)ζ – (q – c)ζ

ζ

)ν∗+θ∗–1

ğn(q)
dq

(q – c)1–ζ

]

.

In this case, we want to prove that a function ğ∗ ∈ SEL
Õ,φ∗ exists so that, for each s ∈ [c, M],

ψ∗(s) =
1

�(ν∗)

∫ s

c

(
(s – c)ζ – (q – c)ζ

ζ

)ν∗–1

ğ∗(q)
dq

(q – c)1–ζ

+
(s – c)ζ

�̃

[

ξ ∗ –
μ∗

1
�(ν∗)

∫ M

c

(
(M – c)ζ – (q – c)ζ

ζ

)ν∗–1

ğ∗(q)
dq

(q – c)1–ζ

–
μ∗

2
�(ν∗ + θ∗)

∫ σ

c

(
(σ – c)ζ – (q – c)ζ

ζ

)ν∗+θ∗–1

ğ∗(q)
dq

(q – c)1–ζ

]

.

To achieve this purpose, we define a new continuous linear operator ϒ∗ : L1
R+ ([c, M]) →Y

illustrated by

ğ �→ ϒ∗(ğ)(s) =
1

�(ν∗)

∫ s

c

(
(s – c)ζ – (q – c)ζ

ζ

)ν∗–1

ğ(q)
dq

(q – c)1–ζ

+
(s – c)ζ

�̃

[

ξ ∗ –
μ∗

1
�(ν∗)

∫ M

c

(
(M – c)ζ – (q – c)ζ

ζ

)ν∗–1

ğ(q)
dq

(q – c)1–ζ

–
μ∗

2
�(ν∗ + θ∗)

∫ σ

c

(
(σ – c)ζ – (q – c)ζ

ζ

)ν∗+θ∗–1

ğ(q)
dq

(q – c)1–ζ

]

.

It is evident that ‖ψn – ψ∗‖Y → 0 as n → ∞. So in the light of Theorem 4, we realize that
ϒ∗ ◦ SEL

Õ,φ is a closed graph operator. Furthermore, ψn(s) ∈ ϒ∗(SEL
Õ,wn

). As φn → φ∗,
Theorem 4 yields

ψ∗(s) =
1

�(ν∗)

∫ s

c

(
(s – c)ζ – (q – c)ζ

ζ

)ν∗–1

ğ∗(q)
dq

(q – c)1–ζ

+
(s – c)ζ

�̃

[

ξ ∗ –
μ∗

1
�(ν∗)

∫ M

c

(
(M – c)ζ – (q – c)ζ

ζ

)ν∗–1

ğ∗(q)
dq

(q – c)1–ζ
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–
μ∗

2
�(ν∗ + θ∗)

∫ σ

c

(
(σ – c)ζ – (q – c)ζ

ζ

)ν∗+θ∗–1

ğ∗(q)
dq

(q – c)1–ζ

]

for some ğ∗ ∈ SEL
Õ,φ∗ . Consequently, we realize that � is a compact and upper semi-

continuous multifunction furnished with closed and convex values. Hence, by considering
Theorem 3, we realize that � possesses a fixed point, which is the same solution as for
the proposed three-point Caputo conformable pantograph inclusion problem (1). This
completes the proof. �

Our second criterion is derived with the help of Martelli’s fixed point result given by
Theorem 5.

Theorem 11 Let the following be valid:
(HP3) Õ : [c, M] ×Y×Y→Pbnd,cls,cvx(Y) is Carathéodory;
(HP4) a function χ ∈Y exists so that ‖Õ(s,φ,φ)‖Y ≤ χ (s) for all a.e. s ∈ [c, M] and each

φ,φ ∈ Y.
Then the three-point Caputo conformable pantograph inclusion problem (1) possesses at
least one solution on [c, M].

Proof Let us regard � as given in Theorem 10. Then, in a similar manner, we can simply
confirm the convexity and the complete continuity of the operator � . Thus, it just remains
to check the boundedness of the set � = {φ ∈ Y : ηφ ∈ �(φ),η > 1)}. To investigate this,
let φ ∈ �. Hence ηφ ∈ �(φ) for some η > 1 and a function ğ ∈ SEL

Õ,φ exists provided that

ηφ(s) =
1

�(ν∗)

∫ s

c

(
(s – c)ζ – (q – c)ζ

ζ

)ν∗–1

ğ(q)
dq

(q – c)1–ζ

+
(s – c)ζ

�̃

[

ξ ∗ –
μ∗

1
�(ν∗)

∫ M

c

(
(M – c)ζ – (q – c)ζ

ζ

)ν∗–1

ğ(q)
dq

(q – c)1–ζ

–
μ∗

2
�(ν∗ + θ∗)

∫ σ

c

(
(σ – c)ζ – (q – c)ζ

ζ

)ν∗+θ∗–1

ğ(q)
dq

(q – c)1–ζ

]

.

Hence, by considering (HP4) and for any s ∈ [c, M] and some η > 1, we have

∣
∣φ(s)

∣
∣ ≤ 1

�(ν∗)

∫ s

c

(
(s – c)ζ – (q – c)ζ

ζ

)ν∗–1∣
∣ğ(q)

∣
∣ dq
(q – c)1–ζ

+
(s – c)ζ

˜|�|
[
∣
∣ξ ∗∣∣ +

|μ∗
1|

�(ν∗)

∫ M

c

(
(M – c)ζ – (q – c)ζ

ζ

)ν∗–1∣
∣ğ(q)

∣
∣ dq
(q – c)1–ζ

+
|μ∗

2|
�(ν∗ + θ∗)

∫ σ

c

(
(σ – c)ζ – (q – c)ζ

ζ

)ν∗+θ∗–1∣
∣ğ(q)

∣
∣ dq
(q – c)1–ζ

]

and so we obtain

‖φ‖Y ≤
{

(M – c)ζν∗

ζ ν∗
�(1 + ν∗)

+
(M – c)ζ

˜|�|
[
∣
∣μ∗

1
∣
∣ (M – c)ζν∗

ζ ν∗
�(1 + ν∗)

+
∣
∣μ∗

2
∣
∣ (σ – c)ζ (ν∗+θ∗)

ζ (ν∗+θ∗)�(1 + ν∗ + θ∗)

]}

‖χ‖Y +
(M – c)ζ

˜|�|
∣
∣ξ ∗∣∣ < ∞.
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Thus we find the set � is bounded. Finally, with due attention to Theorem 5, we conclude
that � possesses at least one fixed point which is regarded as a solution for the proposed
three-point Caputo conformable pantograph inclusion problem (1) on [c, M]. �

The next criterion in this regard is obtained by the nonlinear alternative theorem about
Kakutani mappings (Theorem 6).

Theorem 12 Suppose that the hypothesis (HP1) is valid. Further, assume that both follow-
ing hypotheses are valid too:

(HP5) there are a nondecreasing continuous function �1 : [0,∞) → (0,∞) and a contin-
uous function �2 ∈ CR+ ([c, M]) provided that

∥
∥Õ(s,φ, φ̄)

∥
∥ = sup

{|ğ| : ğ ∈ Õ(s,φ, φ̄)
} ≤ �2(s)�1

(|φ|)

for each (s,φ, φ̄) ∈ [c, M] ×Y×Y;
(HP6) a number M ∈R

+ exists provided that

M

‖�2‖Y�1(M)X̃ + (M–c)ζ
˜|�| |ξ ∗|

> 1,

where X̃ is given in (3) and ‖�2‖Y = sups∈[c,M] |�2(s)|.
Then a solution exists on the interval [c, M] for the proposed three-point Caputo con-
formable pantograph inclusion problem (1).

Proof Let φ ∈ η�(φ) for some η ∈ (0, 1), where � is the same operator considered in the
proof of Theorem 10. Our intention is to show that an open set U ∈ CR([c, M]) exists with
φ /∈ η�(φ) for each η ∈ (0, 1) and all φ ∈ ∂U. To check this, we assume that η ∈ (0, 1) and
φ ∈ η�(φ). Then there is a function ğ ∈L1

R
([c, M]) with ğ ∈ SEL

Õ,φ so that

φ(s) =
η

�(ν∗)

∫ s

c

(
(s – c)ζ – (q – c)ζ

ζ

)ν∗–1

ğ(q)
dq

(q – c)1–ζ

+
η(s – c)ζ

�̃

[

ξ ∗ –
μ∗

1
�(ν∗)

∫ M

c

(
(M – c)ζ – (q – c)ζ

ζ

)ν∗–1

ğ(q)
dq

(q – c)1–ζ

–
ημ∗

2
�(ν∗ + θ∗)

∫ σ

c

(
(σ – c)ζ – (q – c)ζ

ζ

)ν∗+θ∗–1

ğ(q)
dq

(q – c)1–ζ

]

.

According to hypothesis (HP5), for every s ∈ [c, M] and some η ∈ (0, 1), we may write

‖φ‖Y ≤ (M – c)ζ

˜|�|
∣
∣ξ ∗∣∣ + ‖�2‖Y�1

(‖φ‖Y
) ×

{
(M – c)ζν∗

ζ ν∗
�(1 + ν∗)

+
(M – c)ζ

˜|�|
[
∣
∣μ∗

1
∣
∣ (M – c)ζν∗

ζ ν∗
�(1 + ν∗)

+
∣
∣μ∗

2
∣
∣ (σ – c)ζ (ν∗+θ∗)

ζ (ν∗+θ∗)�(1 + ν∗ + θ∗)

]}

.

This yields

‖φ‖Y
‖�2‖Y�1(‖φ‖Y)X̃ + (M–c)ζ

˜|�| |ξ ∗|
≤ 1.
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With due attention to condition (HP6), there is a number M so that M �= ‖φ‖Y. Let us
assume

U =
{
φ ∈ CR

(
[c, M]

)
: ‖φ‖Y < M

}
.

By proceeding similar to the proof of Theorem 10, it is easily verified that � : U →P(Y) is
a compact and upper semi-continuous multifunction having closed and convex values. So
we observe that there exists no φ ∈ ∂U so that φ ∈ η�(φ) for some η ∈ (0, 1) in view of the
choice ofU. Hence, by Theorem 6 one concludes that � is a multifunction including a fixed
point φ ∈ U and eventually we find that the proposed three-point Caputo conformable
pantograph inclusion BVP (1) involves a solution on [c, M]. �

3.2 The lower semi-continuity case
In the current position, we derive other existence criterion in the lower semi-continuous
phase. Here, the set-valued map Õ has not necessarily convex values. We discuss the next
result by applying nonlinear alternative of Leray–Schauder along with the selection result
due to Colombo and Bressan (Theorem 7) for all lower semi-continuous mappings having
decomposable values.

Theorem 13 Let the hypotheses (HP5) and (HP6) along with the following condition be
valid:

(HP7) the nonempty set-valued map Õ : [c, M] × Y × Y → Pcmp(Y) is supposed to be
compact-valued such that (s,φ, φ̄) �→ Õ(s,φ, φ̄) is (L ⊗ B ⊗ B)-measurable and
φ �→ Õ(s,φ, φ̄) is lower semi-continuous for any s ∈ [c, M].

In this case, at least one solution exists on [c, M] for the proposed three-point Caputo con-
formable pantograph inclusion problem (1).

Proof From both conditions (HP5) and (HP7), we immediately deduce that Õ is of lower
semi-continuous type. In this case, the selection result attributed to Colombo and Bressan
(Theorem 7) implies that a continuous function y : AC1

R
([c, M]) →L1

R
([c, M]) exists so that

y(φ) ∈ N̆(φ) for each element y ∈ CR([c, M]), where N̆(φ) : CR([c, M]) → L1
R

([c, M]) stands
for the Nemytskii operator associated with Õ given by

N̆(φ) =
{

ğ ∈L1
R

(
[c, M]

)
: ğ ∈ Õ

(
s,φ(s), φ̄

(
λ∗s

))
for a.e. s ∈ [c, M]

}
.

In this moment, we regard the following reformulated BVP:

⎧
⎨

⎩

CCDζ ,ν∗
c φ(s) = y(φ(s)) (s ∈ [c, M], c ≥ 0),

φ(c) = 0, μ∗
1φ(M) + μ∗

2
RCIζ ,θ∗

c φ(σ ) = ξ ∗, σ ∈ (c, M).
(12)

Notice that, if φ ∈AC2
R([c, M]) is regarded as a solution of problem (12), then φ will be as

a solution of main inclusion problem (1). Define an operator � as follows:

�(φ) =
1

�(ν∗)

∫ s

c

(
(s – c)ζ – (q – c)ζ

ζ

)ν∗–1

y
(
φ(q)

) dq
(q – c)1–ζ

+
(s – c)ζ

�̃

[

ξ ∗ –
μ∗

1
�(ν∗)

∫ M

c

(
(M – c)ζ – (q – c)ζ

ζ

)ν∗–1

y
(
φ(q)

) dq
(q – c)1–ζ
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–
μ∗

2
�(ν∗ + θ∗)

∫ σ

c

(
(σ – c)ζ – (q – c)ζ

ζ

)ν∗+θ∗–1

y
(
φ(q)

) dq
(q – c)1–ζ

]

.

In this way, the aforementioned Caputo conformable problem (12) is reduced to a stan-
dard fixed point problem. Finally, one can simply prove that the newly-defined operator
� is completely continuous and continuous. The remaining proof is implemented as one
in Theorem 12 and thus we omit it again. This finishes the proof process and yields the
required existence result. �

3.3 The Lipschitzian case
Here, we discuss the existence criterion when Õ has non-convex values. To reach the de-
sired purpose, we utilize a fixed point result attributed to Covitz and Nadler (Theorem 8)
on set-valued maps.

Theorem 14 Let the following be valid:
(HP8) the set-valued map Õ : [c, M] ×Y×Y→Pcmp(Y) is such that, for each φ, φ̄ ∈Y,

Õ(·,φ, φ̄) : [c, M] →Pcmp(Y) is measurable;
(HP9) there is a function y ∈ CR+ ([c, M]) with dY(0, Õ(s, 0, 0)) ≤ y(s) for almost all s ∈

[c, M] such that

PHdY
(
Õ(s,φ1, φ̄1), Õ(s,φ2, φ̄2)

) ≤ y(s)
(|φ1 – φ2| + |φ̄1 – φ̄2|

)

for almost all s ∈ [c, M] and φ1,φ2, φ̄1, φ̄2 ∈Y.
Then the three-point Caputo conformable pantograph inclusion problem (1) possesses at
least one solution on interval [c, M] so that

2X̃‖y‖Y < 1, (13)

where X̃ is illustrated by (3) and ‖y‖Y = sups∈[c,M] |y(s)|.

Proof We again regard � : Y→P(Y) similar to the one defined in the proof of Theorem
10. In this case, the three-point Caputo conformable pantograph inclusion problem (1) is
transformed into a standard fixed point problem. At first, we verify that �(φ) �= ∅ for any
φ ∈Y and also is closed set for every ğ ∈ SEL

Õ,φ . To see this, it is clear that Õ(·,φ(·), φ̄(·))
is measurable in view of the measurable selection theorem ([65], Theorem III.6) and so a
measurable selection ğ ∈ L1

R
([c, M]) exists and thus Õ is integrable bounded. This means

that SEL
Õ,φ �= ∅. In addition, �(φ) ∈ Pcls(Y) for each φ ∈ Y as is verified in Theorem 10.

Thus �(φ) is a closed set for each φ ∈ Y. In the sequel, we show that there is a constant
ĉ < 1 so that

PHdY
(
�(φ1),�(φ2)

) ≤ ĉ
(‖φ1 – φ2‖Y + ‖φ̄1 – φ̄2‖Y

)

for any φ1,φ2, φ̄1, φ̄2 ∈ Y. To confirm this, let φ1,φ2, φ̄1, φ̄2 ∈ Y and ψ1(s) ∈ �(φ). Hence,
for each s ∈ [c, M], there exists ğ1(s) ∈ Õ(s,φ1(s), φ̄1(s)) so that

ψ1(s) =
1

�(ν∗)

∫ s

c

(
(s – c)ζ – (q – c)ζ

ζ

)ν∗–1

ğ1(q)
dq

(q – c)1–ζ
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+
(s – c)ζ

�̃

[

ξ ∗ –
μ∗

1
�(ν∗)

∫ M

c

(
(M – c)ζ – (q – c)ζ

ζ

)ν∗–1

ğ1(q)
dq

(q – c)1–ζ

–
μ∗

2
�(ν∗ + θ∗)

∫ σ

c

(
(σ – c)ζ – (q – c)ζ

ζ

)ν∗+θ∗–1

ğ1(q)
dq

(q – c)1–ζ

]

.

In view of the assumption (HP9), we get

PHdY
(
Õ(s,φ1, φ̄1), Õ(s,φ2, φ̄2)

) ≤ y(s)
(∣
∣φ1(s) – φ2(s)

∣
∣ +

∣
∣φ̄1(s) – φ̄2(s)

∣
∣
)
.

Thus, there is a function h∗ ∈ Õ(s,φ2(s), φ̄2(s)) provided that

∣
∣ğ1(s) – h∗(s)

∣
∣ ≤ y(s)

(∣
∣φ1(s) – φ2(s)

∣
∣ +

∣
∣φ̄1(s) – φ̄2(s)

∣
∣
)
.

Define a new multifunction A∗ : [c, M] →P(Y) formulated by

A∗(s) =
{

h∗ ∈ R :
∣
∣ğ1(s) – h∗(s)

∣
∣ ≤ y(s)

(∣
∣φ1(s) – φ2(s)

∣
∣ +

∣
∣φ̄1(s) – φ̄2(s)

∣
∣
)}

.

We know that the set-valued map A∗(s)∩ Õ(s,φ2(s), φ̄2(s)) is measurable (Proposition III.4
[65]). Hence, there is ğ2 which is regarded as a measurable selection for A∗. In conse-
quence, ğ2(s) ∈ Õ(s,φ2(s), φ̄2(s)) and for each s ∈ [c, M], we have

∣
∣ğ1(s) – ğ2(s)

∣
∣ ≤ y(s)

(∣
∣φ1(s) – φ2(s)

∣
∣ +

∣
∣φ̄1(s) – φ̄2(s)

∣
∣
)
.

Hence

ψ2(s) =
1

�(ν∗)

∫ s

c

(
(s – c)ζ – (q – c)ζ

ζ

)ν∗–1

ğ2(q)
dq

(q – c)1–ζ

+
(s – c)ζ

�̃

[

ξ ∗ –
μ∗

1
�(ν∗)

∫ M

c

(
(M – c)ζ – (q – c)ζ

ζ

)ν∗–1

ğ2(q)
dq

(q – c)1–ζ

–
μ∗

2
�(ν∗ + θ∗)

∫ σ

c

(
(σ – c)ζ – (q – c)ζ

ζ

)ν∗+θ∗–1

ğ2(q)
dq

(q – c)1–ζ

]

and so

∣
∣ψ1(s) – ψ2(s)

∣
∣

≤ 1
�(ν∗)

∫ s

c

(
(s – c)ζ – (q – c)ζ

ζ

)ν∗–1∣
∣ğ1(q) – ğ2(q)

∣
∣ dq
(q – c)1–ζ

+
(s – c)ζ

|�̃|
[ |μ∗

1|
�(ν∗)

∫ M

c

(
(M – c)ζ – (q – c)ζ

ζ

)ν∗–1∣
∣ğ1(q) – ğ2(q)

∣
∣ dq
(q – c)1–ζ

+
|μ∗

2|
�(ν∗ + θ∗)

∫ σ

c

(
(σ – c)ζ – (q – c)ζ

ζ

)ν∗+θ∗–1∣
∣ğ1(q) – ğ2(q)

∣
∣ dq
(q – c)1–ζ

]

.

This implies that

‖ψ1 – ψ2‖Y ≤ 2
{

(M – c)ζν∗

ζ ν∗
�(1 + ν∗)

+
(M – c)ζ

˜|�|
[
∣
∣μ∗

1
∣
∣ (M – c)ζν∗

ζ ν∗
�(1 + ν∗)
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+
∣
∣μ∗

2
∣
∣ (σ – c)ζ (ν∗+θ∗)

ζ (ν∗+θ∗)�(1 + ν∗ + θ∗)

]}

‖y‖Y‖φ1 – φ2‖Y.

In a similar way, by interchanging the roles of φ1 and φ2, the following holds:

PHdY
(
�(φ1),�(φ2)

) ≤ 2X̃‖y‖Y‖φ1 – φ2‖Y.

Then, in the light of the condition (13), we find that � is a contraction. In conclusion, with
the help of a fixed point result attributed to Nadler and Covitz (Theorem 8), we deduce
that � involves a fixed point which is regarded as a solution for the proposed three-point
Caputo conformable pantograph inclusion problem (1). This completes the proof. �

4 Examples
The last part of the present research is devoted to proposing two numerical simulative
examples to demonstrate the consistency of our findings. For this purpose, we formulate
a general three-point Caputo conformable pantograph inclusion problem as follows:

⎧
⎨

⎩

CCD1/2,3/2
c φ(s) ∈ Õ(s,φ(s),φ(s/4)), (s ∈ [0, 1])

φ(0) = 0, 0.7φ(1) + 1.3RCI1/2,1/2
c φ(1/2) = 2,

(14)

so that ζ = 1/2, ν∗ = 3/2, θ∗ = 1/2, σ = 1/2, μ∗
1 = 0.7, μ∗

2 = 1.3, ξ ∗ = 2, λ∗ = 1/4, c = 0 and
M = 1. By some computations, we get �̃ � 1.52234 and X̃ � 3.95999. With due attention
to the above data, we design two examples in the following frameworks.

Example 1 In view of the above Caputo conformable pantograph inclusion problem (14),
assume that Õ(s,φ(s),φ(s/4)) is a set-valued map formulated by

Õ(s,φ, φ̄) =
[

2 sin |φ| + s|φ̄| + 1/3
5(16 + φ2)

,
e–φ2 |φ̄|

7(16 + φ2)

]

. (15)

For each μ > 0, we have ‖Õ(s,φ, φ̄)‖ ≤ μs
5 + 7/15 = ϕμ(s) with ‖φ‖Y,‖φ̄‖Y ≤ μ for a.e. s ∈

[0, 1] and also lim infμ→∞
∫ 1

0
ϕμ(q)

μ
dq = � = 1/10. Furthermore, it is simple to investigate

that Õ(s,φ, φ̄) is Carathéodory. On the other hand, since

�

{
(M – c)ζ (ν∗–1)

ζ (ν∗–1)�(ν∗)
+

(M – c)ζ

˜|�|
[
∣
∣μ∗

1
∣
∣ (M – c)ζ (ν∗–1)

ζ (ν∗–1)�(ν∗)
+

∣
∣μ∗

2
∣
∣ (σ – c)ζ (ν∗+θ∗–1)

ζ (ν∗+θ∗–1)�(ν∗ + θ∗)

]}

� 0.293337 < 1,

therefore we see that all hypotheses of Theorem 10 are valid about this problem. This
implies that three-point Caputo conformable pantograph inclusion problem (14) along
with the set-valued map Õ(s,φ, φ̄) defined in (15) has at least one solution on s ∈ [0, 1].

Example 2 In view of the above Caputo conformable pantograph inclusion problem (14),
assume that Õ(s,φ(s),φ(s/4)) is a set-valued map formulated by

Õ(s,φ, φ̄) =
[

1
3
√

81 + s2

(
sin |φ| + tan–1 |φ̄| + 1

1 + |φ| + |φ̄|
)

,
s

11e2s

( |φ|
|φ| + 1

+
|φ̄|

|φ̄| + 1

)]

. (16)
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It is evident that Õ given in (16) is measurable for all φ, φ̄ ∈ Y. Now, we get

PHdY
(
Õ(s,φ1, φ̄1), Õ(s,φ2, φ̄2)

) ≤ s
11e2s

(|φ1 – φ2| + |φ̄1 – φ̄2|
)
,

for a.e. all s ∈ [0, 1] and φ1,φ2, φ̄1, φ̄2 ∈Y. Here, we set y(s) = s
11e2s . In this case, ‖y‖Y = 1/11

and dY(0, Õ(s, 0, 0)) ≤ y(s) for almost all s ∈ [0, 1]. In addition, we have

2X̃‖y‖Y � 0.719998 < 1.

As one can see, all hypotheses of Theorem 14 are valid. Then at least one solution exists for
the proposed three-point Caputo conformable pantograph inclusion problem (14) along
with Õ(s,φ, φ̄) defined in (16) on the interval s ∈ [0, 1].

5 Conclusion
Over the years, the human beings have needed to be acquainted with various natural phe-
nomena more and more. One possible way to achieve this aim is to utilize the techniques
and tools available in mathematics and particularly the mathematical operators in model-
ing of different processes. In the current manuscript, we reformulate and investigate the
well-known pantograph differential equation by applying newly-defined conformable op-
erators in both Caputo and Riemann–Liouville settings simultaneously for the first time.
In fact, we derive required existence criteria of solutions corresponded to inclusion version
of three-point Caputo conformable pantograph BVP subject to Riemann–Liouville con-
formable integral conditions. To achieve this aim, we establish our main results in some
cases including the lower semi-continuous, the upper semi-continuous and the Lipschitz
set-valued maps. Eventually, the last part of the present research is devoted to proposing
two numerical simulative examples to demonstrate the consistency of our findings.
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