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Abstract
We consider a nonlinear Dirichlet problem driven by a general nonhomogeneous
differential operator and with a reaction exhibiting the combined effects of a
parametric singular term plus a Carathéodory perturbation f (z, x, y) which is only
locally defined in x ∈R. Using the frozen variable method, we prove the existence of
a positive smooth solution, when the parameter is small.
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1 Introduction
Let � ⊆ R

N be a bounded domain with C2-boundary ∂�. In this paper we study the
following nonhomogeneous parametric singular Dirichlet problem with gradient depen-
dence (convection):

{
– div a(Du(z)) = λu(z)–η + f (z, u(z), Du(z)) in �,
u|∂� = 0, u > 0, λ > 0, 0 < η < 1.

}
(Pλ)

In this problem, the map a : RN �→ R
N in the differential operator is continuous and

strictly monotone (thus, maximal monotone too) and satisfies certain other growth and
regularity conditions listed in hypotheses H0 below (see Sect. 2). These conditions are
general and provide a broad framework in which we can fit many differential operators of
interest, such as the p-Laplacian and the (p, q)-Laplacian (that is, the sum of a p-Laplacian
and of q-Laplacian). In the reaction (right-hand side) of (Pλ), we have the competing effects
of a parametric singular term u �→ λu–η with λ > 0 being the parameter and of a pertur-
bation u �→ f (z, u, Du) which is a Carathéodory function (that is, for all x ∈ R, y ∈ R

N the
function z �→ f (z, x, y) is measurable and for a.a. z ∈ �, (x, y) �→ f (z, x, y) is continuous).
So, this perturbation is gradient dependent and on f (z, ·, y) we do not impose any growth
condition. Instead we assume that near zero the function x �→ f (z, x, y) exhibits a kind of
oscillatory behavior.

The gradient dependence of the reaction means that problem (Pλ) is not variational
and so eventually our method of proof is going to be topological. We use the so-called
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“frozen variable method”. According to this approach, in the perturbation f (z, x, y), we fix
(“freeze”) the y-variable. This leads to a variational problem, which a priori can be solved
using tools from the critical point theory. However, the presence of the singular term leads
to an energy functional which is not C1 and so we have difficulty in applying the minimax
theorems of critical point theory. So, we need to find a way to bypass the singularity and
deal with C1-functionals. This is done by considering the purely singular problem (that
is, f ≡ 0), which we show that for every λ > 0 it has a unique positive smooth solution
which converges to zero in C1

0(�) as λ → 0+. We use this solution and its properties and
truncation techniques, to show that, for all small values of the parameter λ > 0, the “frozen
problem” has at least one positive smooth solution. In order to use topological tools (fixed
point theory), we need to find a canonical way to choose such a positive solution. This is
done by showing that the frozen problem has a smallest positive solution (minimal posi-
tive solution). Then we show that the minimal solution map satisfies all the requirements
of Leray–Schauder alternative principle (see Sect. 2) and so we can produce a positive
solution for (Pλ) when λ > 0 is small.

Recently there have been published some existence results for nonlinear problem
with convection. We mention the work of Bai [1], Bai–Gasinski–Papageorgiou [2],
Candito–Gasinski–Papageorgiou [4], Faraci–Motreanu–Puglisi [5], Gasinski–Krech–
Papageorgiou [6], Gasinski–Papageorgiou [10], Gasinski–Winkert [11], Liu–Papageor-
giou [18], Papageorgiou–Rădulescu–Repovš [20], Papageorgiou–Vetro–Vetro [24], Tana-
ka [31]. However, none of the aforementioned works involves singular terms. The only
work examining the combined effects of singular and convection terms, is the recent pa-
per of Papageorgiou–Rădulescu–Repovš [22], which deals with a nonparametric Neu-
mann problem driven by the p-Laplacian. Nonlinear singular Dirichlet problems were
also investigated in the paper of Papageorgiou–Winkert [25] for different settings and
conditions.

2 Mathematical background—hypotheses
The main spaces in the analysis of our problem (Pλ), are the Sobolev space W 1,p

0 (�) and the
Banach space C1

0(�) = {u ∈ C1(�) : u|∂� = 0}. By ‖ · ‖ we denote the norm of the Sobolev
space W 1,p

0 (�). On account of the Poincaré inequality, we have

‖u‖ = ‖Du‖p for all u ∈ W 1,p
0 (�).

The Banach space C1
0(�) is an ordered Banach space with positive (order) cone C+ =

{u ∈ C1
0(�) : u(z) ≥ 0 for all z ∈ �}. This cone has a nonempty interior given by

int C+ =
{

u ∈ C+ : u(z) > 0 for all z ∈ �,
∂u
∂n

∣∣∣∣
∂�

< 0
}

,

with n(·) being the outward unit normal on ∂�.
Let X be a Banach space and ξ : X �→ X. We say that ξ (·) is “compact” if it is contin-

uous and for every B ⊆ X bounded, the set ξ (B) ⊆ X is compact. The “Leray–Schauder
alternative principle” asserts the following.

Theorem 1 If X is a Banach space, ξ : X �→ X is compact and

D(ξ ) =
{

u ∈ X : u = tξ (u) for some 0 < t < 1
}

,
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then the following alternative holds:
(a) D(ξ ) is unbounded; or
(b) ξ (·) has a fixed point.

Let β ∈ C1(0,∞) with β(t) > 0 for all t > 0 and assume that

0 < ĉ ≤ β ′(t)t
β(t)

≤ c0,

c1tp–1 ≤ β(t) ≤ c2
(
ts–1 + tp–1),

for all t > 0, some 1 ≤ s < p < N , 0 < c1 < c2.
Then our hypotheses on the map a(·) are the following.
H0: a(y) = a0(|y|)y for all y ∈R

N , with a0(t) > 0 for all t > 0 and
(i) a0 ∈ C1(0,∞), t �→ a0(t)t is strictly increasing on (0,∞), a0(t)t → 0+ as

t → 0+ and limt→0+
a′

0(t)t
a0(t) > –1;

(ii) there exists c3 > 0 such that

∣∣∇a(y)
∣∣ ≤ c3

β(|y|)
|y| for all y ∈ R

N \ {0};

(iii) β(|y|)
|y| |ξ |2 ≤ (∇a(y)ξ , ξ )RN for all y ∈ R

N \ {0}, all ξ ∈R
N ;

(iv) if G0(t) =
∫ t

0 a0(s)s ds, t ≥ 0, then there exist q ∈ (1, p) and c∗ > 0 such that

lim sup
t→0+

qG0(t)
tq ≤ c∗.

Remark 1 Such conditions on the differential operator were used in the context of singu-
lar or convection problems, also by Papageorgiou–Rădulescu–Repovš [23] and Candito–
Gasinski–Papageorgiou [4]. Hypotheses H0(i), (ii), (iii) are motivated by the nonlinear reg-
ularity theory of Lieberman [17] and the nonlinear maximum principle of Pucci–Serrin
[28] (p. 111). Hypothesis H0(iv) serves the needs of our problem and it is mild. As we will
see in the examples listed below, it is satisfied in all cases of interest.

Clearly the above hypotheses imply that the primitive G0(·) is strictly convex and strictly
increasing. Let G(y) = G0(|y|) for all y ∈ R

N . Evidently G ∈ C1(RN ,R), it is convex and we
have

∇G(y) = G′
0
(|y|) y

|y| = a0
(|y|)y = a(y) for all y ∈R

N \ {0},

∇G(0) = 0.

So, G(·) is the primitive of a(·) and on account of the convexity of G(·), we have

G(y) ≤ (
a(y), y

)
RN for all y ∈R

N . (1)

Hypotheses H0 lead easily to the following properties of the map a(·).
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Lemma 2 The mapping a(·) is continuous, strictly monotone (hence maximal monotone
too) and

(a) |a(y)| ≤ c4(|y|s–1 + |y|p–1) for some c4 > 0, all y ∈R
N ;

(b) c1
p–1 |y|p ≤ (a(y), y)RN for all y ∈R

N .

Using this lemma and (1) we are led to the following growth restrictions on G(·).

Corollary 3 We have c1
p–1 |y|p ≤ G(y) ≤ c5(1 + |y|p) for some c5 > 0, all y ∈ R

N .

Examples The following maps a(·) satisfy hypotheses H0 (see Papageorgiou–Rădulescu
[19]):

(i) a(y) = |y|p–2y with 1 < p < ∞.
This map corresponds to the p-Laplace differential operator defined by

�pu = div
(|Du|p–2Du

)
for all u ∈ W 1,p

0 (�).

(ii) a(y) = |y|p–2y + |y|q–2y with 1 < q < p.
This map corresponds to the (p, q)-Laplace differential operator defined by

�pu + �qu for all u ∈ W 1,p
0 (�).

Such operators arise often in the mathematical models of physical processes and recently
there have been published several works dealing with equations driven by such operators.
We mention the works of Bobkov–Tanaka [3], Papageorgiou–Zhang [26, 27], Rădulescu
[29], Ragusa–Tachikawa [30].

(iii) a(y) = (1 + |y|2)
p–2

2 y with 1 < p < ∞.
This map corresponds to the extended capillary differential operator defined by

div
((

1 + |Du|2) p–2
2 Du

)
for all u ∈ W 1,p

0 (�).

Let A : W 1,p
0 (�) �→ W –1,p′ (�) = W 1,p

0 (�)
∗

( 1
p + 1

p′ = 1) be the nonlinear operator defined
by

〈
A(u), h

〉
=

∫
�

(
a(Du), Dh

)
RN dz for all u, h ∈ W 1,p

0 (�).

From Gasinski–Papageorgiou [9] (Problem 2.192, p. 279), we have the following prop-
erties for this operator.

Proposition 4 The operator A(·) is bounded (that is, maps bounded sets to bounded sets),
continuous, strictly monotone (hence maximal monotone too) and of type (S)+, that is,

“un
w−→ u in W 1,p

0 (�) and lim sup
n→∞

〈
A(un), un – u

〉 ≤ 0

⇒ un → u in W 1,p
0 (�).”
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In the sequel by λ̂1(r) we denote the first (principal) eigenvalue of (–�r , W 1,r
0 (�)) (1 <

r < ∞). We know that

• λ̂1(r) > 0, it is simple and isolated.

• λ̂1(r) = inf

{‖Du‖r
r

‖u‖r
r

: u ∈ W 1,r
0 (�), u �= 0

}
. (2)

In (2) the infimum is realized on the corresponding one-dimensional eigenspace the
elements of which do not change sign. By û1(r) we denote the Lr-normalized (that is,
‖û1(r)‖r = 1), positive eigenfunction corresponding to λ̂1(r). The nonlinear regularity the-
ory and the nonlinear maximum principle (see Gasinski–Papageorgiou [8], pp. 738–739),
imply û1(r) ∈ int C+. So, we have ‖Dû1(r)‖r

r = λ̂1(r). We mention that every eigenvalue λ̂ of
(–�r , W 1,r

0 (�)) distinct from λ̂1(r) has eigenfunctions which are nodal (sign-changing).
Given x ∈ R, we set x± = max{±x, 0}. Then for u ∈ W 1,p

0 (�) we define u±(z) = u(z)± for
all z ∈ �. We know that

u± ∈ W 1,p
0 (�), u = u+ – u–, |u| = u+ + u–.

If u, v : � �→R are measurable functions and u ≤ v, then we define

[u, v] =
{

h ∈ W 1,p
0 (�) : u(z) ≤ h(z) ≤ v(z) for a.a. z ∈ �

}
.

A set S ⊆ W 1,p
0 (�) is said to be the downward directed, if for every u, v ∈ S, we can find

y ∈ S such that y ≤ u and y ≤ v.
Now we introduce the hypotheses on perturbation f (z, x, y).
H1: f : �×R×R

N �→R is a Carathéodory function, f (z, 0, y) = 0 for a.a. z ∈ �, all y ∈ R
N

and
(i) there exist 0 < δ0 < θ and c6 > 0 such that

∣∣f (z, x, y)
∣∣ ≤ c6

(
1 + |y|p–1) for a.a. z ∈ �, all 0 ≤ x ≤ θ , all y ∈R

N ,

θ–η + f (z, θ , y) ≤ 0, for a.a. z ∈ �, all y ∈R
N ,

f (z, x, y) ≥ 0 for a.a. z ∈ �, all 0 ≤ x ≤ δ0, all y ∈R
N ;

(ii) for every M > 0, there exists ηM ∈ L∞(�) such that

ηM(z) ≥ c∗
q

λ̂1(q) for a.a. z ∈ �, ηM �≡ c∗
q

λ̂1(q),

lim inf
x→0+

f (z, x, y)
xq–1 ≥ ηM(z) uniformly for a.a. z ∈ �, all |y| ≤ M;

(iii) for a.a. z ∈ �, all 0 ≤ x ≤ θ , all y ∈R
N and all 0 < t < 1, we have

f
(

z,
1
t

x, y
)

≤ 1
tp–1 f (z, x, y).

Remark 2 The above hypotheses concern only the behavior of f (z, ·, y) near zero. No global
growth condition is imposed on f (z, ·, y). Hypothesis H1(i) dictates an oscillatory behav-
ior for f (z, ·, y). It starts positive and by the time we have reached x = θ , the perturbation
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f (z, ·, y) has become negative. In the case of the equation driven by the q-Laplacian, hy-
pothesis H1(ii) is a nonuniform nonresonance condition at zero. Hypothesis H1(iii) is sat-
isfied if for a.a. z ∈ � and all y ∈ R

N the quotient function x �→ f (z,x,y)
xp–1 is nonincreasing on

(0, θ ].

Example The following function satisfies hypotheses H1 above. For the sake of simplicity,
we drop the z-dependence. We have

f (x, y) = η
(
xp–1 – 2xr–1)(1 + |y|p–1) for all x ≥ 0, all y ∈R

N ,

with η > max{ c∗
q λ̂1(q), 1}, 1 < q < r. For θ = 1 hypothesis H1(i) is satisfied.

As we already mentioned in the Introduction, due to the presence of the singular term,
we have an energy functional which is not C1 and this prevents us from using the tools of
critical point theory. So, we need to find a way to bypass the singularity and deal with C1-
functionals. For this reason in the next section we deal with the purely singular problem
(f ≡ 0). A solution of this problem will help us isolate the singularity.

3 Purely singular problem
In this section we examine the following purely singular problem:

– div a
(
Du(z)

)
= λu(z)–η in �, u|∂� = 0, u > 0. (Qλ)

Proposition 5 If hypotheses H0 hold, then for every λ > 0 problem (Qλ) admits a unique
solution u ∈ int C+ and uλ → 0 in C1

0(�) as λ → 0+.

Proof Let g ∈ Lp(�) and ε > 0. We consider the following auxiliary Dirichlet problem:

– div a
(
Du(z)

)
=

λ

(|g(z)| + ε)η
in �, u|∂� = 0, u ≥ 0. (Auλ)

Recall that A : W 1,p
0 (�) �→ W –1,p′ (�) is the operator defined by

〈
A(u), h

〉
=

∫
�

(
a(Du)

)
, Dh)RN dz for all u, h ∈ W 1,p

0 (�).

On account of Proposition 4, the operator A(·) is continuous and maximal monotone.
In addition, from Lemma 2(b) we see that A(·) is coercive. Therefore A(·) is surjective
(see Papageorgiou–Rădulescu–Repovš [21], Corollary 2.8.7, p. 135). So, we can find ûε ∈
W 1,p

0 (�) such that

A(ûε) =
λ

(|g(z)| + ε)η
.

Moreover, the strict monotonicity of A(·) implies that this solution is unique. Note that
λ

(|g(·)|+ε)η ∈ L∞(�)+. So, the nonlinear regularity theory of Lieberman [17] and the nonlinear
maximum principle of Pucci–Serrin [28] (p. 111, 120) imply that ûε ∈ int C+.
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We consider the solution map γε : Lp(�) �→ Lp(�) defined by

γε(g) = ûε .

Consider the following perturbation of problem (Qλ):

– div a
(
Du(z)

)
=

λ

(u(z) + ε)η
in �, u|∂� = 0, u ≥ 0. (Qε

λ)

Evidently a fixed point of γε(·) is a solution of (Qε
λ). Clearly γε(·) is continuous. Moreover,

using Lemma 2(b) we have

c1

p – 1
‖Dûε‖p

p ≤
∫

�

λ

(|g(z)| + ε)η
ûε dz ≤ λ

εη
c7‖ûε‖ for some c7 > 0

⇒ γε

(
Lp(�)

) ⊆ W 1,p
0 (�) is bounded.

The fact that W 1,p
0 (�) ↪→ Lp(�) compactly implies that

γε

(
Lp(�)

) ⊆ Lp(�) is relatively compact.

Then, by the Schauder–Tychonov fixed point theorem (see Papageorgiou–Rădulescu–
Repovš [21], Theorem 4.3.21, p. 298), we can find ũε ∈ W 1,p

0 (�) such that

γε (̃uε) = ũε .

This is the unique positive solution of (Qε
λ) and since γε(·) has values in int C+, we infer

that ũε ∈ int C+.
Claim: {̃uε}ε∈(0,1] ⊆ int C+ is nonincreasing.
Let 0 < ε′ < ε. We have

– div a(Dũε′ ) =
λ

(̃uε′ + ε′)η
≥ λ

(̃uε′ + ε)η
in �. (3)

We introduce the Carathéodory function kε : � ×R �→ R defined by

kε(z, x) =

⎧⎨
⎩

λ
(x++ε)η if x ≤ ũε′ (z),

λ
(̃uε′ (z)+ε)η if ũε′ (z) < x.

(4)

We set Kε(z, x) =
∫ x

0 kε(z, s) ds and consider the C1-functional ψε : W 1,p
0 (�) �→R defined

by

ψε(u) =
∫

�

G(Du) dz –
∫

�

Kε(z, u) dz for all u ∈ W 1,p
0 (�).

From Corollary 3 and (4), we see that the functional ψε(·) is coercive. Also, using the
Sobolev embedding theorem, we see that ψε(·) is sequentially weakly lower semicontinu-
ous. So, by the Weierstrass–Tonelli theorem, we can find ũ∗

ε ∈ W 1,p
0 (�) such that

ψε

(̃
u∗

ε

)
= min

{
ψε(u) : u ∈ W 1,p

0 (�)
}

. (5)
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From hypothesis H0(iv) and Corollary 3, we have

G(y) ≤ c8
(|y|q + |y|p) for some c8 > 0, all y ∈R

N . (6)

For t ∈ (0, 1) we have

ψε(t̃uε′ ) ≤ tp

p
‖Dũε′ ‖p

p +
tq

q
‖Dũε′ ‖q

q –
t1–η

1 – η

∫
�

ũ1–η

ε′ dz (see (6)).

Since 0 < η < 1 < q < p, for t ∈ (0, 1) small, we see that

ψε(t̃uε′ ) < 0

⇒ ψε

(̃
u∗

ε

)
< 0 = ψε(0) (see (5))

⇒ ũ∗
ε �= 0.

From (5) we have

ψε

(̃
u∗

ε

)
= 0

⇒ 〈
A

(̃
u∗

ε

)
, h

〉
=

∫
�

kε

(
z, ũ∗

ε

)
h dz for all h ∈ W 1,p

0 (�). (7)

In (7) first we choose h = –(̃u∗
ε )– ∈ W 1,p

0 (�). We have

c1

p – 1
∥∥D

(̃
u∗

ε

)–∥∥p
p ≤ 0

(
see Lemma 2(b) and (4)

)
⇒ ũ∗

ε ≥ 0, ũ∗
ε �= 0.

Next we test (7) with h = (̃u∗
ε – ũε′ )+ ∈ W 1,p

0 (�). We have

〈
A

(̃
u∗

ε

)
,
(̃
u∗

ε – ũε′
)+〉

=
∫

�

λ

(̃uε′ + ε)η
(̃
u∗

ε – ũε′
)+ dz (see (4))

≤ 〈
A(̃uε′ ),

(̃
u∗

ε – ũε′
)+〉

(see (3))

⇒ ũ∗
ε ≤ ũε′ .

So, we have proved that

ũ∗
ε ∈ [0, ũε′ ], ũ∗

ε �= 0. (8)

From (8), (4) and (7) it follows that

ũ∗
ε = ũε

⇒ ũε ≤ ũε′ .

This proves the claim.
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Next, let εn = 1
n and ũn = ũεn ∈ int C+ for all n ∈N. We have

〈
A(̃un), h

〉
=

∫
�

λ

(̃un + 1
n )η

h dz for all h ∈ W 1,p
0 (�), all n ∈N, (9)

ũ1 ≤ ũn for all n ∈N (by the claim). (10)

Consider the Banach space C0(�) = {u ∈ C(�) : u|∂� = 0} (with the supremum norm).
This is an ordered Banach space with positive cone

K+ =
{

u ∈ C0(�) : u(z) ≥ 0 for all z ∈ �
}

.

This cone has a nonempty interior given by

int K+ = {u ∈ C+ : cud̂ ≤ u for some cu > 0},

with d̂(z) = d(z, ∂�) for all z ∈ �. Since ũ1 ∈ int C+, we can find 0 < c9 < c10 such that

c9d̂ ≤ ũ1 ≤ c10d̂ (see Guo–Webb [13], Lemma 2.3). (11)

Let s > N and note that û1(p)1/s ∈ K+. Using Proposition 4.1.22, p. 274, of Papageorgiou–
Rădulescu–Repovš [21], we can find c11 > 0 such that

û1(p)1/s ≤ c11d̂

⇒ d̂–η ≤ c12û1(p)–η/s for some c12 > 0. (12)

Since 0 < η < 1, the Lemma in Lazer–McKenna [16] implies that û1(p)–η/s ∈ Ls(�).
Therefore

d̂–η ∈ Ls(�) (see (12)). (13)

From (11) we have

ũ–η
1 ≤ c13d̂–η for some c13 > 0

⇒ ũ–η
1 ∈ Ls(�) (see (13)). (14)

We return to (9) and use h = ũn ∈ W 1,p
0 (�). Then from Lemma 2(b) we have

c1

p – 1
‖Dũn‖p

p ≤
∫

�

λ

(̃un + 1
n )η

ũn dz ≤ λc14‖̃un‖1–η for some c14 > 0, all n ∈N

⇒ {̃un}n∈N ⊆ W 1,p
0 (�) is bounded.

So, we may assume that

ũn
w−→ uλ in W 1,p

0 (�) and ũn → uλ in Lp(�). (15)
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Note that

0 ≤ λ

(̃un + 1
n )η

≤ λ

ũη
1

∈ Ls(�) (see (14)). (16)

On account of (15), we can also say (at least for a subsequence) that

λ

(̃un(z) + 1
n )η

→ λ

uλ(z)η
for a.a. z ∈ �. (17)

From (16) and (17) it follows that

λ

(̃un + 1
n )η

w−→ λ

uλ
η in Ls(�) (18)

(see Gasinski–Papageorgiou [9], Problem 1.19, p. 38).
Again we return to (9) and choose h = ũn – uλ ∈ W 1,p

0 (�), pass to the limit as n → ∞
and use (15) and (18). We obtain

lim
n→∞

〈
A(̃un), ũn – uλ

〉
= 0

⇒ ũn → uλ in W 1,p
0 (�) (see Proposition 4). (19)

Therefore if in (9) we pass to the limit as n → ∞ and use (19), then

{
〈A(uλ), h〉 =

∫
�

λ
uλ

η h dz for all h ∈ W 1,p
0 (�),

ũ1 ≤ uλ (see (10)).

}
(20)

From (20) we infer that

uλ is a positive solution of (Qλ).

Let θ = λ
uλ

η ∈ Ls(�) and consider the linear Dirichlet problem

–�y(z) = θ (z) in �, y|∂� = 0.

From Theorem 9.15, p. 241, of Gilbarg–Trudinger [12], we know that this problem
has a unique solution y ∈ W 2,s(�), y ≥ 0, y �= 0. Since s > N , by the Sobolev embed-
ding theorem, we have W 2,s(�) ↪→ C1,α(�) continuously with α = 1 – N

s ∈ (0, 1). Let
w = Dy ∈ C0,α(�,RN ). We have

– div
(
a
(
Duλ(z)

)
– w(z)

)
= 0, in �, uλ|∂� = 0.

Then the nonlinear regularity theory of Lieberman [17] implies that uλ ∈ C+ \ {0}. Using
the nonlinear maximum principle of Pucci–Serrin [28] (pp. 111, 120), we infer that uλ ∈
int C+.

From (20) and (14) and Theorem 7.1, p. 286, of Ladyzhenskaya–Uraltseva [15] (see also
Gasinski–Papageorgiou [8], p. 737), we know that there exists c15 > 0 such that

‖uλ‖∞ ≤ c15 for all 0 < λ ≤ 1.
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Then the nonlinear regularity theory of Lieberman [17], says that we can find α ∈ (0, 1)
and c16 > 0 such that

uλ ∈ C1,α
0 (�) = C1,α(�) ∩ C1

0(�), ‖uλ‖C1,α
0 (�) ≤ c16 for all λ ∈ (0, 1]. (21)

Since C1,α
0 (�) ↪→ C1

0(�) compactly, from (14), (20) and (21), we conclude that

uλ → 0 in C1
0(�) as λ → 0+.

This proof is now complete. �

4 The frozen variable method
In this section we develop the method described in the Introduction (the frozen variable
method).

So, fix v ∈ C1
0(�) and consider the following Dirichlet problem (the “frozen problem”):

{
– div a(Du(z)) = λu(z)–η + f (z, u(z), Dv(z)) in �,
u|∂� = 0, u ≥ 0, λ > 0, 0 < η < 1.

}
(Pv

λ)

Since we have fixed the gradient variable in f , the resulting problem (Pv
λ) has a varia-

tional structure. However, as we already mentioned in the Introduction, the presence of
the singular term u �→ λu–η leads to an energy functional which is not C1 and so we can-
not use the minimax theorems of the critical point theory. To remedy this situation, we
use the solution uλ of (Qλ) to bypass the singularity and deal with a C1-functional.

Let M ≥ ‖Dv‖∞. On account of hypotheses H1(ii), given ε > 0 small, we can find δ ∈
(0, δ0] such that

f (z, x, y) ≥ (
ηM(z) – ε

)
xq–1 for a.a z ∈ �, all 0 ≤ x ≤ δ, all |y| ≤ M. (22)

Proposition 6 If hypotheses H0, H1 hold, then we can find λ̂∗ > 0 such that for all λ ∈ (0, λ̂∗]
problem (Pv

λ) admits a positive solution ûv ∈ int C+.

Proof Proposition 5 implies that we can find λ̂∗ ∈ (0, 1] such that

0 ≤ uλ(z) ≤ δ for all z ∈ �, all 0 < λ ≤ λ̂∗. (23)

We introduce the Carathéodory function τλ
v : � ×R �→R defined by

τλ
v (z, x) =

⎧⎪⎪⎨
⎪⎪⎩

λuλ(z)–η + f (z, uλ(z), Dv(z)) if x < uλ(z),

λx–η + f (z, x, Dv(z)) if uλ(z) ≤ x ≤ θ ,

λθ–η + f (z, θ , Dv(z)) if θ ≤ x;

(24)

recall that δ0 < θ , see hypothesis H1(i). We set Tλ
v (z, x) =

∫ x
0 τλ

v (z, s) ds and consider the
C1-functional ϕλ

v : W 1,p
0 (�) �→R defined by

ϕλ
v (u) =

∫
�

G(Du) dz –
∫

�

Tλ
v (z, u) dz for all u ∈ W 1,p

0 (�).
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Corollary 3 and (24) imply that ϕλ
v (·) is coercive. Also, it is sequentially weakly lower

semicontinuous. So, we can find ûv ∈ W 1,p
0 (�) such that

ϕλ
v (ûv) = min

{
ϕλ

v (u) : u ∈ W 1,p
0 (�)

}
. (25)

Hypothesis H0(iv) implies that, given ε′ ∈ (0, ε], we can find δ′ ∈ (0, δ] such that

G(y) ≤ c∗ + ε′

q
|y|q for all |y| ≤ δ′. (26)

Let t ∈ (0, 1) be small such that

0 ≤ tû1(q)(z) ≤ min
{

uλ(z), δ0
}

for all z ∈ �

(recall that uλ ∈ int C+ and use Proposition 4.1.22, p. 274, of Papageorgiou–Rădulescu–
Repovš [21]). We have

ϕλ
v
(
tû1(q)

) ≤ tp

p
∥∥Dû1(q)

∥∥p
p +

tq

q
(
c∗ + ε′)λ̂1(q) –

tq

q

∫
�

(
ηM(z) – ε

)
û1(q)q dz

(see (26), (22), (23), (24))

≤ tp

p
∥∥Dû1(q)

∥∥p
p +

tq

q

(∫
�

(
c∗λ̂1(q) – ηM(z)

)
û1(q)q dz + 2ε

)
(
recall

∥∥û1(q)
∥∥

q = 1
)
.

Note that

μ =
∫

�

(
ηM(z) – c∗λ̂1(q)

)
ûq

1 dz > 0

(see hypothesis H1(ii) and recall û1(q) ∈ int C+).
We have

ϕλ
v
(
tû1(q)

) ≤ c17tp – c18tq for some c17, c18 > 0 (with ε > 0 small).

Since q < p, choosing t ∈ (0, 1) even smaller, we have

ϕλ
v
(
tû1(q)

)
< 0

⇒ ϕλ
v (ûv) < 0 = ϕλ

v (0) (see (25))

⇒ ûv �= 0.

From (25) we have

(
ϕλ

v
)′(ûv) = 0

⇒ 〈
A(ûv), h

〉
=

∫
�

τλ
v (z, ûv)h dz for all h ∈ W 1,p

0 (�). (27)
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In (27) first we choose h = (uλ – ûv)+ ∈ W 1,p
0 (�). Then

〈
A(ûv), (uλ – ûv)+〉

=
∫

�

(
λuλ

–η + f (z, uλ, Dv)
)
(uλ – ûv)+ dz (see (24))

≥
∫

�

λuλ
–η(uλ – ûv)+ dz

(
since f (z, uλ, Dv) ≥ 0 (see (23)) and hypothesis H1(ii)

)
=

〈
A(uλ), (uλ – ûv)+〉

(see Proposition 5)

⇒ uλ ≤ ûv.

Next, in (27) we choose h = (ûv – θ )+ ∈ W 1,p
0 (�). Then

〈
A(ûv), (ûv – θ )+〉

=
∫

�

(
λθ–η + f (z, θ , Dv)

)
(ûv – θ )+ dz (see (24))

≤
∫

�

(
θ–η + f (z, θ , Dv)

)
(ûv – θ )+ dz (recall 0 < λ ≤ λ̂∗ ≤ 1)

≤ 0
(
see hypothesis H1(i)

)
⇒ ûv ≤ θ

(by the weak comparison principle; see Pucci–Serrin [28], Theorem 3.4.1, p. 61).
So, we have proved that

ûv ∈ [uλ, θ ]. (28)

From (28), (24) and (27), we infer that ûv is a positive solution of (Pv
λ). Since uλ

–η ∈ Ls(�)
(s > N ) (see (20) and (14)), reasoning as in the proof of Proposition 5 (see the part of the
proof after (20)), we infer that ûv ∈ int C+.

This proof is now complete. �

Let Sλ
v be the set of positive solutions of the “frozen problem” (Pv

λ). We have just proved
that for v ∈ C1

0(�) and 0 < λ ≤ λ̂∗ we have

∅ �= Sλ
v ⊆ int C+.

We will show that each of these solution sets has a smallest element. In this way we have
a canonical procedure to choose an element from Sλ

v as v ∈ C1
0(�) varies. So, we define the

minimal solution map on which we will use Theorem 1 (the Leray–Schauder alternative
principle).

To produce a minimal element for the solution set Sλ
v , we need the following result pro-

viding a lower bound for the set Sλ
v .

Proposition 7 If hypotheses H0, H1 hold and 0 < λ ≤ λ̂∗, then uλ ≤ u for all u ∈ Sλ
v .
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Proof Let u ∈ Sλ
v and consider the Carathéodory function μ̂λ(z, x) defined on � × R̊+ =

� × (0,∞) by

μ̂λ(z, x) =

⎧⎨
⎩λx–η if 0 < x ≤ u(z),

λu(z)–η if u(z) < x.
(29)

We consider the following singular Dirichlet problem

– div a(Du) = μ̂λ(z, u) in �, u|∂� = 0, u ≥ 0. (30)

Reasoning as in the proof of Proposition 5, we show that problem (30) has a solution
ũλ ∈ int C+ and using (29), we show that

ũλ ∈ [0, u].

But then (29) and Proposition 5 imply that

ũλ = uλ

⇒ uλ ≤ u for all u ∈ Sλ
v .

This proof is now complete. �

Using this lower bound, we show the existence of a minimal element for the set Sλ
v .

Proposition 8 If hypotheses H0, H1 hold and 0 < λ ≤ λ̂∗, then problem (Pv
λ) has a smallest

positive solution u∗
v ∈ int C+ such that

0 ≤ u∗
v (z) ≤ θ for all z ∈ �.

Proof From Proposition 18 of Papageorgiou–Rădulescu–Repovš [23], we know that Sλ
v is

downward directed. Then using Lemma 3.10, p. 178, of Hu–Papageorgiou [14], we can
find {un}n∈N ⊆ Sλ

v decreasing such that

inf
n∈N

un = inf Sλ
v .

From the proof of Proposition 6 we know that Sλ
v ∩ [0, θ ] �= ∅. So, without any loss of

generality, we may assume that {un}n∈N ⊆ [0, θ ]. We have

〈
A(un), h

〉
=

∫
�

(
λun

–η + f (z, un, Dv)
)
h dz for all h ∈ W 1,p

0 (�), all n ∈N, (31)

uλ ≤ un ≤ u1 for all n ∈N (see Proposition 7). (32)

In (31) we choose h = un ∈ W 1,p
0 (�). Using Lemma 2(b), (32) and hypothesis H1(i), we

infer that

{un}n∈N ⊆ W 1,p
0 (�) is bounded.
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So, we may assume that

un
w−→ u∗

v in W 1,p
0 (�) and un → u∗

v in Lp(�). (33)

In (31) we choose h = un – u∗
v ∈ W 1,p

0 (�), pass to limit as n → ∞ and use (33). We obtain

lim
n→∞

〈
A(un), un – u∗

v
〉

= 0 (see the proof Proposition 5)

⇒ un → u∗
v in W 1,p

0 (�) (see Proposition 4). (34)

Then, if in (31) we pass to the limit as n → ∞ and use (34), we obtain

〈
A

(
u∗

v
)
, h

〉
=

∫
�

(
λ
(
u∗

v
)–η + f

(
z, u∗

v , Dv
))

h dz for all h ∈ W 1,p
0 (�) and uλ ≤ u∗

v .

It follows that

u∗
v ∈ Sλ

v , u∗
v = inf Sλ

v , 0 ≤ u∗
v (z) ≤ θ for all z ∈ �.

This proof is now complete. �

Using Proposition 8, we define the minimal solution map

ξλ : C1
0(�) �→ C1

0(�), λ ∈ (0, λ̂∗],

by setting

ξλ(v) = u∗
v for all v ∈ C1

0(�).

Evidently a fixed point of ξλ(·) is a solution of problem (Pλ). To produce a fixed point
of (Pλ), we will use Theorem 1 (the Leray–Schauder alternative principle). This is done in
the next section.

5 Positive solution
To apply Theorem 1, we need to know that ξλ(·) is compact. The next proposition will be
helpful in this respect.

Proposition 9 If hypotheses H0, H1 hold, vn → v in C1
0(�), u ∈ Sλ

v ∩ [0, θ ] with λ ∈ (0, λ̂∗],
then we can find un ∈ Sλ

vn , n ∈N such that

un → u in C1
0(�).

Proof Choosing M ≥ supn∈N ‖Dvn‖∞, we see that all the previous results are valid. We
consider the following Dirichlet problem:

– div a
(
Dy(z)

)
= τλ

vn

(
z, u(z)

)
in �, y|∂� = 0 (see (24)). (35)
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This problem has a unique solution yn ∈ W 1,p
0 (�). We know that uλ

–η ∈ Ls(�), s > N
(see (20) and (14)). Therefore {τλ

vn (·, u(·))}n∈N ⊆ Ls(�) is bounded (see (24)). Consider the
linear Dirichlet problem

–�e(z) = τλ
vn

(
z, u(z)

)
in �, e|∂� = 0.

For each n ∈N, this problem has a unique solution en ∈ W 2,s(�) (see Gilbarg–Trudinger
[12], Theorem 9.15, p. 241) and in addition we have

‖en‖W 2,s(�) ≤ c19 for some c19 > 0, all n ∈ N (36)

(see Gilbarg–Trudinger [12], Lemma 9.17, p. 242). From the Sobolev embedding theorem
we know that, for α = 1 – N

s ∈ (0, 1), we have

W 2,s(�) ↪→ C1,α(�) compactly.

Hence from (36) it follows that

{γ̂n = Den}n∈N ⊆ C0,α(�) is bounded.

We rewrite (35) as

– div
(
a(Dy) – γ̂n

)
= 0 on ∂�, y|∂� = 0.

Then the nonlinear regularity theory of Lieberman [17] implies that we can find μ ∈
(0, 1) and c20 > 0 such that

yn ∈ C1,μ
0 (�) and ‖yn‖C1,μ

0 (�) ≤ c20 for all n ∈N. (37)

From (37) and the compact embedding of C1,μ
0 (�) into C1

0(�), it follows that

{yn}n∈N ⊆ C1
0(�) is relatively compact.

Note that τλ
vn (·, u(·)) �→ τλ

v (·, u(·)) in Ls(�). So, for the whole sequence, we have

yn → u in C1
0(�) as n → ∞.

We set yn = y0
n and consider the following Dirichlet problem:

– div a
(
Dy(z)

)
= τλ

vn

(
z, y0

n(z)
)

in �, y|∂� = 0.

As above this problem has a unique solution y1
n ∈ C1

0(�) and we have

y1
n → u in C1

0(�) as n → ∞.
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We continue this way and generate a sequence {yk
n}k,n∈N ⊆ C1

0(�) such that

– div a
(
Dyk

n(z)
)

= τλ
vn

(
z, yk–1

n (z)
)

in �, yk
n|∂� = 0, (38)

yk
n → u in C1

0(�) as n → ∞ for all k ∈N. (39)

We will show that for every n ∈ N

{
yk

n
}

k∈N ⊆ W 1,p
0 (�) is bounded. (40)

Arguing by contradiction, suppose that (40) is not true. By passing to a subsequence if
necessary, we may assume that

∥∥yk
n
∥∥ → ∞ as k → ∞. (41)

We set wk = yk
n

‖yk
n‖ , k ∈N. Then ‖wk‖ = 1 for all k ∈N and so we may assume that

wk
w−→ w in W 1,p

0 (�) and wk → w in Lp(�) as k → ∞. (42)

From (38) we have

∫
�

(
a(Dyk

n)
‖yk

n‖p–1 , Dwk

)
RN

dz =
∫

�

τλ
vn (z, yk–1

n )
‖yk

n‖p–1 wk dz

⇒ c1

p – 1
‖Dwk‖p

p ≤
∫

�

τλ
vn (z, yk–1

n )
‖yk

n‖p–1 wk dz
(
see Lemma 2(b)

)
. (43)

On account of (24), (41) and (42), we have

∫
�

τλ
vn (z, yk–1

n )
‖yk

n‖p–1 wk dz → 0 as k → ∞

⇒ wk → 0 in W 1,p
0 (�) as k → ∞ (see (43)),

which contradicts the fact that ‖wk‖ = 1 for all k ∈ N.
Therefore (40) is true.
Then on account of (40) and the nonlinear regularity theory (see [17] and [21]), we infer

that {yk
n}k∈N ⊆ C1

0(�) is relatively compact. Hence we may assume that

yk
n → un in C1

0(�) as k → ∞. (44)

From (38) and hypothesis H1(i), we have

– div a(Dun) = τλ
vn (z, un) in �, un|∂� = 0, (45)

uλ ≤ un ≤ θ for all n ∈N (see (24)) (46)

⇒ un ∈ Sλ
vn for all n ∈N.
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From (45), (46) and the nonlinear regularity theory of Lieberman [17], it follows that
{un}n∈N ⊆ C1

0(�) is relatively compact. Then (39), (44) and the double limit lemma (see
Gasinski–Papageorgiou [7], Problem 1.175, p. 61) imply that

un → u in C1
0(�) with un ∈ Sλ

vn for all n ∈N.

This proof is now complete. �

Using this proposition, we can establish the compactness of the minimal solution map
ξλ(·).

Proposition 10 If hypotheses H0, H1 hold and λ ∈ (0, λ̂∗], then the minimal solution map
ξλ : C1

0(�) �→ C1
0(�) is compact.

Proof Let B ⊆ C1
0(�) be bounded. Let v ∈ B and u = ξλ(v). We have

– div a(Du) = λu–η + f (z, u, Dv) in �, u|∂� = 0, uλ ≤ u ≤ θ

⇒ c1

p – 1
‖Du‖p

p ≤ c21 for some c21 > 0

⇒ ξλ(B) ⊆ W 1,p
0 (�) is bounded.

From this as before using the nonlinear regularity theory of Lieberman [17], we infer
that

ξλ(B) ⊆ C1
0(�) is relatively compact. (47)

Next, we show that ξλ(·) is continuous. So, let vn → v in C1
0(�) and let un = ξλ(vn), n ∈N

and u = ξλ(v). From (47) we see that {un}n∈N ⊆ C1
0(�) is relatively compact. Hence we may

assume that

un → ũ in C1
0(�) as n → ∞. (48)

Evidently ũ ∈ Sλ
v and so we have

u ≤ ũ. (49)

On the other hand, from Proposition 9, we know that we can find ũn ∈ Sλ
vn , n ∈ N such

that

ũn → u in C1
0(�) as n → ∞. (50)

We have un ≤ ũn for all n ∈ N and so from (48) and (50), we obtain

ũ ≤ u

⇒ u = ũ (see (49)).
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So, for the whole sequence we have

un → u in C1
0(�)

⇒ ξλ(·) is continuous

⇒ ξλ(·) is compact.

This proof is now complete. �

Let Dλ = {u ∈ C1
0(�) : u = tξλ(u), 0 < t < 1}.

Proposition 11 If hypotheses H0, H1 hold and λ ∈ (0, λ̂∗], then Dλ ⊆ C1
0(�) is bounded.

Proof Let u ∈Dλ. We have

1
t

u = ξλ(u) with 0 < t < 1.

It follows that〈
A

(
1
t

u
)

, h
〉

=
∫

�

(
λ

(
1
t

u
)–η

+ f
(

z,
1
t

u, Du
))

h dz (51)

for all h ∈ W 1,p
0 (�).

From Proposition 7, we know that

uλ ≤ 1
t

u

⇒ tuλ ≤ u ≤ θ
(
since t ∈ (0, 1)

)
. (52)

In (51) we choose h = u ∈ W 1,p
0 (�). Using Lemma 2(b), (52) (recall that uλ

–η ∈ Ls(�))
and hypothesis H1(i), we obtain

c1

p – 1
‖Du‖p

p ≤ c22

(
1 +

∫
�

∣∣f (z, u, Du)
∣∣dz

)
for some c22 > 0

≤ c23
(
1 + ‖Du‖p–1) for some c23 > 0

⇒ Dλ ⊆ W 1,p
0 (�) is bounded.

Then as before via the nonlinear regularity theory of Lieberman [17], we see that Dλ ⊆
C1

0(�) is bounded (in fact relatively compact).
This proof is now complete. �

So we can use Theorem 1 on the map ξλ(·) and produce a fixed point which is a positive
solution of problem (Pλ), for λ ∈ (0, λ̂∗]. Concluding we can state the following existence
theorem for problem (Pλ).

Theorem 12 If hypotheses H0, H1 hold, then there exists λ̂∗ > 0 such that for all λ ∈ (0, λ̂∗]
problem (Pλ) admits a positive solution

ûλ ∈ [uλ, θ ] ∩ int C+.
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21. Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.D.: Nonlinear Analysis-Theory and Methods. Springer, Cham (2019)
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