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Abstract
In this thesis, we investigate a kind of impulsive fractional order differential systems
involving control terms. By using a class of ϕ-concave-convex mixed monotone
operator fixed point theorem, we obtain a theorem on the existence and uniqueness
of positive solutions for the impulsive fractional differential equation, and the optimal
control problem of positive solutions is also studied. As applications, an example is
offered to illustrate our main results.
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1 Introduction
In recent years, more experiments and theories show that many abnormal phenomena
that occur in engineering and applied sciences can be described by fractional calculus, and
fractional differential equations have been proved to be valuable tools in various science
fields, such as physics, biological engineering, mechanics, artificial intelligence, chemistry
engineering, etc. (see [1–5]). In [5], Zhang and Tian investigated the following fractional
differential system with two nonlinear terms:

⎧
⎪⎪⎨

⎪⎪⎩

Dv
0+ x(t) + f (t, x(t), Dγ

0+ x(t)) + g(t, x(t)) = 0, t ∈ (0, 1), n – 1 < v < n;

x(i) = 0, i = 0, 1, 2, 3, . . . , n – 2;

Dβ

0+ x(1) = k(x(1)),

where n ≥ 3, 1 ≤ γ ≤ β ≤ n – 2, f : [0, 1] × [0,∞) × [0,∞) → [0,∞) is continuous,
g : [0, 1] × [0,∞) → [0,∞) is continuous, and k : [0,∞) → [0,∞) is continuous. By means
of the sum-type mixed monotone operator fixed point theorems, a unique positive so-
lution was obtained, and the authors constructed two monotone iterative sequences to
approximate the unique positive solution.

In addition, in order to describe a physical process model with discontinuous jumps or
mutations in disease prevention and control, earthquake and shock absorption systems,
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and other aspects of research, many researchers have investigated the impulsive problems,
see [6–12]. Moreover, in recent years, optimal control problem to all kinds of differential
equations has attracted many researchers. For a small sample of such work, readers can re-
fer to [13–16]. In [14], Zhang and Yamazaki investigated a class of second order impulsive
differential equations given by

⎧
⎪⎪⎨

⎪⎪⎩

–x′′(t) = a(t)f (t, x(t), x(t)) + u(t), t ∈ (0, 1)/{t1, t2, . . . , tm},
�x|t=tk = Ik(x(tk), x(tk)), k = 1, 2, . . . m,

x(0) = b0, x′(0) = b.

By employing a fixed point theorem of ϕ-concave-convex mixed monotone operator, ex-
istence and uniqueness of positive solutions to the initial value problem were obtained.
In addition, the authors investigated the control problem of positive solutions and proved
the existence-stability of an optimal control.

In [16], Benchohra investigated the following Caputo fractional differential equations
with impulsive terms:

⎧
⎪⎪⎨

⎪⎪⎩

CDγ y(t) = f (t, y), t ∈ J = [0, T], t �= tk

�y|t=tk = Ik(x(tk– )), k = 1, 2, . . . m,

y(0) = y0,

where CDγ is the standard Caputo fractional derivative, f : J × E → E is a given function,
Ik : E → E, k = 1, 2, . . . , m, and y0 ∈ E. By using Monch’s fixed point theorem and the tech-
nique of measures of noncompactness, the existence of solutions for a class of initial value
problems was investigated in an abstract Banach space.

Inspired by the above literature, in the article, we are devoted to studying the existence-
uniqueness and optimal control of positive solutions to impulsive fractional order differ-
ential equations with control term as follows:

(IP; u)

⎧
⎪⎪⎨

⎪⎪⎩

–C
0 Dα

t x(t) = f (t, x(t), x(t)) + u(t), 0 < α ≤ 1,

	x|t=tk = Ik(x(tk), x(tk)), k = 1, 2, . . . m,

x(0) = x0,

(1.1)

where C
0 Dα

t denotes the standard Caputo fractional derivative of order α, J = [0, 1], t ∈
(0, 1)/{t1, t2, . . . , tm}, R+ = [0,∞], f : C[J × R+ × R+] → R–. u is a given function on [0, 1]
and x0 > 0, 0 < t1 < t2 < · · · < tm < 1, �x|t=tk is a jump of x(t) at t = tk and �x|t=tk = x(t+

k ) –
x(t–

k ), where x(t+
k ) is the right limit and x(t–

k ) is the left limit of x(t) at t = tk . Also, Ik ∈
C[R+ × R+, R+], k = 1, 2, . . . m. In addition, let J0 = [0, t1], J1 = (t1, t2], . . . , J1 = (tm–1, tm], and
J ′ = J \ {t1, t2, . . . , tm}.

Problem (OP). Find an optimal control u∗ ∈ UM such that π (u∗) = infu∈UM π (u). Here,
UM is a control Banach space defined by

UM :=
{

u ∈ L2(0, 1)| – M ≤ u ≤ 0 a.e. t ∈ [0, 1]
}

, (1.2)
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where M is a positive constant and π (u) is the cost functional. Set

π (u) :=
1
2

∫ 1

0

∣
∣(x – xd)(t)

∣
∣2 dt + x(1) +

1
2

∫ 1

0

∣
∣u(t)

∣
∣2 dt, (1.3)

where u ∈ UM is a control function, x is a positive solution to (IP; u), and xd is the given
desired target profiles in L2(0, 1).

To the best of our knowledge, there are few studies that consider the existence-
uniqueness and optimal control of positive solutions to Caputo fractional differential
equations with impulsive terms. Therefore, in the sense of minimum function, it is par-
ticularly important to study this kind of equation by nonlinear theory, which enriches
and extends the existing body of literature. The main characteristic features presented
in this article are as follows. Firstly, the equations in this paper are the generalization of
the equations studied in [16], where Ik(x(tk), x(tk)) = Ik(x(tk)), f (t, x(t), x(t)) = f (t, x(t)), and
u(t) = 0. Secondly, in our work, the nonlinear term is mixed monotone, so by means of
the fixed point theorem of ϕ-concave-convex mixed monotone operator, we can show the
existence and uniqueness of positive solution. Here, we should point out that the condi-
tions showed in this paper are weaker than the conditions in [7], in which the operator
is completely continuous. Finally, comparing with [15], the optimal control problems in
differential equations of integer order are extended to the fractional differential equa-
tions; comparing with [5] and [14], in this paper, we consider the fractional differential
equations with impulsive terms and control terms. As we all know, in many applications,
lots of systems with short-term perturbations are often described by impulsive fractional
differential equations, and in the existing literature, there is no paper studying a similar
optimal control problem for fractional differential equations with impulsive term. So our
study is new and significant.

The structure of this paper is as follows. In Sect. 2, we briefly review some definitions,
concepts, notations, and lemmas in a Banach space partially ordered by cone Ph. In Sect. 3,
the existence and uniqueness of positive solutions are investigated. In Sect. 4, we study the
optimal control problems to fractional differential equations involving impulsive terms
(1.1). Finally, in Sect. 5, we show a specific example to illustrate our main results.

2 Preliminaries
Suppose that P is a nonempty closed convex set and P ⊂ E, P is called a cone if it satisfies
the following conditions:

(I1) x ∈ P, λ ≥ 0 ⇒ λx ∈ P;
(I2) x ∈ P, –x ∈ P ⇒ x = θ .
In addition, (E,‖ · ‖) is a real Banach space which is partially ordered by a cone P ⊂ E,

that is, y – x ∈ P implies that x ≤ y. If x ≤ y and x �= y, then we denote x < y or y > x. We
denote the zero element of E by θ . For all x, y ∈ E, if there exists M > 0 such that θ ≤ x ≤ y
implies ‖x‖ ≤ ‖y‖, the cone P is called normal; in this case M is the infimum of such a
constant, it is called normality constant of P.

Furthermore, for given ∀h > θ , set Ph = {x ∈ E | x ∼ h}, in which ∼ is an equivalence
relation, i.e., for all x, y ∈ E, x ∼ y means that there exist λ > 0 and μ > 0 such that λx ≥ y ≥
μx.

Throughout this paper, let PC[J , R] := {x|x : J → R, x(t) be a continuous function at t �=
tk and left continuous at t = tk , x(t+

k ) exists, k = 1, 2, . . . , m}. Then we can easily find that
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PC[J , R] is a Banach space and the norm ‖x‖pc = supt∈J |x|. Set H := L2(J) with the usual
Hilbert structure, in addition, ‖ · ‖ is the norm in H .

Definition 2.1 ([8]) The fractional integral of α order for a function f is defined as follows:

0Iα
t f (t) =

1

(α)

∫ t

0
(t – s)α–1f (s) ds, α > 0,

provided that such an integral exists.

Definition 2.2 ([8]) The Caputo fractional derivative of α order for a function f is defined
as follows:

C
0 Dα

t f (t) =
1


(n – α)

∫ t

0
(t – s)n–α–1f (n)(s) ds, n = [α] + 1,

where [α] denotes the integer part of the real number α.

Definition 2.3 ([5]) A : P × P → P is said to be a mixed monotone operator if A(x, y) is
increasing in x and decreasing in y, i.e., u1 < u2 and v1 > v2 imply A(u1, v1) ≤ A(u2, v2). An
element x ∈ P is called a fixed point of A if A(x, x) = x.

Definition 2.4 ([13]) A : P × P → P is said to be a ϕ-concave-convex operator if there
exists ϕ(t) ∈ (t, 1] such that A(tu, t–1v) ≥ ϕ(t)A(u, v) for any u, v ∈ P and t ∈ (0, 1).

Lemma 2.1 ([17]) Let P be a normal cone of a real Banach space E. Also, let A : P × P → P
be a mixed monotone operator. Assume that

(A1) there exists h ∈ P with h �= θ such that A(h, h) ∈ Ph;
(A2) A : P × P → P is a ϕ-concave-convex operator for any u, v ∈ P.

Then operator A has a unique fixed point x∗ in Ph. Moreover, for any initial x0, y0 ∈ Ph,
constructing successively the sequences

xn = A(xn–1, yn–1), yn = A(yn–1, xn–1), n = 1, 2, . . . ,

we have ‖xn – x∗‖ → 0 and ‖yn – x∗‖ → 0 as n → ∞.

3 Initial value problem
In this section, we show the existence-uniqueness of the positive solution to (OP; u) by ap-
plying a fixed point theorem of mixed monotone operator (Lemma 2.1). Throughout this
section, let P̃ = {u ∈ PC[J , R]; u(t) ≥ 0,∀t ∈ J}. Obviously, P̃ is a normal cone in PC[J , R];
moreover, the normality constant of P̃ is 1.

Definition 3.1 ([14]) Let v ∈ H and M be a given constant. Then a function u ∈ PC[J , R]∩
C′[J ′, R] is called a solution to (OP; v) on J if it satisfies (1.1).

Lemma 3.1 Assume that f : J × R+ × R+ → R is continuous and u ∈ H . So, x ∈ PC[J , R] ∩
C[J ′, R] is a solution to (IP; u) on J if and only if x ∈ PC[J , R] is the solution to the following
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integral equation:

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(0) – 1

(α)

∫ t
0 (t – s)α–1[f (s, x(s), x(s)) + u(s)] ds, t ∈ J0;

x(0) – 1

(α)

∫ t
0 (t – s)α–1[f (s, x(s), x(s)) + u(s)] ds + I1(x(t1), x(t1)),

t ∈ J1;

x(0) – 1

(α)

∫ t
0 (t – s)α–1[f (s, x(s), x(s)) + u(s)] ds

+
∑

0<tk<t Ik(x(tk), x(tk)), t ∈ Jk .

(3.1)

Proof If t ∈ J0, we take α times integral for the first equation on both sides of (1.1) at the
same time, then the following contents can be obtained:

–0Iα
t

C
0 Dα

t x(t) = –0Iα
t 0I1–α

t x′(t) = –
∫ t

0
x′(t) dt,

–
∫ t

0
x′(t) dt = 0Iα

t
[
f
(
t, x(t), x(t)

)
+ u(t)

]
)

=
1


(α)

∫ t

0
(t – s)α–1[f

(
s, x(s), x(s)

)
+ u(s)

]
) ds.

Then

x(t) = x(0) –
1


(α)

∫ t

0
(t – s)α–1[f

(
s, x(s), x(s)

)
+ u(s)

]
ds.

If t ∈ J1, integrating on both sides of the first equation of (1.1), we have

–0Iα
t

C
0 Dα

t x(t) = 0Iα
t
[
f
(
t, x(t), x(t)

)
+ u(t)

]
=

1

(α)

∫ t

0
(t – s)α–1[f

(
s, x(s), x(s)

)
+ u(s)

]
ds.

Since x(t) has a break point t = t1 within (0, t), we get

–0Iα
t

C
0 Dα

t x(t) = –0Iα
t 0I1–α

t x′(t) = –
∫ t

0
x′(s) ds = –

∫ t1

0
x′(s) ds –

∫ t

t1

x′(s) ds

and

–x
(
t–
1
)

+ x(0) – x(t) + x
(
t+
1
)

= 0Iα
t
[
f
(
s, x(s), x(s)

)
+ u(s)

]

=
1


(α)

∫ t

0
(t – s)α–1[f

(
s, x(s), x(s)

)
+ u(s)

]
ds.

Furthermore, we obtain

x(t) = x(0) + I1
(
x(t1), x(t1)

)
–

1

(α)

∫ t

0
(t – s)α–1[f

(
s, x(s), x(s)

)
+ u(s)

]
ds.

Similarly, if t ∈ Jk , we have

0Iα
t

C
0 Dα

t x(t) = 0Iα
t 0I1–α

t x′(t) =
∫ t

0
x′(s) ds
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=
∫ t1

0
x′(s) ds +

∫ t2

t1

x′(s) ds + · · · +
∫ t

tk

x′(s) ds

= x
(
t–
1
)

– x(0) + x
(
t–
2
)

– x
(
t+
1
)

+ · · · + x(t) – x
(
t+
k
)
, –

∫ t

0
x′(s) ds

= 0Iα
t
[
f
(
t, x(t), x(t)

)
+ u(t)

]

=
1


(α)

∫ t

0
(t – s)α–1[f

(
s, x(s), x(s)

)
+ u(s)

]
ds

and

–
[
x
(
t–
1
)

– x(0) + x
(
t–
2
)

– x
(
t+
1
)

+ · · · + x(t) – x
(
t+
k
)]

=
1


(α)

∫ t

0
(t – s)α–1[f

(
s, x(s), x(s)

)
+ u(s)

]
ds.

Finally, we get

x(t) = x(0) +
(
x
(
t+
1
)

– x
(
t–
1
))

+
(
x
(
t+
2
)

– x
(
t–
2
))

+ · · · +
(
x
(
t+
k
)

– x
(
t–
k
))

–
1


(α)

∫ t

0
(t – s)α–1[f

(
s, x(s), x(s)

)
+ u(s)

]
ds

= x(0) + I1
(
x(t1), x(t1)

)
+ I2

(
x(t2)

)
, x(t2) + · · · + Ik

(
x(tk), x(tk)

)

–
1


(α)

∫ t

0
(t – s)α–1[f

(
s, x(s), x(s)

)
+ u(s)

]
ds

= x(0) –
1


(α)

∫ t

0
(t – s)α–1[f

(
s, x(s), x(s)

)
+ u(s)

]
ds +

∑

0<tk<t

Ik
(
x(tk), x(tk)

)
.

Then we know that (3.1) is equivalent to (1.1).
Now, we prove that (3.1) meets the differential system (1.1).
If t ∈ J0, let t = 0, by (3.1) we get x(0) = x0.
If t ∈ J1, taking derivative on both sides of (3.1), we have

C
0 Dα

t x(t) = C
0 Dα

t

{

x0 + I1
(
x(t1), x(t1)

)
–

1

(α)

∫ t

0
(t – s)α–1[f

(
s, x(s), x(s)

)
+ u(s)

]
}

ds

=C
0 Dα

t x0 + C
0 Dα

t I1
(
x(t1), x(t1)

)

– C
0 Dα

t
1


(α)

∫ t

0
(t – s)α–1[f

(
s, x(s), x(s)

)
+ u(s)

]
ds

= – f
(
t, x(t), x(t)

)
– u(t).

In the first type of (3.1), let t → t–
1 , we have

x
(
t–
1
)

= x(0) –
1


(α)

∫ t–
1

0

(
t–
1 – s

)α–1[f
(
s, x(s), x(s)

)
+ u(s)

]
ds.

In the second type of (3.1), let t → t+
1 , we have

x
(
t+
1
)

= x(0) –
1


(α)

∫ t+
1

0

(
t+
1 – s

)α–1[f
(
s, x(s), x(s)

)
+ u(s)

]
ds + I1

(
x(t1), x(t1)

)
,
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and then we know

I1
(
x(t1), x(t1)

)
= x

(
t+
1
)

– x
(
t–
1
)
.

So it is easy to know, when t ∈ J1, (3.1) meets all kinds of (1.1). Likewise, if t ∈ Jk , (3.1)
meets all kinds of (1.1) too, i.e., (3.1) and (1.1) are completely equivalent. It constitutes a
proof. �

For convenience, set A : PC[J , R] × PC[J , R] → PC[J , R] by

A(x, y)(t) = x(0)–
1


(α)

∫ t

0
(t –s)α–1[f

(
s, x(s), y(s)

)
+u(s)

]
ds+

∑

o<tk <t
Ik

(
x(tk), y(tk)

)
. (3.2)

Theorem 3.1 Assume that M > 0 and
(H1) f : J × R+ × R+ → R– for all t ∈ J and x, y ∈ R+, f (t, x, y) is monotone decreasing in x

for each t ∈ J and y ∈ R+ and is monotone increasing in y for each t ∈ J and x ∈ R+;
furthermore, f (t, 1

2 , 1) < 0 for all t ∈ J ;
(H2) for each k = 1, 2, . . . , m, Ik ∈ C[R+ × R+], and Ik ≥ 0, Ik(x, y) is monotone increasing

in x for each y ∈ R+ and is monotone decreasing in y for each x ∈ R+;
(H3) for all γ ∈ (0, 1) and x, y ∈ R+, there exists ϕ1(γ ) ∈ (γ , 1] such that

f
(
t,γ x,γ –1y

) ≤ ϕ1(γ )f (t, x, y);

for all γ ∈ (0, 1), ∀x, y ∈ R+, and k = 1, 2, . . . , m, there exists ϕ2(γ ) ∈ (γ , 1] such that

Ik
(
γ x,γ –1y

) ≥ ϕ2(γ )Ik(x, y).

Then, for all u ∈ H with –M ≤ u(t) ≤ 0, the problem (OP; u) has a unique positive solution
x∗ ∈ P̃h, where h(t) = 1

2 + 1

(α)

∫ t
0 (t – s)α–1 ds and P̃h = {u ∈ P̃ | u ∼ h}.

Proof From (3.2), (H1), and (H2), we have (A(x, y))(t) ≥ 0 for ∀x, y ∈ P̃, that is, A : P̃ × P̃ →
P̃. Also, the operator A : P̃ × P̃ → P̃ is a mixed monotone operator. Now, we show that
A is a ϕ-concave-convex operator. Put ϕ(γ ) = min{ϕ1(γ ),ϕ2(γ )}, where γ ∈ (0, 1). Since
ϕ1(γ ) ∈ (γ , 1] and ϕ2(γ ) ∈ (γ , 1], it is easy to see that γ ≤ ϕ(γ ) ≤ 1. Hence, from (H1)–
(H3) and u(t) ≤ 0, for ∀γ ∈ (0, 1) and x, y ∈ P̃, we obtain

A
(
γ x,γ –1y

)
(t) = x0 –

1

(α)

∫ t

0
(t – s)(α–1)[f

(
s,γ x(s),γ –1y(s)

)
+ u(s)

]
ds

+
∑

o<tk <t
Ik

(
γ x(tk),γ –1y(tk)

)

≥ x0 –
ϕ1(γ )

(α)

∫ t

0
(t – s)(α–1)[f

(
s, x(s), y(s)

)
+ u(s)

]
ds

+ ϕ2(γ )
∑

0<tk <t

Ik
(
x(tk), y(tk)

)

≥ ϕ(γ )A(x, y)(t), ∀t ∈ J ,

that is, A(γ x,γ –1y)(t) ≥ ϕ(γ )A(x, y)(t) for ∀x, y ∈ P̃ and γ ∈ (0, 1).
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Let h(t) := 1
2 + 1


(α)
∫ t

0 (t – s)α–1 ds = 1
2 + tα


(α+1) ,∀t ∈ J . Then we can easily obtain that 1
2 ≤

h(t) ≤ 1
2 + 1


(α+1) ,∀t ∈ J . Set

r1 = min
t∈J

[

–f
(

t,
1
2

,
1
2

+
1


(α + 1)

)]

, r2 = min
t∈J

[

–f
(

t,
1
2

+
1


(α + 1)
,

1
2

)]

,

then 0 ≤ r1 ≤ r2. Furthermore, from –M ≤ u ≤ 0, it is easy to know that

A(h, h)(t) = x0 –
1


(α)

∫ t

0
(t – s)α–1[f

(
s, h(s), h(s)

)
+ u(s)

]
ds +

∑

o<tk <t
Ik

(
h(tk), h(tk)

)

≥ x0 +
1


(α)

∫ t

0
(t – s)α–1

[

–f
(

s,
1
2

,
1
2

+
1


(α + 1)

)

) ds
]

≥ x0 +
r1


(α)

∫ t

0
(t – s)α–1 ds

≥ 2
(α + 1)
2 + 
(α + 1)

(x0 + r1)h(t)

= r3h(t), ∀t ∈ J ,

where r3 = 2
(α+1)
2+
(α+1) (x0 + r1). Furthermore,

A(h, h)(t) = x0 –
1


(α)

∫ t

0
(t – s)α–1[f

(
s, h(s), h(s)

)
+ u(s)

]
ds +

∑

0<tk <t

Ik
(
h(tk), h(tk)

)

≤ x0 +
1


(α)

∫ t

0
(t – s)α–1

[

–f
(

s,
1
2

+
1


(α + 1)
,

1
2

)

)
]

ds

+ M
1


(α)

∫ t

0
(t – s)α–1 ds +

∑

0<tk <t

Ik

(
1
2

+
1


(α + 1)
,

1
2

)

≤ x0 +
r2


(α)

∫ t

0
(t – s)α–1 ds + Mh(t) +

∑

0<tk <1

Ik

(
1
2

+
1


(α + 1)
,

1
2

)

≤ x0 + r2h(t) + Mh(t) +
∑

0<tk <1

Ik

(
1
2

+
1


(α + 1)
,

1
2

)

≤ 2
(

x0 + r2 + M +
∑

0<tk<1

Ik

(
1
2

+
1


(α + 1)
,

1
2

))

h(t)

= r4h(t), ∀t ∈ J ,

where r4 = 2(x0 + r2 + M +
∑

0<tk<1 Ik( 1
2 + 1


(α+1) , 1
2 )).

From the above, we know that r3h ≤ A(h, h) ≤ r4h, that is, A(h, h) ∈ P̃h. Therefore, by
employing Lemma 2.1, the equation x = A(x, x) has a unique positive solution in P̃h for
(IP; u) on J . The proof is complete. �

Corollary 3.1 Suppose that
(H ′

1) f : J × R+ → (–∞, 0] for all t ∈ J and x ∈ R+. Also, f (t, x) is nondecreasing in x for
each t ∈ J and x ∈ R+. Moreover, f (t, 1

2 ) < 0 for all t ∈ J ;
(H ′

2) for each k = 1, 2, . . . , m, Ik : R+ → R+, Ik(x) is nondecreasing in x;
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(H ′
3) for all γ ∈ (0, 1) and ∀x ∈ R+, there exists ϕ1(γ ) ∈ (γ , 1] such that

f (t,γ x) ≤ ϕ1(γ )f (t, x);

for all γ ∈ (0, 1), x ∈ R+, and ∀k = 1, 2, . . . , m, there exists ϕ2(γ ) ∈ (γ , 1] such that

Ik(γ x) ≥ ϕ2(γ )Ik(x).

Then, for ∀u ∈ H with –M ≤ u(t) ≤ 0, the following optimal control system

(IP1; u)

⎧
⎪⎪⎨

⎪⎪⎩

–C
0 Dα

t x(t) = f (t, x(t)) + u(t), t ∈ (0, 1)/{t1, t2, . . . , tm},
�x|t=tk = Ik(x(tk)), k = 1, 2, . . . m,

x(0) = x0,

has a unique positive solution x∗ ∈ Ph on J , where h(t) = 1
2 + 1


(α)
∫ t

0 (t – s)α–1 ds.

4 Optimal control problem (OP)
In this section, in order to investigate the optimal control problem (OP) to (IP; u), we
assume that the following additional conditions hold:

(H4) There exist two constants Cf > 0 and Ck > 0 such that

∣
∣f (s, u, u) – f (s, v, v)

∣
∣ ≤ Cf |u – v|, ∀s ∈ J , u, v ∈ R+;

∣
∣Ik(u, u) – Ik(v, v)

∣
∣ ≤ Ck|u – v| ∀u, v ∈ R+,∀k = 1, 2, . . . , m.

(H5) xd is a given desired target profile in H .

Lemma 4.1 Let {un} ⊂ H , � : H → C[J , R] be an integral operator defined by

(�z)(t) :=
1


(α)

∫ t

0
(t – s)α–1z(s) ds, ∀z ∈ H and t ∈ J . (4.1)

Suppose that there exists un → u weakly n → ∞ for u ∈ H . Then we have �un → �u in
C[J , R] as n → ∞.

Proof Because of un → u weakly in H , it is easy to see that, for ∀t ∈ J ,

�un(t) =
1


(α)

∫ t

0
(t – s)α–1un(s) ds → 1


(α)

∫ t

0
(t – s)α–1u(s) ds = �u(t).

Moreover,

∣
∣(�un)(t) – (�un)(τ )

∣
∣ =

1

(α)

∣
∣
∣
∣

∫ t

0
(t – s)α–1un(s) ds –

∫ τ

0
(τ – s)α–1un(s) ds

∣
∣
∣
∣

≤ ‖un‖H


(α)

(∫ τ

0

∣
∣
[
(t – s)α–1 – (τ – s)α–1]∣∣ds| +

(t – τ )α

α

)

.
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Since (t – s)α–1 – (τ – s)α–1 → 0 and (t–τ )α
α

→ 0 as t → τ , we get

∣
∣(�un)(t) – (�un)(τ )

∣
∣ → 0 as n → ∞.

It shows that {�un} ⊂ C[J , R] is equicontinuous, un → u weakly as n → ∞. Finally, by
means of the Ascoli–Arzela theorem, it is easy to see that Lemma 4.1 holds. �

Lemma 4.2 Suppose that (H1)–(H5) hold. Let {un} ⊂ UM and u ∈ UM . Assume un → u
weakly in H . Then, for the (OP; un) problems, the unique positive solution xn on J converges
to one x of (OP; u). That is, for the Banach space PC[J , R], we have

xn → x as n → ∞. (4.2)

Proof Obviously, xn is a solution of (OP; un) if and only if

xn(t) = x0 –
1


(α)

∫ t

0
(t – s)α–1f

(
s, xn(s), xn(s)

)
ds

–
1


(α)

∫ t

0
(t – s)α–1un(s) ds +

∑

0<tk<t

Ik
(
xn(tk), xn(tk)

)
, ∀t ∈ J .

Let t ∈ J0 = [0, t1] ⊂ J , we get

∣
∣xn(t) – x(t)

∣
∣ ≤ 1


(α)

∣
∣
∣
∣

∫ t

0
(t – s)α–1f

(
s, xn(s), xn(s)

)
ds –

∫ t

0
(t – s)α–1f

(
s, x(s), x(s)

)
ds

∣
∣
∣
∣

+
1


(α)

∣
∣
∣
∣

∫ t

0
(t – s)α–1un(s) ds –

∫ t

0
(t – s)α–1u(s) ds

∣
∣
∣
∣

≤ Cf


(α)

∫ t

0
(t – s)α–1∣∣xn(s) – x(s)

∣
∣ds +

∣
∣(Qun)(t) – (Qu)(t)

∣
∣

≤
∫ t

0

Cf (t – s)α–1


(α)
∣
∣xn(s) – x(s)

∣
∣ds + ‖Qun – Qu‖C[J ,R], ∀t ∈ J0.

By using the Gronwall inequalities, we have

∣
∣xn(t) – x(t)

∣
∣ ≤ e

∫ t
0

Cf (t–s)α–1


(α) ‖�un – �u‖C[J ,R]

≤ e
Cf Tα


(α+1) ‖�un – �u‖C[J ,R]

and

∫ t

0

Cf (t – s)α–1


(α)
∣
∣xn(t) – x(t)

∣
∣ds ≤ e

Cf Tα


(α+1) ‖�un – �u‖C[J ,R]

∫ t

0

Cf (t – s)α–1


(α)
ds

≤ Cf Tα


(α + 1)
e

Cf Tα


(α+1) ‖�un – �u‖C[J ,R]

= N0‖�un – �u‖C[J ,R], ∀t ∈ J0, n = 1, 2, . . . .



Song et al. Boundary Value Problems        (2020) 2020:162 Page 11 of 14

Hence,

∣
∣xn(t) – x(t)

∣
∣ ≤ Cf Tα


(α + 1)
e

Cf Tα


(α+1) ‖�un – �u‖C[J ,R] + ‖�un – �u‖C[J ,R]

= N1‖�un – �u‖C[J ,R], ∀t ∈ J0, n = 1, 2, . . . .

Moreover, from (H4), we obtain

∣
∣xn

(
t+
1
)

– x
(
t+
1
)∣
∣ =

∣
∣xn(t1) + I1

(
xn(t1)

)
– x(t1) – I1

(
x(t1)

)∣
∣

≤ ∣
∣xn(t1) – x(t1)

∣
∣ +

∣
∣I1

(
xn(t1)

)
– I1

(
x(t1)

)∣
∣

≤ (1 + C1)
∣
∣xn(t1) – x(t1)

∣
∣

≤ (1 + C1)N1‖�un – �u‖C[J ,R]

= N ′
1‖�un – �u‖C[J ,R], ∀n = 1, 2, . . . ,

and for ∀t ∈ J1 = (t1, t2], we get

∣
∣xn(t) – x(t)

∣
∣

≤ | ∫ t
0 (t – s)α–1f (s, xn(s), xn(s)) ds –

∫ t
0 (t – s)α–1f (s, x(s), x(s)) ds|


(α)

+
1


(α)

∣
∣
∣
∣

∫ t

0
(t – s)α–1un(s) ds –

∫ t

0
(t – s)α–1u(s) ds

∣
∣
∣
∣ +

∣
∣I1

(
xn(t1)

)
– I1

(
x(t1)

)∣
∣

≤ Cf


(α)

∫ t

0
(t – s)α–1∣∣xn(s) – x(s)

∣
∣ds +

∣
∣(Qun)(t) – (Qu)(t)

∣
∣ + C1

∣
∣xn(t1) – x(t1)

∣
∣

≤
∫ t

0

Cf (t – s)α–1


(α)
∣
∣xn(s) – x(s)

∣
∣ds + (1 + C1N1)‖Qun – Qu‖C[J ,R]

≤ N0‖�un – �u‖C[J ,R] + (1 + C1N1)‖�un – �u‖C[J ,R].

Taking N2 = N0 + 1 + C1N1 > 0 such that |xn(t) – x(t)| ≤ N2‖�un – �u‖C[J ,R], ∀t ∈ J1, n =
1, 2, . . . . Also, from (H4), we get

∣
∣xn

(
t+
2
)

– x
(
t+
2
)∣
∣ ≤ ∣

∣xn(t2) – x(t2)
∣
∣ +

∣
∣I2

(
xn(t2)

)
– I2

(
x(t2)

)∣
∣

≤ (1 + C2)
∣
∣xn(t2) – x(t2)

∣
∣ ≤ N ′

2‖�un – �u‖C[J ,R], n = 1, 2, . . . .

Repeat this process until there exist two positive constants Nk > 0, N ′
k > 0 such that

∣
∣xn(t) – x(t)

∣
∣ ≤ Nk‖�un – �u‖C[J ,R], ∀t ∈ Jk–1, k = 1, 2, . . . , m + 1,

∣
∣xn

(
t+
k
)

– x
(
t+
k
)∣
∣ ≤ N ′

k‖�un – �u‖C[J ,R], n = 1, 2, . . . .

Finally, set N = max{N1, N ′
1, N2, N ′

2, . . . , Nm, N ′
m, Nm+1}. Then we have ‖xn –x|PC ≤ N‖�un –

�u‖C[J ,R], n = 1, 2, . . . . From un → u weakly as n → ∞, we can know that �un → �u in
C[J , R] as n → ∞. Hence, we obtain xn → x as n → ∞ in PC[J , R]. �
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Theorem 4.1 Assume that (H1)–(H5) hold, so the optimal control problem (OP) to (IP; u)
has at least one optimal control u∗ ∈ UM such that π (u∗) = infu∈UM π (u), where UM is a
control functions space defined by (1.2), π (·) is a cost functional given in (1.3).

Proof Let {un} ⊂ UM be a minimizing sequence, we have limn→∞ π (un) = infu∈UM π (u).
Since {un} is a bounded consequence in H , there exist a subsequence {nk} ⊂ {n} and u∗ ∈
UM such that nk → ∞ and unk → u∗ weakly in the space H as k → ∞. In addition, set xnk

to be the unique positive solution to (IP; unk ) on J . Then, from Lemma 4.2, we get xnk → x
as k → ∞ in PC[J ,R]. For (IP; u), x is a unique positive solution. Finally, by employing the
weak lower semicontinuity of H-norm, it is obvious that

lim
k→∞

π (unk ) = inf
u∈UM

π (u) ≥ π
(
u∗),

that is, u∗ ∈ UM is an optimal control to (OP). �

For convenience, we give the following condition:
(H ′

4) There exist two constants Cf > 0 and Ck > 0 such that

∣
∣f (s, u) – f (s, v)

∣
∣ ≤ Cf |u – v|, ∀s ∈ J , u, v ∈ R+;

∣
∣Ik(u) – Ik(v)

∣
∣ ≤ Ck|u – v|, ∀u, v ∈ R+,∀k = 1, 2, . . . , m.

Corollary 4.1 Suppose that conditions (H ′
1)–(H ′

4) and (H5) hold, so (IP1; u) has at least
one optimal control u∗ ∈ UM such that infu∈UM π (u) = π (u∗), where UM is the control space
given by (1.2), π (·) is a cost function defined by (1.3).

5 Application
In this section, in order to verify the validity of our conclusions, we investigate a specific
initial value problem of fractional order impulsive differential systems as follows:

(IP; u)

⎧
⎪⎪⎨

⎪⎪⎩

–C
0 D

1
2
t x(t) = 2[(1 + x(t)) 1

2 + (1 + x(t))– 1
4 ] + u(t), t ∈ (0, 1), t �= 1

3

	x|t= 1
3

= (1 + x( 1
3 )) 1

2 + (1 + x( 1
3 ))– 1

4

x(0) = 1

(5.1)

Conclusion: There exists a unique positive solution to fractional order impulsive differ-
ential equation initial value problem (5.1), and the unique positive solution is continuously
differentiable on [0, 1

3 ) ∪ ( 1
3 , 1]. In addition, the impulsive initial value problem (5.1) has at

least one optimal control.

Proof Let J = [0, 1], t1 = 1
3 , f (t, x, y) := f (x, y) = –2(1 + x(t)) 1

2 – 2(1 + y(t))– 1
4 . Evidently, the

two-variable function f (x, y) is decreasing in x and increasing in y, respectively. Setting
I1(x, y) = (1 + x(t)) 1

2 + (1 + x(t))– 1
4 , we know that I1(x, y) is increasing in x for y ≥ 0 and is

decreasing in y for x ≥ 0.
Set ϕ(γ ) = γ

1
2 ,γ ∈ (0, 1), then

f
(
γ x,γ –1y

)
= –2(1 + γ x)

1
2 – 2(1 + γ y)– 1

4 ≤ ϕ(γ )f (x, y) ∀x, y ≥ 0,
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I1
(
γ x,γ –1y

)
= (1 + γ x)

1
2 + (1 + γ y)– 1

4 ≥ ϕ(γ )I1(x, y) ∀x, y ≥ 0.

It is easy to see that (H1), (H2), and (H3) hold. Hence, for each u ∈ H with –M ≤ u(t) ≤ 0,
Theorem 3.1 implies that there exists a unique positive solution on J , where M > 0 is a
given constant. In addition, let Cf = C1 = 1. Then we can conclude that (H4) holds. Finally,
by means of Theorem 4.1, for each desired target profile xd in H , the (OP) to (5.1) has at
least one optimal control. �
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