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Abstract
In this paper, we consider the existence of a least energy nodal solution and a ground
state solution, energy doubling property and asymptotic behavior of solutions of the
following critical problem:

{
–(a + b

∫
R3 |∇u|2 dx)�u + V(x)u + λφu = |u|4u + kf (u), x ∈R

3,

–�φ = u2, x ∈R
3.

By nodal Nehari manifold method, for each b > 0, we obtain a least energy nodal
solution ub and a ground-state solution vb to this problem when k � 1, where the
nonlinear function f ∈ C(R,R). We also give an analysis on the behavior of ub as the
parameter b → 0.

Keywords: Kirchhoff–Schrödinger–Poisson systems; Nodal solution; Ground state
solution; Nehari manifold

1 Introduction and main results
Our goal of this paper is to consider the existence of nodal solution and ground state
solution of the following Kirchhoff–Schrödinger–Poisson system:

⎧⎨
⎩–(a + b

∫
R3 |∇u|2 dx)�u + V (x)u + λφu = f (x, u), x ∈ R

3,

–�φ = u2, x ∈ R
3,

where V (x) is a smooth function and b > 0,λ > 0. When a = 1, b = 0, Kirchhoff–
Schrödinger–Poisson equation reduces to the undermentioned Schrödinger–Poisson sys-
tem

⎧⎨
⎩–�u + V (x)u + λφu = f (x, u), x ∈R

3,

–�φ = u2, x ∈R
3.

(1.1)
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System (1.1) is derived from the time-varying Schrödinger equation, which describes the
interaction of quantum (non-relativistic) particles with the electromagnetic field gener-
ated by motion. On the other hand, recently a great attention has been given to the so-
called Kirchhoff equations

–
(

a + b
∫

Ω

|∇u|2 dx
)

�u = f (x, u), (1.2)

where Ω ⊂ R
N is a bounded domain or Ω = R

N , a > 0, b > 0 and u satisfies some bound-
ary conditions. Problem (1.2) is related to the stationary analogue of the Kirchhoff–
Schrödinger type equation

utt –
(

a + b
∫

Ω

|∇u|2 dx
)

�u = f (x, u), (1.3)

which was introduced by Kirchhoff [6] as a generalization of the well-known D’Alembert
wave equation

ρ
∂2u
∂t2 –

(
p0

h
+

E
2L

∫ L

0

∣∣∣∣∂u
∂x

∣∣∣∣
2

dx
)

= f (x, u), (1.4)

for free vibration of elastic strings. The Kirchhoff’s model takes into account the length
variation of the string produced by the transverse vibration, so the nonlocal term ap-
pears. For more mathematical and physical background on Schrödinger–Poisson systems
or Kirchhoff-type problems, we refer the readers to [1, 2, 13] and the references therein.

The appearance of nonlocal term not only makes it playing an important role in many
physical applications, but also brings some difficulties and challenges in mathematical
analysis. This fact makes the study of Kirchhoff–Schrödinger–Poisson system or similar
problems particularly interesting. A lot of interesting results on the existence of nonlo-
cal problems were obtained recently in, for example, [4, 5, 7–9, 11, 13–17, 21, 25, 27–29]
and the cited references. We especially refer to the paper [10] for the existence of ground
state positive solutions of Kirchhoff–Schrödinger-type equations with singular exponen-
tial nonlinearities in R

N .
In the past few years, many researchers began to search for nodal solutions to Kirchhoff–

Schrödinger-type equations or similar problems and got some interesting results. Zhong
and Tang [28] considered the following subcritical Schrödinger–Poisson system:

⎧⎨
⎩–�u + V (x)u + kφu = |u|2u + λf (u), x ∈R

3,

–�φ = u2, x ∈R
3,

(1.5)

where the nonlinearity f (u) satisfies 3-linear growth condition at infinity and linear growth
at zero. With the help of the nodal Nehari manifold, they studied the existence and asymp-
totic behavior of least energy nodal solution to system (1.5).

Wang [18] studied the existence of a least energy sign-changing solution for the follow-
ing Kirchhoff-type equation:

⎧⎨
⎩–(a + b

∫
Ω

|∇u|2 dx)�u = |u|4u + λf (x, u), x ∈ Ω ,

u = 0, x ∈ ∂Ω ,
(1.6)
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where Ω ⊂R
3 is a bounded domain, λ, a, b > 0 are fixed parameters. f (x, ·) is continuously

differentiable for a.e. x ∈ Ω . By using the constraint variational method and the degree
theory, he got the existence of a least energy nodal solution to the Kirchhoff-type equation.

Wang, Zhang, and Guan [20] studied the following Schrödinger–Poisson system with
critical growth:

⎧⎨
⎩–�u + V (x)u + λφu = |u|4u + μf (u), x ∈R

3,

–�φ = u2, x ∈R
3,

where μ,λ > 0, f ∈ C1(R,R). They got the existence and asymptotic behavior of a least
energy sign-changing solution to the above system.

Motivated by the above references, in this paper, we study the existence of both ground
state and least energy nodal solution for the following critical Kirchhoff–Schrödinger–
Poisson system with asymptotically 3-linear growth nonlinearity:

⎧⎨
⎩–(a + b

∫
R3 |∇u|2 dx)�u + V (x)u + λφu = |u|4u + kf (u), x ∈R

3,

–�φ = u2, x ∈R
3,

(1.7)

where a, b, k, λ are positive real numbers. Similar to [22], we suppose that V ∈ C(R3,R+)
and satisfies that E ↪→↪→ Lp(R3) (compact embedding) for 2 < p < 6, and E ↪→ L6(R3) is
continuous, where E is a Hilbert space defined by

E =

⎧⎨
⎩H1

r (R3) = {u ∈ H1(R3) : u(x) = u(|x|)}, if V (x) is a constant,

{u ∈ D1,2(R3) :
∫
R3 V (x)u2 dx < ∞}, if V (x) is not a constant

with the inner product defined by

〈u, v〉 =
∫
R3

(
a∇u · ∇v + V (x)uv

)
dx, ∀u, v ∈ E

and the norm ‖ · ‖:

‖u‖2 =
∫
R3

(
a|∇u|2 + V (x)u2)dx.

As for the function f , we assume f ∈ C(R,R) and satisfies the following hypotheses:
(f1) f (t) · t > 0 for t �= 0;
(f2) limt→∞ f (t)

t3 = 1 and f (t)
t3 < 1 for all t ∈R \ {0};

(f3) f (t)
|t|3 is an increasing function in (–∞, 0) and (0, +∞).

Remark 1.1 We note that under conditions (f1)–(f3), it is easy to see

lim
t→0

f (t)
t

= 0. (1.8)

The function f (t) = t5

1+t2 is an example satisfying all conditions (f1)–(f3).
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It is well known that the equation –�φ = u2 can be solved as

φu(x) =
1

4π

∫
R3

u2(y)
|x – y| dy. (1.9)

So system (1.7) is merely a single equation on u:

–
(

a + b
∫
R3

|∇u|2 dx
)

�u + V (x)u + λφuu = |u|4u + kf (u), x ∈R
3. (1.10)

Based on the results above, the energy functional associated with system (1.7) and so with
(1.10) is defined by

Jb
k (u) =

1
2

∫
R3

(
a|∇u|2 + V (x)u2)dx +

b
4

(∫
R3

|∇u|2 dx
)2

+
λ

4

∫
R3

φuu2 dx – k
∫
R3

F(u) dx –
1
6

∫
R3

|u|6 dx

for any u ∈ E. Moreover, under our conditions, Jb
k (u) belongs to C1(E,R), and the Fréchet

derivative of Jb
k is

〈(
Jb
k
)′(u), v

〉
=

∫
R3

(
a∇u · ∇v + V (x)uv

)
dx + b

(∫
R3

|∇u|2 dx
)(∫

RN
∇u · ∇v dx

)

+ λ

∫
R3

φuuv dx – k
∫
R3

f (u)v dx –
∫
R3

|u|4uv dx

for any u, v ∈ E.
As it is well known, if u ∈ E is a solution of system (1.7) and u± �= 0, then u is a nodal

solution of system (1.7), where

u+ = max
{

u(x), 0
}

, u– = min
{

u(x), 0
}

.

Note that, since system (1.7) involved pure critical nonlinearity |u|4u, it will prevent us
from using the standard arguments as in [3, 12, 19, 22]. Hence, we need to show some
techniques to overcome the lack of compactness in E ↪→ L6(R3).

The main results can be stated as follows.

Theorem 1.1 Suppose that (f1)–(f3) are satisfied. Then there exists k
 > 0 such that, for
all k ≥ k
, system (1.7) has a least energy nodal solution ub, which has precisely two nodal
domains.

Remark 1.2 The least energy nodal solution ub is a solution of (1.7) satisfying

Jb
k (ub) = inf

u∈Mb
k

Jb
k (u),

where Mb
k is defined by (2.1) in the next section. We recall that the nodal of a continuous

function u : R3 → R is the surface u–1(0). Every connected component of R3 \ u–1(0) is
called a nodal domain.
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Theorem 1.2 Suppose that (f1)–(f3) are satisfied. Then there exists k

 > 0 such that, for
all k ≥ k

, the c∗ > 0 is achieved and

Jb
k (ub) > 2c∗,

where c∗ = infu∈N b
k

Jb
k (u), N b

k = {u ∈ H\{0}|〈(Jb
k )′(u), u〉 = 0}, and ub is the least energy nodal

solution obtained in Theorem 1.1. In particular, c∗ > 0 is achieved either by a positive or a
negative function vb which is a ground state solution of system (1.7).

Theorem 1.3 Suppose that (f1)–(f3) are satisfied. Then there exists k


 > 0 such that, for
all k ≥ k


, for any least energy nodal solution sequence {ubn} with bn → 0 as n → ∞,
there exists a subsequence, still denoted by {ubn}, such that ubn converges to u0 weakly in E
as n → ∞, where u0 is a least energy nodal solution of the following problem:

⎧⎨
⎩–a�u + V (x)u + λφu = |u|4u + kf (u), x ∈ R

3,

–�φ = u2, x ∈ R
3.

(1.11)

Comparing with the literature works, the above three results can be regarded as a gen-
eralization of those in [12, 19, 20]. As for Kirchhoff–Schrödinger–Poisson equation, to
the best of our knowledge, few results involved the existence and asymptotic behavior of
ground state nodal solutions in case of critical growth. It is worth noting that the Brower
degree method used in [20, 23] is strictly dependent on the nonlinearity f ∈ C1(R,R), so
we have to find new ways to solve our model where we only allow f ∈ C(R,R). On the
other hand, in our modeling, both of the nonlocal terms

∫
R3 |∇u|2 dx and φu appear, we

need to overcome the difficulties caused by the nonlocal terms under a uniform variational
framework. It is also due to the lack of compactness embedded in full space that we can-
not use the method in [18]. Thankfully, after appropriate modifications, the deformation
lemma used in [12] can be applied to get the existence of a least energy nodal solution of
the Kirchhoff–Schrödinger–Poisson system.

2 Some technical lemmas
To fix some notations, the letter C, Ci will be repeatedly used to denote various positive
constants whose exact values are irrelevant. | · |p denote the norm in Lp(R3) for p > 1.

We first list some properties of φu for our use, one can find the details in [14, 26].

Proposition 2.1 For any u ∈ E, we have
(i) there exists C > 0 such that

∫
R3

φuu2 dx ≤ C‖u‖4 ∀u ∈ E;

(ii) φu ≥ 0, ∀u ∈ E;
(iii) φtu = t2φu, ∀t > 0 and u ∈ E;
(iv) if un ⇀ u in E, then φun ⇀ φu in D1,2(R3) and

∫
R3

φun u2
n dx →

∫
R3

φuu2 dx.
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For fixed u ∈ E with u± �= 0, the function ψu : [0,∞) × [0,∞) → R and the mapping
Wu : [0,∞) × [0,∞) →R

2 are well defined by

ψu(s, t) = Jb
k
(
su+ + tu–)

,

Wu(s, t) =
(〈(

Jb
k
)′(su+ + tu–)

, su+〉
,
〈(

Jb
k
)′(su+ + tu–)

, tu–〉)
,

and

Mb
k =

{
u ∈ E, u± �= 0 and

〈(
Jb
k
)′(u), u+〉

=
〈(

Jb
k
)′(u), u–〉

= 0
}

. (2.1)

Lemma 2.1 Assume that (f1)–(f3) are satisfied, if u ∈ E with u± �= 0, then ψu has the fol-
lowing properties:

(i) The pair (s, t) is a critical point of ψu with s, t > 0 ⇔ su+ + tu– ∈Mb
k ;

(ii) The function ψu has a unique critical point (su, tu) on (0,∞) × (0,∞), which is also
the unique maximum point of ψu on [0,∞) × [0,∞); Furthermore, if
〈(Jb

k )′(u), u±〉 ≤ 0, then 0 < su, tu ≤ 1.

Proof (i) By the definition of ψu, we have that

∇ψu(s, t) =
(

∂ψu

∂s
,
∂ψu

∂t

)

=
(

1
s
〈(

Jb
k
)′(su+ + tu–)

, su+〉
,

1
t
〈(

Jb
k
)′(su+ + tu–)

, tu–〉)
.

From the definition, item (i) is obvious.
(ii) It is easy to see

〈(
Jb
k
)′(su+ + tu–)

, su+〉
= s2∥∥u+∥∥2 + bs4

(∫
R3

∣∣∇u+∣∣2 dx
)2

+ bs2t2
(∫

R3

∣∣∇u+∣∣2 dx
)(∫

R3

∣∣∇u–∣∣2 dx
)

+ s4λ

∫
R3

φu+
∣∣u+∣∣2 dx + s2t2λ

∫
R3

φu–
∣∣u+∣∣2 dx – s6

∫
R3

∣∣u+∣∣6 dx

– k
∫
R3

f
(
su+)

su+ dx (2.2)

and

〈(
Jb
k
)′(su+ + tu–)

, tu–〉
= t2∥∥u–∥∥2 + bt4

(∫
R3

∣∣∇u–∣∣2 dx
)2

+ bs2t2
∫
R3

∣∣∇u+∣∣2 dx
∫
R3

∣∣∇u–∣∣2 dx + t4λ

∫
R3

φu–
∣∣u–∣∣2 dx

+ s2t2λ

∫
R3

φu+
∣∣u–∣∣2 dx – t6

∫
R3

∣∣u–∣∣6 dx – k
∫
R3

f
(
tu–)

tu– dx. (2.3)
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From (f1) and (f2), for any ε > 0, there is Cε > 0 satisfying

∣∣f (t)
∣∣ ≤ ε|t| + Cε|t|4 (2.4)

for all t ∈ R. From the Sobolev embedding theorem it follows that

〈(
Jb
k
)′(su+ + tu–)

, su+〉
≥ s2∥∥u+∥∥2 – s6

∫
R3

∣∣u+∣∣6 dx – kεs2
∫
R3

∣∣u+∣∣2 dx – kCεsq
∫
R3

∣∣u+∣∣5 dx

≥ s2∥∥u+∥∥2 – C1s6∥∥u+∥∥6 – kεC2s2∥∥u+∥∥2 – kCεC3sq∥∥u+∥∥5

≥ (1 – kεC4)s2∥∥u+∥∥2 – C4s6∥∥u+∥∥6 – kC4s5∥∥u+∥∥5.

By choosing ε > 0 such that (1 – kεC4) > 0, we can infer that

〈(
Jb
k
)′(su+ + tu–)

, su+〉
> 0

for 0 < s � 1 and all t ≥ 0. Similarly, there holds

〈(
Jb
k
)′(su+ + tu–)

, tu–〉
> 0

for 0 < t � 1 and all s ≥ 0. Hence, there exists δ1 > 0 such that

〈(
Jb
k
)′(

δ1u+ + tu–)
, δ1u+〉

> 0,
〈(

Jb
k
)′(su+ + δ1u–)

, δ1u–〉
> 0 (2.5)

for all s ≥ 0, t ≥ 0. It is worth noting that assumption (f1) implies

F(t) ≥ 0, t ∈R. (2.6)

Thus, choosing s = δ′
2 > δ1, it follows that, for t ∈ [δ1, δ′

2] and δ′
2 � 1,

〈(
Jb
k
)′(

δ′
2u+ + tu–)

, δ′
2u+〉

≤ (
δ′

2
)2∥∥u+∥∥2 + b

(
δ′

2
)4∥∥u+∥∥4 + b

(
δ′

2
)4∥∥u+∥∥2∥∥u–∥∥2

+
(
δ′

2
)4

λ

∫
R3

φu+
∣∣u+∣∣2 dx +

(
δ′

2
)4

λ

∫
R3

φu–
∣∣u+∣∣2 dx –

(
δ′

2
)6

∫
R3

∣∣u+∣∣6 dx

≤ 0.

Analogously, one can show that

〈(
Jb
k
)′(su+ + tu–)

, tu–〉
≤ t2∥∥u–∥∥2 + bt4∥∥u–∥∥4 + bs2t2∥∥u+∥∥2∥∥u–∥∥2

+ t4λ

∫
R3

φu–
∣∣u–∣∣2 dx + s2t2λ

∫
R3

φu+
∣∣u–∣∣2 dx – t6

∫
R3

∣∣u–∣∣6 dx.
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Choosing δ2 > δ′
2 � 1, we deduce

〈(
Jb
k
)′(

δ2u+ + tu–)
, δ2u+〉

< 0,
〈(

Jb
k
)′(su+ + δ2u–)

, δ2u–〉
< 0 (2.7)

for all s, t ∈ [δ1, δ2].
From (2.5) and (2.7), the assumptions of Miranda’s theorem (see Lemma 2.4 in [7]) are

satisfied. Thus there is (su, tu) ∈ (0,∞) × (0,∞) satisfying Wu(su, tu) = (0, 0). So suu+ +
tuu– ∈Mb

k .
Now we turn to proving that the pair (su, tu) is unique. We first suppose that u ∈ Mb

k ,
thus

∥∥u+∥∥2 + b
(∫

R3

∣∣∇u+∣∣2 dx
)2

+ b
∫
R3

∣∣∇u+∣∣2 dx ·
∫
R3

∣∣∇u–∣∣2 dx + λ

∫
R3

φu+
∣∣u+∣∣2 dx

+ λ

∫
R3

φu–
∣∣u+∣∣2 dx =

∫
R3

∣∣u+∣∣6 dx + k
∫
R3

f
(
u+)

u+ dx (2.8)

and

∥∥u–∥∥2 + b
(∫

R3

∣∣∇u–∣∣2 dx
)2

+ b
∫
R3

∣∣∇u+∣∣2 dx ·
∫
R3

∣∣∇u–∣∣2 dx + λ

∫
R3

φu–
∣∣u–∣∣2 dx

+ λ

∫
R3

φu+
∣∣u–∣∣2 dx =

∫
R3

∣∣u–∣∣6 dx + k
∫
R3

f
(
u–)

u– dx. (2.9)

We will show that the pair (su, tu) = (1, 1) is the unique one such that suu+ + tuu– ∈ Mb
k .

Let (s0, t0) be a pair of numbers such that s0u+ + t0u– ∈Mb
k with 0 < s0 ≤ t0. We have

s2
0
∥∥u+∥∥2 + bs4

0

(∫
R3

∣∣∇u+∣∣2 dx
)2

+ bs2
0t2

0

∫
R3

∣∣∇u+∣∣2 dx ·
∫
R3

∣∣∇u–∣∣2 dx

+ s4
0λ

∫
R3

φu+
∣∣u+∣∣2 dx + s2

0t2
0λ

∫
R3

φu–
∣∣u+∣∣2 dx

= s6
0

∫
R3

∣∣u+∣∣6 dx + k
∫
R3

f
(
s0u+)

s0u+ dx (2.10)

and

t2
0
∥∥u–∥∥2 + bt4

0

(∫
R3

∣∣∇u–∣∣2 dx
)2

+ bs2
0t2

0

∫
R3

∣∣∇u+∣∣2 dx ·
∫
R3

∣∣∇u–∣∣2 dx

+ t4
0λ

∫
R3

φu–
∣∣u–∣∣2 dx + s2

0t2
0λ

∫
R3

φu+
∣∣u–∣∣2 dx

= t6
0

∫
R3

∣∣u–∣∣6 dx + k
∫
R3

f
(
t0u–)

t0u– dx. (2.11)

By comparing (2.9) and (2.11), we deduce

‖u–‖2

t2
0

+ b
(∫

R3

∣∣∇u–∣∣2 dx
)2

+ b
∫
R3

∣∣∇u+∣∣2 dx ·
∫
R3

∣∣∇u–∣∣2 dx

+ λ

∫
R3

φu–
∣∣u–∣∣2 dx + λ

∫
R3

φu+
∣∣u–∣∣2 dx
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≥ t2
0

∫
R3

∣∣u–∣∣6 dx + k
∫
R3

[
f (t0u–)
(t0u–)3

](
u–)4 dx. (2.12)

Combining (2.9) with (2.12), one has that

(
1
t2
0

– 1
)∥∥u–∥∥2 ≥ (

t2
0 – 1

)∫
R3

∣∣u–∣∣6 dx + k
∫
R3

[
f (t0u–)
(t0u–)3 –

f (u–)
(u–)3

](
u–)4 dx.

By using assumption (f3), we get t0 ≤ 1. Analogously, from (2.8), (2.10), and 0 < s0 ≤ t0,

(
1
s2

0
– 1

)∥∥u+∥∥2 ≤ (
s2

0 – 1
) ∫

R3

∣∣u+∣∣6 dx + k
∫
R3

[
f (s0u+)
(s0u+)3 –

f (u+)
(u+)3

](
u+)4 dx.

By using assumption (f3), we get s0 ≥ 1. Consequently, s0 = t0 = 1.
In the case u /∈Mb

k , we suppose that there are (s1, t1), (s2, t2) such that

u1 = s1u+ + t1u– ∈Mb
k , u2 = s2u+ + t2u– ∈Mb

k .

Thus,

u2 =
(

s2

s1

)
s1u+ +

(
t2

t1

)
t1u– =

(
s2

s1

)
u+

1 +
(

t2

t1

)
u–

1 ∈Mb
k .

According to u1 ∈Mb
k and the fact of the previous case, one has that

s2

s1
=

t2

t1
= 1.

Thus s1 = s2, t1 = t2. Therefore (su, tu) is the unique critical point of ψu in (0,∞) × (0,∞).
In the following, we show that the critical point (su, tu) of ψu is its unique maximum

point on [0, +∞) × [0, +∞). By definition

ψu(s, t) =
s2

2
∥∥u+∥∥2 +

bs4

4

(∫
R3

∣∣∇u+∣∣2 dx
)2

+
s4

4
λ

∫
R3

φu+
∣∣u+∣∣2 dx –

s6

6

∫
R3

∣∣u+∣∣6 dx

–
∫
R3

F
(
su+)

dx +
t2

2
∥∥u–∥∥ +

bt4

4

(∫
R3

∣∣∇u–∣∣2 dx
)2

+
t4

4
λ

∫
R3

φu–
∣∣u–∣∣2 dx

–
t6

6

∫
R3

∣∣u+∣∣6 dx –
∫
R3

F
(
tu–)

dx +
s2t2

4
λ

∫
R3

φu–
∣∣u+∣∣2 dx

+
s2t2

4
λ

∫
R3

φu+
∣∣u–∣∣2 dx +

bs2t2

2

∫
R3

∣∣∇u+∣∣2 dx ·
∫
R3

∣∣∇u–∣∣2 dx.

Now (2.6) implies that

lim
|(s,t)|→∞

ψu(s, t) = –∞.

By contradiction, we suppose that the boundary point (0, t0) is a maximum point of ψu

with t0 ≥ 0. By direct computation, it follows that

(ψu)′s(s, t0) = s
∥∥u+∥∥2 + bs3

(∫
R3

∣∣∇u+∣∣2 dx
)2

+ ast2
0

(∫
R3

∣∣∇u+∣∣2 dx
)(∫

R3

∣∣∇u–∣∣2 dx
)
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+ s3λ

∫
R3

φu+
∣∣u+∣∣2 dx +

st2
0

2
λ

∫
R3

φu+
∣∣u–∣∣2 dx

+
st2

0
2

λ

∫
R3

φu–
∣∣u+∣∣2 dx – s5

∫
R3

∣∣u+∣∣6 dx –
∫
R3

f
(
su+)

u+ dx

> 0

when s � 1. It follows that ψu is an increasing function with respect to s when s � 1, which
is a contradiction. Analogously, ψu cannot achieve its global maximum on the boundary
point (s, 0) with s ≥ 0.

In the remainder of our proof, we will prove that 0 < su, tu ≤ 1 when 〈(Jb
k )′(u), u±〉 ≤ 0.

Suppose su ≥ tu > 0. One has

s2
u
∥∥u+∥∥2 + bs4

u

(∫
R3

∣∣∇u+∣∣2 dx
)2

+ bs4
u

∫
R3

∣∣∇u+∣∣2 dx ·
∫
R3

∣∣∇u–∣∣2 dx

+ s4
uλ

∫
R3

φu+
∣∣u+∣∣2 dx + s4

uλ

∫
R3

φu–
∣∣u+∣∣2 dx

≥ s2
u
∥∥u+∥∥2 + bs4

u

(∫
R3

∣∣∇u+∣∣2 dx
)2

+ bs2
ut2

u

∫
R3

∣∣∇u+∣∣2 dx ·
∫
R3

∣∣∇u–∣∣2 dx

+ s4
uλ

∫
R3

φu+
∣∣u+∣∣2 dx + s2

ut2
uλ

∫
R3

φu–
∣∣u+∣∣2 dx

= s6
u

∫
R3

∣∣u+∣∣6 dx + k
∫
R3

f
(
suu+)

suu+ dx. (2.13)

In view of 〈(Jb
k )′(u), u+〉 ≤ 0, one has that

∥∥u+∥∥2 + b
(∫

R3

∣∣∇u+∣∣2 dx
)2

+ b
∫
R3

∣∣∇u+∣∣2 dx ·
∫
R3

∣∣∇u–∣∣2 dx + λ

∫
R3

φu+
∣∣u+∣∣2 dx

+ λ

∫
R3

φu–
∣∣u+∣∣2 dx ≤

∫
R3

∣∣u+∣∣6 dx + k
∫
R3

f
(
u+)

u+ dx. (2.14)

By comparing (2.13) and (2.14), it follows that

(
1
s2

u
– 1

)∥∥u+∥∥2 ≥ (
s2

u – 1
)∫

R3

∣∣u+∣∣6 dx + k
∫
R3

[
f (suu+)
(suu+)3 –

f (u+)
(u+)3

](
u+)4 dx.

It implies su ≤ 1. Therefore 0 < su, tu ≤ 1. �

Lemma 2.2 If u ∈Mb
k , then tu /∈Mb

k for every t > 0, t �= 1. More precisely,

〈(
Jb
k
)′(tu), tu±〉

> 0 for t ∈ (0, 1),〈(
Jb
k
)′(tu), tu±〉

< 0 for t > 1.

Proof From (2.2) and u ∈Mb
k , we have that

〈(
Jb
k
)′(tu), tu+〉

= t2(1 – t2)∥∥u+∥∥2 + t4(1 – t2)∫
R3

∣∣u+∣∣6 dx

+ kt4
∫
R3

(
f
(
u+)

–
f (tu+)

t3

)
u+ dx.
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According to (f3), when 0 < t < 1,

〈(
Jb
k
)′(tu), tu+〉

> 0,

while in the case t > 1,

〈(
Jb
k
)′(tu), tu+〉

< 0.

Similarly, it is easy to get

〈(
Jb
k
)′(tu), tu–〉

> 0 for t ∈ (0, 1),
〈(

Jb
k
)′(tu), tu–〉

< 0 for t > 1.

The proof is complete. �

Lemma 2.3 Let ck
b = infu∈Mb

k
Jb
k (u), then we have that

lim
k→∞

ck
b = 0.

Proof For any u ∈Mb
k , we can deduce

∥∥u±∥∥2 + b
(∫

R3

∣∣∇u±∣∣2 dx
)2

+ b
∫
R3

∣∣∇u+∣∣2 dx ·
∫
R3

∣∣∇u–∣∣2 dx + λ

∫
R3

φu±
∣∣u±∣∣2 dx

+ λ

∫
R3

φu∓
∣∣u±∣∣2 dx = k

∫
R3

f
(
u±)

u± dx +
∫
R3

∣∣u±∣∣6 dx.

Hence, in view of (2.4), it follows that

∥∥u±∥∥2 ≤ k
∫
R3

f
(
u±)

u± dx +
∫
R3

∣∣u±∣∣6 dx

≤ kεC1
∥∥u±∥∥2 + kC2

∥∥u±∥∥5 + C3
∥∥u±∥∥6.

Therefore, we have that

(1 – kεC1)
∥∥u±∥∥2 ≤ kC2

∥∥u±∥∥5 + C3
∥∥u±∥∥6.

We now choose ε small enough such that (1 – kεC1) > 0, so there is ρ > 0 such that

∥∥u±∥∥ ≥ ρ (2.15)

for all u ∈ Mb
k . For any u ∈ Mb

k , in view of the definition of Mb
k , 〈(Jb

k )′(u), u〉 = 0. From
assumption (f3), we have

f (t)t – 4F(t) ≥ 0, (2.16)

and f (t)t – 4F(t) is increasing in (0, +∞) and decreasing in (–∞, 0). Hence, one gets

Jb
k (u) = Jb

k (u) –
1
4
〈(

Jb
k
)′(u), u

〉
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=
1
4
‖u‖2 +

1
12

∫
R3

|u|6 dx +
k
4

∫
R3

[
f (u)u – 4F(u)

]
dx

≥ 1
4
‖u‖2

for any u ∈Mb
k .

From the above discussion, we can see that ck
b = infu∈Mb

k
Jb
k (u) is well defined.

Let u ∈ E with u± �= 0 be fixed. According to Lemma 2.1, for each k > 0, there exist
sk , tk > 0 such that sku+ + tku– ∈ Mb

k . Hence, by (2.6), the Sobolev embedding theorem
and Proposition 2.1, we have

0 ≤ ck = inf
u∈Mb

k

Jb
k (u) ≤ Jb

k
(
sku+ + tku–)

≤ 1
2
∥∥sku+ + tku–∥∥2 +

b
4

(∫
R3

∣∣∇(
sku+ + tku–)∣∣2 dx

)2

+
λ

4

∫
R3

φsk u++tk u–
∣∣sku+ + tku–∣∣2 dx

≤ s2
k
2

∥∥u+∥∥2 +
t2
k
2

∥∥u–∥∥2 + Cs4
k
∥∥u+∥∥4 + Ct4

k
∥∥u–∥∥4

for some constants C > 0. We now define

Φu =
{

(sk , tk) ∈ [0,∞) × [0,∞) : Wu(sk , tk) = (0, 0), k > 0
}

.

Hence we have that

s6
k

∫
R3

∣∣u+∣∣6 dx + t6
k

∫
R3

∣∣u–∣∣6 dx

≤ s6
k

∫
R3

∣∣u+∣∣6 dx + t6
k

∫
R3

∣∣u–∣∣6 dx + k
∫
R3

f
(
sku+)

sku+ dx + k
∫
R3

f
(
tku–)

tku– dx

=
∥∥sku+ + tku–∥∥2 + b

(∫
R3

∣∣∇(
sku+ + tku–)∣∣2 dx

)2

+ λ

∫
R3

φsk u++tk u–
∣∣sku+ + tku–∣∣2 dx

≤ s2
k
∥∥u+∥∥2 + t2

k
∥∥u–∥∥2 + Cs4

k
∥∥u+∥∥4 + Ct4

k
∥∥u–∥∥4.

It follows that Φu is a bounded set. We suppose that kn → ∞ as n → ∞. For (skn , tkn ) ∈ Φu,
there exist s0 and t0 such that

(skn , tkn ) → (s0, t0)

as n → ∞ (in the subsequence sense). We suppose that s0 > 0 or t0 > 0. Thanks to skn u+ +
tkn u– ∈Mkn

b , we get

∥∥skn u+ + tkn u–∥∥2 + b
(∫

R3

∣∣∇(
skn u+ + tkn u–)∣∣2 dx

)2

+ λ

∫
R3

φskn u++tkn u–
∣∣skn u+ + tkn u–∣∣2 dx

=
∫
R3

∣∣skn u+ + tkn u–∣∣6 dx + kn

∫
R3

f
(
skn u+ + tkn u–)(

skn u+ + tkn u–)
dx. (2.17)
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According to skn u+ → s0u+ and tkn u– → t0u– in E,
∫
R3 |∇(skn u+ + tkn u–)|2 dx ≤ ‖skn u+ +

tkn u–‖2, (2.4) and (2.6), so as n → ∞, there holds

∫
R3

f
(
skn u+ + tkn u–)(

skn u+ + tkn u–)
dx →

∫
R3

f
(
s0u+ + t0u–)(

s0u+ + t0u–)
dx > 0.

Because kn → ∞ as n → ∞ and {skn u+ + tkn u–} is bounded in E, following the Sobolev
embedding theorem, we have a contradiction with equality (2.17). Thus, s0 = t0 = 0, and
so limk→∞ ck

b = 0. �

Lemma 2.4 There exists k
 > 0 such that, for all k ≥ k
, the infimum ck
b is achieved.

Proof In view of the definition of ck
b, we deduce that there exists a sequence {un} ⊂ Mk

b
satisfying

lim
n→∞ Jb

k (un) = ck
b.

Following from (2.8) and (2.9), {un} is bounded in E. So in the subsequence sense, there
exists ub = u+

b + u–
b ∈ E such that un ⇀ ub. Since the embedding E ↪→ Lp(R3) is compact

for p ∈ (2, 6), we deduce

un → ub in Lp(
R

3),∀p ∈ (2, 6),

un(x) → ub(x) a.e. x ∈ R
3.

Then we have

u±
n ⇀ u±

b in E,

u±
n → u±

b in Lp(
R

3),

u±
n (x) → u±

b (x) a.e. x ∈R
3.

Denote β := (S)
3
2

3 , where

S := inf
u∈E\{0}

‖u‖2

(
∫
R3 |u|6 dx) 1

3
.

The Sobolev embedding theorem insures that β > 0. Lemma 2.3 implies that there exists
k
 > 0 such that ck

b < β for all k ≥ k
. Fix k ≥ k
, in view of Lemma 2.1, we have

Jb
k
(
su+

n + tu–
n
) ≤ Jb

k (un)

for all s, t ∈ [0, +∞). Because u±
n ⇀ u±

b in E, E is a Hilbert space, we can deduce

∥∥u±
n
∥∥2 –

∥∥u±
n – u±

b
∥∥2 = 2

(
u±

n , u±
b
)

–
∥∥u±

b
∥∥2,

where we can assume that the sequence {‖u±
n ‖} is convergent, so we have

lim
n→∞

∥∥u±
n
∥∥2 = lim

n→∞
∥∥u±

n – u±
b
∥∥2 +

∥∥u±
b
∥∥2.
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Obviously, we can let n → ∞ in both sides of the above equation. On the other hand, by
(2.4) we have

∫
R3

F
(
su±

n
)

dx →
∫
R3

F
(
su±

b
)

dx.

Thus, we get

lim inf
n→∞ Jb

k
(
su+

n + tu–
n
)

≥ s2

2
lim

n→∞
(∥∥u+

n – u+
b
∥∥2 +

∥∥u+
b
∥∥2) +

t2

2
lim

n→∞
(∥∥u–

n – u–
b
∥∥2 +

∥∥u–
b
∥∥2)

+
bs2

4

[
lim inf

n→∞

(∫
R3

∣∣∇u+
n
∣∣2 dx

)]2

+
bt2

4

[
lim inf

n→∞

(∫
R3

∣∣∇u–
n
∣∣2 dx

)]2

+
bs2t2

4
lim inf

n→∞

(∫
R3

∣∣∇u+
n
∣∣2 dx

)
· lim inf

n→∞

(∫
R3

∣∣∇u–
n
∣∣2 dx

)

+
λs4

4
lim inf

n→∞

∫
R3

φu+
n

∣∣u+
n
∣∣2 dx +

λt4

4
lim inf

n→∞

∫
R3

φu–
n

∣∣u–
n
∣∣2 dx

–
s6

6
lim

n→∞
(∣∣u+

n – u+
b
∣∣6
6 +

∣∣u+
b
∣∣6
6

)
–

t6

6
lim

n→∞
(∣∣u–

n – u–
b
∣∣6
6 +

∣∣u–
b
∣∣6
6

)
– k

∫
R3

F
(
su+

b
)

dx – k
∫
R3

F
(
tu–

b
)

dx

+
λs2t2

4
lim inf

n→∞

∫
R3

φu+
n

∣∣u–
n
∣∣2 dx +

λs2t2

4
lim inf

n→∞

∫
R3

φu–
n

∣∣u+
n
∣∣2 dx.

By using Fatou’s lemma, there holds

lim inf
n→∞ Jb

k
(
su+

n + tu–
n
) ≥ Jb

k
(
su+

b + tu–
b
)

+
s2

2
lim

n→∞
∥∥u+

n – u+
b
∥∥2 +

t2

2
lim

n→∞
∥∥u–

n – u–
b
∥∥2

–
s6

6
lim

n→∞
∣∣u+

n – u+
b
∣∣6
6 –

t6

6
lim

n→∞
∣∣u–

n – u–
b
∣∣6
6

= Jb
k
(
su+

b + tu–
b
)

+
s2

2
A1 –

s6

6
B1 +

t2

2
A2 –

t6

6
B2,

where

A1 = lim
n→∞

∥∥u+
n – u+

b
∥∥2, A2 = lim

n→∞
∥∥u–

n – u–
b
∥∥2,

B1 = lim
n→∞

∣∣u+
n – u+

b
∣∣6
6, B2 = lim

n→∞
∣∣u–

n – u–
b
∣∣6
6.

From the above fact, one has that

Jb
k
(
su+

b + tu–
b
)

+
s2

2
A1 –

s6

6
B1 +

t2

2
A2 –

t6

6
B2 ≤ ck

b (2.18)

for all s ≥ 0, t ≥ 0.
Claim 1. u±

b �= 0. In fact, by contradiction, if u+
b = 0, we divide it into two cases.

Case 1: B1 = 0. In this case, if A1 = 0, in view of the fact (2.15), we obtain ‖u+
b‖ > 0, which

is absurd. If A1 > 0, we let t = 0 in (2.18) that s2

2 A1 ≤ ck
b for all s ≥ 0, which is false.
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Case 2: B1 > 0. In this case, by the definition of S, we deduce

β =
(S) 3

2

3
≤ 1

3

(
A1

(B1) 1
3

) 3
2

.

On the other hand,

1
3

(
A1

(B1) 1
3

) 3
2

= max
s≥0

{
s2

2
A1 –

s6

6
B1

}
.

Thanks to ck
b < β , by substituting t = 0 into (2.18), we have that

β ≤ max
s≥0

{
s2

2
A1 –

s6

6
B1

}
≤ ck

b < β ,

which is a contradiction. Thus u+
b �= 0. Similarly, we also get u–

b �= 0. Therefore u±
b �= 0 as

claimed.
Claim 2. B1 = B2 = 0. We only prove B1 = 0. By contradiction, we suppose that B1 > 0.

We have two cases.
Case 1: B2 > 0. Let sa and tb be the numbers such that

s2
a
2

A1 –
s6

a
6

B1 = max
s≥0

{
s2

2
A1 –

s6

6
B1

}
,

t2
b
2

A2 –
t6
b
6

B2 = max
t≥0

{
t2

2
A2 –

t6

6
B2

}
.

Since ψu is continuous, we have (su, tu) ∈ [0, sa] × [0, tb] satisfying

ψu(su, tu) = max
(s,t)∈[0,sa]×[0,tb]

ψu(s, t).

Note that if 0 < t � 1, we deduce

ψu(s, 0) = Jb
k
(
su+

b
)

< Jb
k
(
su+

b
)

+ Jb
k
(
tu–

b
) ≤ Jb

k
(
su+

b + tu–
b
)

= ψu(s, t)

for all s ∈ [0, sa]. Thus there is t0 ∈ [0, tb] such that

ψu(s, 0) ≤ ψu(s, t0)

for all s ∈ [0, sa]. It follows that any point of the form (s, 0) with 0 ≤ s ≤ sa is not the max-
imizer of ψu. Thus, (su, tu) /∈ [0, sa] × {0}. Similarly, it shows that (su, tu) /∈ {0} × [0, tb]. By
direct computation, we get

s2

2
A1 –

s6

6
B1 > 0, (2.19)

t2

2
A2 –

t6

6
B2 > 0 (2.20)
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for all s ∈ (0, sa], t ∈ (0, tb]. Hence there hold

β ≤ s2
a
2

A1 –
s6

a
6

B1 +
t2

2
A2 –

t6

6
B2,

β ≤ t2
b
2

A2 –
t6
b
6

B2 +
s2

2
A1 –

s6

6
B1

for all s ∈ [0, sa], t ∈ [0, tb]. In view of (2.18), it follows that

ψu(s, tb) ≤ 0, ψu(sa, t) ≤ 0

for all s ∈ [0, sa], t ∈ [0, tb]. That is, (su, tu) /∈ {sa}× [0, tb] and (su, tu) /∈ ×[0, sa]×{tb}. Hence,
we can deduce that (su, tu) ∈ (0, sa)× (0, tb). By Lemma 2.1, it follows that (su, tu) is a critical
point of ψu. Thus, suu+ + tuu– ∈Mb

k . By (2.18), (2.19), and (2.20), we deduce

ck
b ≥ Jb

k
(
suu+

b + tuu–
b
)

+
s2

u
2

A1 –
s6

u
6

B1 +
t2
u
2

A2 –
t6
u
6

B2

> Jb
k
(
suu+

b + tuu–
b
)

≥ ck
b.

It is impossible. The proof of Case 1 is completed.
Case 2: B2 = 0. From the definition of Jb

k , it is easy to show that there exists t0 ∈ [0,∞)
such that Jb

k (su+
b + tu–

b ) ≤ 0 for all (s, t) ∈ [0, sa] × [t0,∞). Thus, there is (su, tu) ∈ [0, sa] ×
[0,∞) satisfying

ψu(su, tu) = max
(s,t)∈[0,sa]×[0,∞)

ψu(s, t).

We need to prove that (su, tu) ∈ (0, sa)× (0,∞). Similarly, it is noticed that ψu(s, 0) < ψu(s, t)
for s ∈ [0, sa] and 0 < t � 1, that is, (su, tu) /∈ [0, sa] × {0}. Also, for s small enough, we get
ψu(0, t) < ψu(s, t) for t ∈ [0,∞), that is, (su, tu) /∈ {0} × [0,∞). We note that

β ≤ s2
a
2

A1 –
s6

a
6

B1 +
t2

2
A2

for all t ∈ [0,∞). Thus also from (2.20) and B2 = 0, we have ψu(sa, t) ≤ 0 for all t ∈ [0,∞).
Hence, (su, tu) /∈ {sa}× [0,∞). That is, (su, tu) is an inner maximizer of ψu in [0, sa)× [0,∞).
So suu+ + tuu– ∈Mb

k . Hence, by using (2.19), we obtain

ck
b ≥ Jb

k
(
suu+

b + tuu–
b
)

+
s2

u
2

A1 –
s6

u
6

B1 +
t2
u
2

A2 –
t6
u
6

B2

> Jb
k
(
suu+

b + tuu–
b
)

≥ ck
b,

which is a contradiction. It is similar for B2 = 0. From the above discussion, we know that
Claim 2 is true.
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Claim 3. ck
b is achieved. Since u±

b �= 0, by Lemma 2.1, there are su, tu > 0 such that ũ :=
suu+

b +tuu–
b ∈Mk

b. On the other hand, un ⇀ ub in E, then
∫
R3 (V (x)u2

n) dx → ∫
R3 (V (x)u2

b) dx
and lim infn→∞ ‖un‖ ≥ ‖ub‖, so we get

lim inf
n→∞

∫
R3

|∇un|2 dx ≥
∫
R3

|∇ub|2 dx.

On the other hand, by (2.4), we deduce

lim
n→∞

∫
R3

f
(
u±

n
)
u±

n dx =
∫
R3

f (ub)±u±
b dx.

Thanks to Proposition 2.1, we get

〈(
Jb
k
)′(ub), u±

b
〉 ≤ lim inf

n→∞
∥∥u±

n
∥∥2 + b

[
lim inf

n→∞

(∫
R3

∣∣∇u±
n
∣∣2 dx

)]2

+ b lim inf
n→∞

(∫
R3

∣∣∇u+
n
∣∣2 dx

)
· lim inf

n→∞

(∫
R3

∣∣∇u–
n
∣∣2 dx

)

+ lim inf
n→∞

∫
R3

φun

∣∣u±
n
∣∣2 dx – lim

n→∞

∫
R3

f
(
u±

n
)
u±

n dx – lim
n→∞

∫
R3

∣∣u±
n
∣∣6

≤ lim
n→∞

〈(
Jb
k
)′(un), u±

n
〉

= 0.

Therefore from Lemma 2.2 we have that 0 < su, tu ≤ 1. Since un ∈Mk
b, B1 = B2 = 0 and ‖u‖

is lower semicontinuous, it follows that

ck
b ≤ Jb

k (̃u)) –
1
4
〈(

Jb
k
)′ (̃u), ũ

〉
=

1
4
‖̃u‖2 +

1
12

|̃u|66 +
k
4

∫
R3

[
f (̃u)̃u – 4F (̃u)

]
dx

=
1
4
(∥∥sub u+

b
∥∥2 +

∥∥tub u–
b
∥∥2) +

1
12

(∣∣sub u+
b
∣∣6
6 +

∣∣tub u–
b
∣∣6
6

)
+

k
4

∫
R3

[
f
(
sub u+

b
)(

sub u+
b
)

– 4F
(
sub u+

b
)]

dx

+
k
4

∫
R3

[
f
(
x, tub u–

b
)(

tub u–
b
)

– 4F
(
x, tub u–

b
)]

dx.

By using 0 < sub , tub ≤ 1, f (t)t – 4F(t) is increasing in (0, +∞) and decreasing in (–∞, 0),
we have

ck
b ≤ 1

4
‖ub‖2 +

1
12

|ub|66 +
k
4

∫
R3

[
f (ub)ub – 4F(ub)

]
dx

≤ lim inf
n→∞

[
Jb
k (un) –

1
4
〈(

Jb
k
)′(un), un

〉]

= lim inf
n→∞ Jb

k (un)

= ck
b.

Therefore the infimum ck
b is achieved by ub = u+

b + u–
b ∈Mk

b. �
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3 The proof of the main results
In this section, we prove the main results. Firstly, we prove Theorem 1.1. In fact, thanks
to Lemma 2.4, we should prove that the minimizer ub for ck

b is indeed a nodal solution of
system (1.7), but Mb

k is not a smooth manifold, we will apply a new method to complete
our certification.

3.1 The proof of Theorem 1.1

Proof Since ub ∈ Mk
b and Jb

k (u+
b + u–

b ) = ck
b, we have 〈(Jb

k )′(ub), u+
b〉 = 〈(Jb

k )′(ub), u–
b 〉 = 0. By

Lemma 2.1, for (s, t) ∈ (R+ ×R+)\(1, 1), we have

Jb
k
(
su+

b + tu–
b
)

< Jb
k
(
u+

b + u–
b
)

= ck
b. (3.1)

If (Jb
k )′(ub) �= 0, then there exist δ > 0 and θ > 0 such that

∥∥(
Jb
k
)′(v)

∥∥ ≥ θ for all ‖v – ub‖ ≤ 3δ.

We know by result (2.15), if u ∈ Mb
k , there exists L > 0 such that ‖u±

b ‖ > L, and we can
assume 6δ < L. Let Q := ( 1

2 , 3
2 ) × ( 1

2 , 3
2 ) and g(s, t) = su+

b + tu–
b , (s, t) ∈ Q. In view of (3.1), it is

easy to see that

ck
b := max

∂Q
I ◦ g < ck

b. (3.2)

Let ε := min{(ck
b – ck

b)/4, θδ/8} and Sδ := B(ub, δ), according to Lemma 2.3 of [24], there
exists a deformation η ∈ C([0, 1] × E, E) satisfying

(a) η(t, v) = v if t = 0, or v /∈ (Jb
k )–1([ck

b – 2ε, ck
b + 2ε]) ∩ S2δ ;

(b) η(1, (Jb
k )ck

b+ε ∩ Sδ) ⊂ (Jb
k )ck

b–ε ;
(c) Jb

k (η(1, v)) ≤ Jb
k (v) for all v ∈ E;

(d) Jb
k (η(·, v)) is nonincreasing for every v ∈ E.

We remind that, for a functional Φ : E →R, the level set Φμ is defined by Φμ = {u ∈ E :
Φ(u) ≤ μ}. Firstly, we need to prove that

max
(s,t)∈Q̄

Jb
k
(
η
(
1, g(s, t)

))
< ck

b. (3.3)

In fact, it follows from Lemma 2.1 that Jb
k (g(s, t)) ≤ ck

b < ck
b + ε. That is,

g(s, t) ∈ (
Jb
k
)ck

b+ε .

On the other hand, from (a) and (d), we get

Jb
k
(
η(1, v)

) ≤ Jb
k
(
η(0, v)

)
= Jb

k (v), ∀v ∈ E. (3.4)

For (s, t) ∈ Q, when s �= 1 or t �= 1, according to (3.1) and (3.4),

Jb
k
(
η
(
1, g(s, t)

)) ≤ Jb
k
(
g(s, t)

)
< ck

b.
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If s = 1 and t = 1, that is, g(1, 1) = ub, so that it holds g(1, 1) ∈ (Jb
k )ck

b+ε ∩ Sδ , then by (b)

Jb
k
(
η
(
1, g(1, 1)

)) ≤ ck
b – ε < ck

b.

Thus (3.3) holds. In the following, we prove that η(1, g(Q)) ∩Mk
b �= ∅, which contradicts

the definition of ck
b. Let ϕ(s, t) := η(1, g(s, t)) and

Ψ (s, t) :=
(

1
s
〈(

Jb
k
)′(

ϕ(s, t)
)
,
(
ϕ(s, t)

)+〉
,

1
t
〈(

Jb
k
)′(

ϕ(s, t)
)
,
(
ϕ(s, t)

)–〉)
.

The claim holds if there exists (s0, t0) ∈ Q such that Ψ (s0, t0) = (0, 0). Since

∥∥g(s, t) – ub
∥∥2 =

∥∥(s – 1)u+
b + (t – 1)u–

b
∥∥2

≥ |s – 1|2∥∥u+
b
∥∥2

> |s – 1|2(6δ)2,

and |s – 1|2(6δ)2 > 4δ2 ⇔ s < 2/3 or s > 4/3, using the item (a) above and the range of s,
for s = 1

2 and for every t ∈ [ 1
2 , 3

2 ], we have g( 1
2 , t) /∈ S2δ . So from (a) we have ϕ( 1

2 , t) = g( 1
2 , t).

Thus

Ψ

(
1
2

, t
)

=
(

2
〈(

Jb
k
)′
(

1
2

u+
b + tu–

b

)
,

1
2

u+
b

〉
,

1
t

〈(
Jb
k
)′
(

1
2

u+
b + tu–

b

)
, tu–

〉)
.

By Lemma 2.2, we know that
〈(

Jb
k
)′
(

1
2

u+
b + tu–

b

)
,

1
2

u+
b

〉

=
〈(

Jb
k
)′
(

1
2

u+
b

)
,

1
2

u+
b

〉
+

t2b
4

∫
R3

∣∣∇u–
b
∣∣2 dx ·

∫
R3

∣∣∇u+
b
∣∣2 dx +

t2b
4

∫
R3

φu–
b

∣∣u+
b
∣∣2 dx

≥
〈(

Jb
k
)′
(

1
2

ub

)
,

1
2

u+
b

〉
> 0,

from which we obtain〈(
Jb
k
)′
(

1
2

u+
b + tu–

b

)
,

1
2

u+
b

〉
> 0 for every t ∈

[
1
2

,
3
2

]
. (3.5)

Similarly, for s = 3
2 and for every t ∈ [ 1

2 , 3
2 ], we have ϕ( 3

2 , t) = g( 3
2 , t), so that

〈(
Jb
k
)′
(

3
2

u+
b + tu–

b

)
,

3
2

u+
b

〉

=
〈(

Jb
k
)′
(

3
2

u+
b

)
,

3
2

u+
b

〉
+

9t2

4
b
∫
R3

∣∣∇u–
b
∣∣2 dx ·

∫
R3

∣∣∇u+
b
∣∣2 dx +

9t2

4
b
∫
R3

φu–
b

∣∣u+
b
∣∣2 dx

≤
〈(

Jb
k
)′
(

3
2

ub

)
,

3
2

u+
b

〉
< 0,

so that〈(
Jb
k
)′
(

3
2

u+
b + tu–

b

)
,

3
2

u+
b

〉
< 0 for every t ∈

[
1
2

,
3
2

]
. (3.6)
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Similarly, we have

〈(
Jb
k
)′
(

su+
b +

1
2

u–
b

)
,

1
2

u–
b

〉
> 0 for every s ∈

[
1
2

,
3
2

]
, (3.7)

〈(
Jb
k
)′
(

su+
b +

3
2

u–
b

)
,

3
2

u–
b

〉
< 0 for every s ∈

[
1
2

,
3
2

]
. (3.8)

Since Ψ is continuous on Q, according to (3.5)–(3.7), by Miranda’s theorem (Lemma 2.4
[7]), we have Ψ (s0, t0) = 0 for some (s0, t0) ∈ Q, so η(1, g(s0, t0)) = ϕ(s0, t0) ∈Mk

b. By (3.3), we
have a contradiction. From the above discussion, we conclude that ub is a nodal solution
for system (1.7).

Finally, we prove that ub has exactly two nodal domains. To this end, we first write ub as

ub = u1 + u2 + u3

with u1 ≥ 0, u2 ≤ 0. Set Ωi = {x ∈ R
3 : ui(x) �= 0}. We further assume Ωi ∩ Ωj = ∅ for i �= j,

i, j = 1, 2, 3. Since ub is a nodal solution, we suppose the nodal domains Ω1 �= ∅, Ω2 �= ∅. By
contradiction, we suppose ub possesses more than two nodal domains, then we have u3 �= 0
and so Ω3 �= ∅. Setting v := u1 + u2, we easily see that v± �= 0. So, there exists a positive pair
(sv, tv) such that

svu1 + tvu2 ∈Mk
b.

Thus,

Jb
k (svu1 + tvu2) ≥ ck

b.

Moreover, using the fact that 〈(Jb
k )′(ub), ui〉 = 0, from the definition, we get 〈(Jb

k )′(v), v±〉 ≤ 0.
So, thanks to Lemma 2.1, we have that

(sv, tv) ∈ (0, 1] × (0, 1].

By direct calculation,

0 =
〈(

Jb
k
)′(ub), u3

〉
= ‖u3‖2 + b

∫
R3

|∇u1|2 dx ·
∫
RN

|∇u3|2 dx

+ b
∫
R3

|∇u2|2 dx ·
∫
RN

|∇u3|2 dx + b
(∫

RN
|∇u3|2 dx

)2

+ λ

∫
R3

φu1 |u3|2 dx +
λ

4

∫
R3

φu2 |u3|2 dx + λ

∫
R3

φu3 |u3|2 dx

– λ

∫
R3

|u3|6 dx –
k
4

∫
R3

f (u3)u3 dx

=
〈(

Jb
k
)′(u3), u3

〉
+ b

∫
R3

(|∇u1|2 + |∇u2|2
)

dx ·
∫
RN

|∇u3|2 dx

+ λ

∫
R3

φu1 |u3|2 dx + λ

∫
R3

φu2 |u3|2 dx
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< 4Jb
k (u3) + b

∫
R3

|∇u1|2 dx ·
∫
RN

|∇u3|2 dx + b
∫
R3

|∇u2|2 dx ·
∫
RN

|∇u3|2 dx

+ λ

∫
R3

φu1 |u3|2 dx + λ

∫
R3

φu2 |u3|2 dx, (3.9)

–
〈(

Jb
k
)′(u3), u3

〉
= b

∫
R3

(|∇u1|2 + |∇u2|2
)

dx ·
∫
RN

|∇u3|2 dx

+ λ

∫
R3

φu1 |u3|2 dx + λ

∫
R3

φu2 |u3|2 dx. (3.10)

Then, by using (2.16), we get

ck
b ≤ Jb

k (svu1 + tvu2) = Jb
k (svu1 + tvu2) –

1
4
〈(

Jb
k
)′(svu1 + tvu2), svu1 + tvu2

〉
=

1
4
(‖svu1‖2 + ‖tvu2‖2) +

k
4

∫
R3

[
f (svu1)(svu1) – 4F(svu1)

]
dx

+
k
4

∫
R3

[
f (tvu2)(tvu2) – 4F(tvu2)

]
dx +

s6
v

12

∫
R3

|u1|6 dx +
t6
v

12

∫
R3

|u2|6 dx

≤ 1
4
(‖u1‖2 + ‖u2‖2) +

k
4

∫
R3

[
f (u1)u1 – 4F(u1)

]
dx

+
k
4

∫
R3

[
f (u2)u2 – 4F(u2)

]
dx +

1
12

∫
R3

|u1|6 dx +
1

12

∫
R3

|u2|6 dx

= Jb
k (u1 + u2) –

1
4
〈(

Jb
k
)′(u1 + u2), (u1 + u2)

〉
.

Similar to the computation of (3.10), from 〈(Jb
k )′(ub), ub〉 = 0, there holds

–
〈(

Jb
k
)′(u1 + u2), u1 + u2

〉
=

〈(
Jb
k
)′(u3), u3

〉
+ 2b

∫
R3

(|∇u1|2 + |∇u2|2
)

dx ·
∫
R3

|∇u3|2 dx

+ λ

∫
R3

(φu1 + φu2 )|u3|2 dx + λ

∫
R3

φu3

(|u1|2 + |u2|2
)

dx. (3.11)

By using (3.9), (3.10), and (3.11), we get

ck
b ≤ Jb

k (u1 + u2) –
1
4
〈(

Jb
k
)′(u1 + u2), (u1 + u2)

〉
= Jb

k (u1 + u2) +
1
4
〈(

Jb
k
)′(ub), u3

〉
+

b
4

∫
R3

|∇u1|2 dx ·
∫
RN

|∇u3|2 dx

+
b
4

∫
R3

|∇u2|2 dx ·
∫
RN

|∇u3|2 dx +
λ

4

∫
R3

φu3 |u1|2 dx +
λ

4

∫
R3

φu3 |u2|2 dx

< Jb
k (u1) + Jb

k (u2) + Jb
k (u3) +

b
4

∫
RN

(|∇u2|2 + |∇u3|2
)

dx ·
∫
RN

|∇u1|2 dx

+
b
4

∫
RN

(|∇u1|2 + |∇u3|2
)

dx ·
∫
RN

|∇u2|2 dx

+
b
4

∫
RN

(|∇u1|2 + |∇u2|2
)

dx ·
∫
RN

|∇u3|2 dx
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+
λ

4

∫
R3

φu3

(|u1|2 + |u2|2
)

dx +
λ

4

∫
R3

φu1+u2 |u3|2 dx

= Jb
k (ub) = ck

b.

So we get u3 = 0 and ub has exactly two nodal domains. �

3.2 The proof of Theorem 1.2
To prove Theorem 1.2, we should first prove that there exists a ground state solution of
(1.7) for k large enough, and then to prove that the energy of sign-changing solution ub is
strictly larger than twice of that of the ground state solution.

Proof Similar to the proof of Lemma 2.4, we claim that there exists k

1 > 0 such that, for

all k ≥ k

1, and ∀b > 0, there exists vb ∈ N k

b such that Jb
k (vb) = c∗ > 0. We give a brief proof

of this claim.
We first list some results for the Nehari manifold N k

b . One can prove them by following
the ideas as those in Lemma 2.4.

(i) If v ∈N k
b , then Jb

k (tv) ≤ Jb
k (v) for all t ≥ 0;

(ii) There exists ρ > 0 such that ‖v‖ ≥ ρ for all v ∈N k
b ;

(iii) There exists M > 0 such that ‖v‖ ≤ M for all v ∈N k
b .

According to the definition of c∗, there is a sequence {vn} ⊂N k
b such that limn→∞ Jb

k (vn) =
c∗. By property (iii), {vn} is bounded in E. In the subsequence sense, there exists vb ∈ E such
that vn ⇀ vb.

Denote β := (S)
3
2

3 , where S := infu∈E\{0} ‖u‖2

(
∫
R3 |u|6 dx)

1
3

. Similar to the proof of Lemma 2.3,

there is k
 > 0 such that c∗ < β for all k ≥ k
. Therefore, lim infn→∞ Jb
k (tvn) ≥ Jb

k (tvb) + t2

2 A –
t6

6 B, where A = limn→∞ ‖vn – vb‖2, B = limn→∞ |vn – vb|66. From the above fact and property
(i), we have

Jb
k (tvb) +

t2

2
A –

t6

6
B ≤ c∗ (3.12)

for all t ≥ 0.
Firstly, we prove that vb �= 0. By contradiction, we suppose vb = 0.
Case 1: B = 0. If A = 0, that is, vn → vb in E, then vb ∈ N k

b , and so we have ‖vb‖ > ρ by
property (ii), which contradicts our supposition. If A > 0, t2

2 A ≤ c∗ for all t ≥ 0, which is a
contradiction.

Case 2: B > 0. According to the definition of S, we have that β = (S)
3
2

3 ≤ 1
3 ( A

(B)
1
3

) 3
2 . It is

easy to see that

1
3

(
A

(B) 1
3

) 3
2

=
t̃2

2
A –

t̃6

6
B := max

t≥0

{
t2

2
A –

t6

6
B
}

,

so we have that

β ≤ max
t≥0

{
t2

2
A –

t6

6
B
}

≤ ck
b < β ,

which is a contradiction.
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Secondly, we claim that B = 0. By contradiction, we suppose that B > 0. Firstly, we can
maximize ψvb (t) = Jb

k (tvb) in [0,∞). Indeed, there exists t0 ∈ [0,∞) such that Jb
k (tvb) ≤ 0

for all t ∈ [t0,∞). Let tv be an inner maximizer of ψv in [0,∞). Jb
k (t̃vb) + β ≤ Jb

k (t̃vb) + t̃2

2 A –
t̃6

6 B ≤ c∗ < β implies that Jb
k (t̃vb) < 0. So tv ≤ t̃ and t2

v
2 A – t6

v
6 B > 0. Thus from tvvb ∈ N k

b we
get a contradiction by

c∗ ≤ Jb
k (tvvb) < Jb

k (tvvb) +
t2
v
2

A –
t6
v
6

B ≤ c∗.

Lastly, we prove that c∗ is achieved by vb. From the above arguments, we have vb �= 0
and ṽ := tvvb ∈ N k

b . Furthermore, because vn ⇀ vb in E and vn ∈ N k
b , we have that

〈(Jb
k )′(vb), vb〉 ≤ 0. Similar to Lemma 2.1, we have 0 < tv ≤ 1. Also as in the proof of

Lemma 2.4, we have

c∗ ≤ Jb
k (ṽ) –

1
4
〈(

Jb
k
)′(ṽ), ṽ

〉
=

1
4
‖tvvb‖2 +

1
12

|tvvb|66 +
k
4

∫
R3

[
f (tvvb)tvvb – 4F(tvvb)

]
dx

≤ 1
4
‖vb‖2 +

1
12

|vb|66 +
k
4

∫
R3

[
f (vb)vb – 4F(vb)

]
dx,

lim inf
n→∞

[
Jb
k (vn) –

1
4
〈(

Jb
k
)′(vn), vn

〉]
= c∗.

Therefore, tv = 1, and c∗ is achieved by vb ∈N k
b .

By standard arguments, the critical points of the functional Jb
k on N k

b are critical points
of Jb

k in E, and we obtain (Jb
k )′(vb) = 0, so vb is a positive or negative solution. That is, vb is

a ground state solution of system (1.7). For all k ≥ k
, and ∀b > 0, problem (1.7) has a least
energy nodal solution ub. Let

k

 = max
{

k
, k

1
}

.

Suppose that ub = u+ + u–. As in the proof of Lemma 2.1, there exist su+ , tu– ∈ (0, 1) such
that

su+ u+ ∈N k
b , tu– u– ∈N k

b .

Hence, by Lemma 2.1, we deduce

2c∗ ≤ Jb
k
(
su+ u+)

+ Jb
k
(
tu– u–) ≤ Jb

k
(
su+ u+ + tu– u–)

< Jb
k
(
u+ + u–)

= ck
b. �

3.3 Proof of Theorem 1.3
At the end of the section, we give an analysis for the behavior of ub as b → 0. We regard
b > 0 as a parameter in equation (1.7).

Proof For any b > 0, let ub ∈ E be the least energy nodal solution of system (1.7) obtained
in Theorem 1.1. We will complete our proof with the following three assertions. We recall
that ubn is a least energy nodal solution of system (1.7) with b = bn → 0 as n → ∞.
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Claim (a). As n is large enough, {ubn} is bounded in E.
Choose a test function φ ∈ C∞

c (R3) with φ± �= 0. From (2.7), for any b ∈ [0, 1], there exists
a pair of positive numbers (k1, k2) such that

〈(
Jb
k
)′(k1φ

+ + k2φ
–)

, k1φ
+〉

< 0,

and

〈(
Jb
k
)′(k1φ

+ + k2φ
–)

, k2φ
–〉

< 0.

Thus, according to Lemma 2.1(ii), for any b ∈ [0, 1], there is a unique pair sφ(b), tφ(b) ∈
(0, 1] × (0, 1] such that

φ := sφ(b)k1φ
+ + tφ(b)k2φ

– ∈Mk
b. (3.13)

Hence, for any b ∈ [0, 1], by using (2.4), we get

Jb
k (ub) ≤ Jb

k (φ) = Jb
k (φ) –

1
4
〈(

Jb
k
)′(φ),φ

〉
=

1
4
‖φ‖2 +

k
4

∫
R3

[
f (φ)φ – 4F(φ)

]
dx +

1
12

∫
R3

|φ|6 dx

≤ 1
4
‖φ‖2 +

k
4

∫
R3

(
C1φ

2 + C2φ
q)dx +

1
12

∫
R3

|φ|6 dx

≤ 1
4
(
k2

1
∥∥φ+∥∥2 + k2

2
∥∥φ–∥∥2) +

k
4

∫
R3

(
C1k1

2∣∣φ+∣∣2 + C1k2
2∣∣φ–∣∣2)dx

+
k
4

∫
R3

(
C2k1

5∣∣φ+∣∣5 + C2k2
5∣∣φ–∣∣5)dx +

k1
6

12

∫
R3

∣∣φ+∣∣6 dx +
k2

6

12

∫
R3

∣∣φ–∣∣6 dx

:= C∗,

where C∗ > 0 is a constant independent of b. So, as n is large enough, it follows that

C∗ + 1 ≥ Jk
bn (ubn ) = Jk

bn (ubn ) –
1
4
〈(

Jk
bn

)′(ubn ), ubn

〉 ≥ 1
4
‖ubn‖2.

Therefore, we can deduce Claim (a) from the above inequality.
Claim (b). System (1.11) possesses a nodal solution u0.
Since {ubn} is bounded in E, in the subsequence sense, there exists u0 ∈ E such that

ubn ⇀ u0 in E,

ubn → u0 in Lp(
R

3) for p ∈ (2, 6),

ubn → u0 a.e. in R
3. (3.14)



Liu and Zhang Boundary Value Problems        (2020) 2020:133 Page 25 of 28

Thanks to {ubn} being a least energy nodal solution of system (1.7) with b = bn, we have
that

∫
R3

(
a∇ubn · ∇v + V (x)ubn v

)
dx + bn

(∫
R3

|∇ubn |2 dx
)(∫

R3
∇ubn · ∇v dx

)

+ λ

∫
R3

φubn ubn v dx – k
∫
R3

f (ubn )v dx –
∫
R3

|ubn |4ubn v dx = 0 (3.15)

for any v ∈ C∞
c (R3). Combining (3.14), (3.15) with Claim (a), we have that

∫
R3

(
a∇u0 · ∇v + V (x)u0v

)
dx + λ

∫
R3

φu0 u0v dx

– k
∫
R3

f (u0)v dx –
∫
R3

|u0|4u0v dx = 0

for any v ∈ C∞
c (R3). It implies that u0 is a weak solution of the Kirchhoff equation (1.11).

We next deduce that u±
0 �= 0. Since ubn ∈Mk

bn
, we have

∥∥u±
bn

∥∥2 + bn

(∫
R3

∣∣∇u±
bn

∣∣2 dx
)2

+ bn

∫
R3

∇u±
bn

|2 dx ·
∫
R3

∣∣∇u∓
bn

∣∣2 dx)

+ λ

∫
R3

φu±
bn

∣∣u±
bn

∣∣2 dx + λ

∫
R3

φu∓
bn

∣∣u±
bn

∣∣2 dx

=
∫
R3

∣∣u±
bn

∣∣6 dx + k
∫
R3

f
(
u±

bn

)
u±

bn
dx.

Hence, by using Claim (a) and the continuous embedding E ↪→ L6(R3), we have ubn is
bounded in L6(R3), thus there exists k


2 > 0 such that, for all k ≥ k

2, we have that

ρ ≤ ∥∥u±
bn

∥∥2 ≤
∫
R3

∣∣u±
bn

∣∣6 dx + k
∫
R3

f
(
u±

bn

)
u±

bn
dx ≤ 2k

∫
R3

f
(
u±

bn

)
u±

bn
dx.

By using (2.4), we have that

0 <
∫
R3

f
(
u±

0
)
u±

0 dx.

Since u0 is a solution of system (1.11), we have that

∥∥u±
0
∥∥2 ≥ k

∫
R3

f
(
x, u±

0
)
u±

0 dx +
∫
R3

∣∣u±
0
∣∣6 dx ≥ k

∫
R3

f
(
u±

0
)
u±

0 dx > 0.

It implies u±
0 �= 0.

Claim (c). Problem (1.11) possesses a least energy nodal solution v0.
Similar to the proof of Theorem 1.1, there is k


3 > 0 such that, for all k ≥ k

3, problem

(1.11) possesses a least energy nodal solution v0, where J0
k (v0) = c0

k and (J0
k )′(v0) = 0. Let

k


 = max
{

k
, k

2, k


3
}

.
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According to Lemma 2.1, there exists a positive pair (sbn , tbn ) ∈ (0,∞) × (0,∞) such that
sbn v+

0 + tbn v–
0 ∈Mk

bn
. That is,

s2
bn

∥∥v+
0
∥∥2 + λs4

bn

∫
R3

φv+
0

∣∣v+
0
∣∣2 dx + λs2

bn t2
bn

∫
R3

φv–
0

∣∣v+
0
∣∣2 dx + bns4

bn

(∫
R3

∣∣∇v+
0
∣∣2 dx

)2

+ bns2
bn t2

bn

∫
R3

∣∣∇v+
0
∣∣2 dx ·

∫
R3

∣∣∇v–
0
∣∣2 dx

= s6
bn

∫
R3

∣∣v+
0
∣∣6 dx + k

∫
R3

f
(
sbn v+

0
)
sbn v+

0 dx (3.16)

and

t2
bn

∥∥v–
0
∥∥2 + λt4

bn

∫
R3

φv–
0

∣∣v–
0
∣∣2 dx + λs2

bn t2
bn

∫
R3

φv+
0

∣∣v–
0
∣∣2 dx + bnt4

bn

(∫
R3

∣∣∇v–
0
∣∣2 dx

)2

+ bns2
bn t2

bn

∫
R3

∣∣∇v+
0
∣∣2 dx ·

∫
R3

∣∣∇v–
0
∣∣2 dx

= t6
bn

∫
R3

∣∣v–
0
∣∣6 dx + k

∫
R3

f
(
tbn v–

0
)
tbn v–

0 dx. (3.17)

By recalling Claim (a), up to a subsequence, we can deduce sbn → s0 and tbn → t0, then it
follows from (3.16) and (3.17) that

s2
0‖v+

0‖2 + λs4
0

∫
R3

φv+
0
|v+

0 |2dx + λs2
0t2

0

∫
R3

φv–
0
|v+

0 |2

= s6
0

∫
R3

|v+
0 |6dx + k

∫
R3

f (s0v+
0 )s0v+

0 dx (3.18)

and

t2
0‖v–

0‖2 + λt4
0

∫
R3

φv–
0
|v–

0 |2 + λs2
0t2

0

∫
R3

φv+
0
|v–

0 |2

= t6
0

∫
R3

|v–
0 |6dx + k

∫
R3

f (t0v–
0 )t0v–

0 dx. (3.19)

Thanks to v0 being a weak solution of problem (1.11), we get

∥∥v+
0
∥∥2 + λ

∫
R3

φv+
0
|v+

0 |2 dx + λ

∫
R3

φv–
0
|v+

0 |2 dx

=
∫
R3

∣∣v+
0
∣∣6 dx + k

∫
R3

f
(
v+

0
)
v+

0 dx (3.20)

and

∥∥v–
0
∥∥2 + λ

∫
R3

φv–
0
|v–

0 |2 dx + λ

∫
R3

φv+
0
|v–

0 |2 dx

=
∫
R3

∣∣v–
0
∣∣6 dx + k

∫
R3

f
(
v–

0
)
v–

0 dx. (3.21)
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By comparing formulas (3.18)–(3.21), it is obvious that (s0, t0) = (1, 1). Similar to the proof
of Lemma 2.1, we have

J0
k (v0) ≤ J0

k (u0) = lim
n→∞ Jbn

k (ubn ) ≤ lim
n→∞ Jbn

k
(
sbn v+

0 + tbn v–
0
)

= J0
k
(
v+

0 + v–
0
)

= J0
k (v0).

The above inequality implies that u0 is a least energy nodal solution of problem (1.11). So
far, we have proved Theorem 1.3. �

Acknowledgements
The authors would like to thank the editor and referees for their valuable comments.

Funding
Partially supported by the NSF of China (11790271), Guangdong Basic and Applied basic Research Foundation
(2020A1515011019), Innovation and Development Project of Guangzhou University.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that there is no conflict of interest regarding the publication of this paper.

Authors’ contributions
The authors equally contributed in preparing this manuscript. All authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 23 April 2020 Accepted: 2 July 2020

References
1. Benci, V., Fortunato, D.: Solitary waves of nonlinear Klein–Gordon equation coupled with Maxwell equations. Rev.

Math. Phys. 14, 409–420 (2002)
2. Carrier, G.F.: On the non-linear vibration problem of the elastic string. Q. Appl. Math. 3, 157–165 (1945)
3. Chen, S., Tang, X.: Radial ground state sign-changing solutions for a class of asymptotically cubic or super-cubic

Schrödinger–Poisson type problems. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. (2018).
https://doi.org/10.1007/s13398-018-0493-0

4. Deng, Y., Peng, S., Shuai, W.: Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in
R

3 . J. Funct. Anal. 269 3500–3527 (2015)
5. Jiang, Y., Zhou, H.: Schrödinger–Poisson system with steep potential well. J. Differ. Equ. 251, 582–608 (2011)
6. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)
7. Li, F., Li, Y., Shi, J.: Existence of positive solutions to Schrödinger–Poisson type systems with critical exponent.

Commun. Contemp. Math. 16, 1450036, 28pp (2014)
8. Li, F., Song, Z., Zhang, Q.: Existence and uniqueness results for Kirchhoff-Schrödinger-Poisson system with general

singularity. Appl. Anal. 96, 2906–2916 (2017)
9. Li, G., Peng, S., Wang, C.: Multi-bump solutions for the nonlinear Schrödinger-Poisson system. J. Math. Phys. 52,

053505, 19pp (2011)
10. Liu, Y., Liu, C.: The ground state solutions for Kirchhoff–Schrödinger type equations with singular exponential

nonlinearities in R
N . Preprint

11. Liu, Z., Wang, Z., Zhang, J.: Infinitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system.
Ann. Mat. Pura. Appl. 4, 775–794 (2016)

12. Murcia, E., Siciliano, G.: Least energy radial sign-changing solution for the Schrödinger–Poisson system in R
3 under

an asymptotically cubic nonlinearity. J. Math. Anal. Appl. 474, 544–571 (2019)
13. Oplinger, D.: Frequency response of a nonlinear stretched string. J. Acoust. Soc. Am. 32, 1529–1538 (1960)
14. Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674

(2006)
15. Ruiz, D.: On the Schrödinger–Poisson–Slater system: behavior of minimizers, radial and nonradial cases. Arch. Ration.

Mech. Anal. 198, 349–368 (2010)
16. Sun, J., Wu, T., Feng, Z.: Multiplicity of positive solutions for a nonlinear Schrödinger-Poisson system. J. Differ. Equ. 260,

586–627 (2016)
17. Tang, X., Cheng, B.: Ground state sign-changing solutions for Kirchhoff type problems in bounded domains. J. Differ.

Equ. 261, 2384–2402 (2016)
18. Wang, D.: Least energy sign-changing solutions of Kirchhoff-type equation with critical growth. J. Math. Phys. 61,

011501 (2020). https://doi.org/10.1063/1.5074163
19. Wang, D., Li, T., Hao, X.: Least-energy sign-changing solutions for Kirchhoff–Schrödinger–Poisson systems in R

3 .
Bound. Value Probl. 2019, 75 (2019). https://doi.org/10.1186/s13661-019-1183-3

https://doi.org/10.1007/s13398-018-0493-0
https://doi.org/10.1063/1.5074163
https://doi.org/10.1186/s13661-019-1183-3


Liu and Zhang Boundary Value Problems        (2020) 2020:133 Page 28 of 28

20. Wang, D., Zhang, H., Guan, W.: Existence of least-energy sign-changing solutions for Schrödinger–Poisson system
with critical growth. J. Math. Anal. Appl. 479, 2284–2301 (2019)

21. Wang, J., Tian, L., Xu, J., Zhang, F.: Existence and concentration of positive solutions for semilinear
Schrödinger–Poisson systems in R

3 . Calc. Var. Partial Differ. Equ. 48, 243–273 (2013)
22. Wang, Z., Zhou, H.: Sign-changing solutions for the nonlinear Schrödinger–Poisson system in R

3 . Calc. Var. Partial
Differ. Equ. 52, 927–943 (2015)

23. Weth, T.: Energy bounds for entire nodal solutions of autonomous superlinear equations. Calc. Var. Partial Differ. Equ.
27, 421–437 (2006)

24. Willem, M.: Minimax Theorems. Birkhäuser, Bosten (1996)
25. Zhang, J., do Ó, J.M., Squassina, M.: Schrödinger–Poisson systems with a general critical nonlinearity. Commun.

Contemp. Math. 19, 1650028, 16pp (2017)
26. Zhao, L., Zhao, F.: Positive solutions for Schrödinger–Poisson equations with a critical exponent. Nonlinear Anal. 70,

2150–2164 (2009)
27. Zhao, G., Zhu, X., Li, Y.: Existence of infinitely many solutions to a class of Kirchhoff-Schrödinger-Poisson system. Appl.

Math. Comput. 256, 572–581 (2015)
28. Zhong, X., Tang, C.: Ground state sign-changing solutions for a Schrödinger–Poisson system with a 3-linear growth

nonlinearity. J. Math. Anal. Appl. 455, 1956–1974 (2017)
29. Zhong, X., Tang, C.: Ground state sign-changing solutions for a Schrödinger-Poisson system with a critical

nonlinearity in R
3 . Nonlinear Anal.: Real World Applications 39, 166–184 (2018)


	Ground state and nodal solutions for critical Kirchhoff-Schrodinger-Poisson systems with an asymptotically 3-linear growth nonlinearity
	Abstract
	Keywords

	Introduction and main results
	Some technical lemmas
	The proof of the main results
	The proof of Theorem 1.1
	The proof of Theorem 1.2
	Proof of Theorem 1.3

	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


