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Abstract
We introduce the investigation of approximate controllability for a new class of
nonlocal and noninstantaneous impulsive Hilfer fractional neutral stochastic
integrodifferential equations with fractional Brownian motion. An appropriate set of
sufficient conditions is derived for the considered system to be approximately
controllable. For the main results, we use fractional calculus, stochastic analysis,
fractional power of operators and Sadovskii’s fixed point theorem. At the end, an
example is also given to show the applicability of our obtained theory.
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1 Introduction
Fractional differential equations have received great attention due to their applications in
many important applied fields such as population dynamics, heat conduction in materials
with memory, seepage flow in porous media, autonomous mobile robots, fluid dynamics,
traffic models, electro magnetic, aeronautics, economics, and diffusion theory; see for in-
stance [1–3]. Moreover, stochastic perturbation is unavoidable in nature and hence it is
important and necessary to consider stochastic effect into the investigation of fractional
differential equations. Recently, stochastic fractional differential equations driven by frac-
tional Brownian motion have been considered greatly by research community in various
aspects due to its salient features for real world problems (see [4–10]). The theory of im-
pulsive differential equations and impulsive differential inclusions has wide applications
in control, electrical engineering, mechanics and biology [11]. In general, the classical in-
stantaneous impulses cannot describe certain dynamics of evolution processes. For ex-
ample, when we consider the hemodynamic equilibrium of a person, the introduction of
the drugs in the bloodstream and the consequent absorption for the body are gradual and
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continuous processes. In fact, the above situation can be characterized by a new case of
impulsive action, which starts at an arbitrary fixed point and stays active on a finite time in-
terval called noninstantaneous impulsive differential equations. Hernández and O’Regan
[12] and Pierri et al. [13] introduced some initial value problems for a new class of non-
instantaneous impulsive differential equations to describe some certain dynamic change
of evolution processes in the pharmacotherapy (as therapy using pharmaceutical drugs).
Very recently, Pierri et al. [14] studied the existence of global solutions for a class of impul-
sive abstract differential equations with non-instantaneous impulses. On the other hand,
controllability results for linear and nonlinear integer order differential systems was stud-
ied by several authors. The concept of controllability is an important part of mathematical
control theory. Generally speaking, controllability means that it is possible to steer a dy-
namical control system from an arbitrary initial state to an arbitrary final state using the
set of admissible controls. Controllability problems for different kinds of dynamical sys-
tems have been studied by several authors (see [15–18]) and the references therein. Thus,
the dynamical systems must be treated by the weaker concept of controllability, namely
approximate controllability. Many authors studied the approximate controllability, for ex-
ample, Sakthivel et al. studied the approximate controllability of nonlinear fractional dy-
namical systems (see [19]). Sakthivel et al. obtained sufficient conditions for the approxi-
mate controllability of fractional nonlinear differential inclusions (see [20]). Sakthivel et al.
obtained sufficient conditions for the approximate controllability of fractional stochastic
differential inclusions with nonlocal conditions (see [21]). Debbouche and Torres estab-
lished sufficient conditions for the approximate controllability of fractional delay dynamic
inclusions with nonlocal control conditions (see [22]). Ahmed studied the approximate
controllability of impulsive neutral stochastic differential equations with fractional Brow-
nian motion in a Hilbert space (see [23]). Muthukumar and Rajivganthi obtained sufficient
conditions for the approximate controllability of second-order neutral stochastic differen-
tial equations with infinite delay and Poisson jumps (see [24]). Yan and Jia established suffi-
cient conditions for the approximate controllability of partial fractional neutral stochastic
functional integrodifferential inclusions with state-dependent delay (see [25]). Yana and
Lu studied the approximate controllability of a multi-valued fractional impulsive stochas-
tic partial integrodifferential equation with infinite delay (see [26]). Very recently, a new set
of sufficient conditions are established in [27] for the approximate controllability of a class
of semilinear Hilfer fractional differential control inclusions in Banach spaces by using the
fractional calculus, fixed point technique, semigroup theory and multi-valued analysis.
Moreover, up to now no work has been reported yet regarding the approximate controlla-
bility results for noninstantaneous impulsive Hilfer fractional stochastic integrodifferen-
tial equations with fractional Brownian motion, which motivates the present study. The
purpose of this paper is to study the approximate controllability of noninstantaneous im-
pulsive semilinear Hilfer fractional stochastic integrodifferential equations with fractional
Brownian motion and nonlocal conditions in a Hilbert space of the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dν,μ
0+ [x(t) + F(t, x(t), x(b1(t)), . . . , x(bm(t)))] + Ax(t)

= Bu(t) +
∫ t

0 G(s, x(s), x(a1(s)), . . . , x(ak(s))) dω(s)

+ σ (t, x(t), x(c1(t)), . . . , x(cp(t))) dBH

dt , t ∈ (si, ti+1], i ∈ [0, m],

x(t) = gi(t, x(t)), t ∈ (ti, si], i ∈ [1, m],

I(1–ν)(1–μ)
0+ x(0) + ξ (x) = x0,

(1.1)
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where Dν,μ
0+ is the Hilfer fractional derivative with 0 ≤ ν ≤ 1, 0 < μ < 1, –A is the infinites-

imal generator of an analytic semigroup of bounded linear operators S(t), t ≥ 0, on a sep-
arable Hilbert space X with inner product 〈·, ·〉 and norm ‖ · ‖ and the control function
u(·) is given in L2(J , U), the Hilbert space of admissible control functions with U a Hilbert
space, J = (0.T]. The symbol B stands for a bounded linear from U into X, ti, si are fixed
number satisfying 0 = s0 < t1 ≤ s1 ≤ t2 < · · · < sm–1 < tm ≤ sm ≤ tm+1 = T and gi is nonin-
stantaneous impulsive function for all i = 1, 2, . . . , m. Let K be another separable Hilbert
space with inner product 〈·, ·〉K and norm ‖ · ‖K . Suppose {ω(t)}t≥0 is Q-Wiener process
defined on (Ω ,Υ , {Υt}t≥0, P) with values in Hilbert space K and {BH (t)}t≥0 is Q-fractional
Brownian motion (fBm) with Hurst parameter H ∈ ( 1

2 , 1) defined on (Ω ,Υ , {Υt}t≥0, P) with
values in Hilbert space Y . We are also employing the same notation ‖ · ‖ for the norm in
X, K , Y , L(K , X) and L(Y , X) where L(K , X) and L(Y , X) denote, respectively, the space of
all bounded linear operators from K into X and Y into X. The functions F , G, σ , gi and ξ

are given functions to be defined later.
The main contributions of this paper are summarized as follows:
• The study of approximate controllability of noninstantaneous impulsive semilinear

Hilfer fractional stochastic integrodifferential equations with fractional Brownian
motion and nonlocal conditions described in the form (1.1) is an untreated topic in
the literature and this is an additional motivation for writing this paper.

• Using methods of functional analysis, a set of sufficient conditions are proposed for
approximate controllability.

• The results are established with the use of semigroup theory, fractional calculus and
stochastic analysis.

• The application is demonstrated through an example of stochastic control Hilfer
fractional partial differential equation with fractional Brownian motion.

2 Preliminaries
In this section, some definitions and results are given which will be used throughout this
paper.

Definition 2.1 ([28]) The left-sided Riemann–Liouville fractional integral of order μ > 0
with the lower limit a for a function f : [a,∞) → R is defined as

Iμ
a+f (t) =

1
Γ (μ)

∫ t

a

f (s)
(t – s)1–μ

ds, t > a,μ > 0,

provided that the right side is pointwise defined on [a,∞), where Γ (·) is the Gamma func-
tion.

Definition 2.2 (Hilfer fractional derivative [29]) The left-sided Hilfer fractional derivative
of order 0 ≤ ν ≤ 1 and 0 < μ < 1 of function f (t) is defined as

Dν,μ
a+ f (t) = Iν(1–μ)

a+
d
dt

I(1–ν)(1–μ)
a+ f (t),

where D := d
dt .
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Let (Ω ,Υ , P) be a complete probability space equipped with a normal filtration Υt , t ∈
[0, T] where Υt is the σ -algebra generated by random variables {ω(s), BH(s), s ∈ [0, T]} and
all P-null sets.

Suppose that {βH (t), t ∈ [0, T]} is the one-dimensional fractional Brownian motion with
Hurst parameter H ∈ (1/2, 1). That is, βH is a centered Gaussian process with covariance
function RH(s, t) = 1

2 (t2H + s2H – |t – s|2H ) (see [30]).
Consider the Wiener process ω = ω(t), t ∈ [0, T] defined by ω(t) = βH ((K∗

H )–11[0,T]) then
ω is a Wiener process. Moreover, βH has the following Wiener integral representation:

βH (t) =
∫ t

0
KH (t, s) dω(s)

where KH (t, s) is the kernel given by

KH (t, s) = cH s
1
2 –H

∫ t

s
(v – s)H– 3

2 vH– 1
2 du

for s < t, where cH =
√

H(2H–1)
β(2–2H,H– 1

2 )
and

β(p, q) =
∫ 1

0
tp–1(1 – t)q–1, p > 0, q > 0.

We put KH (t, s) = 0 if t ≤ s.
We will denote by ζ the reproducing kernel Hilbert space of the fBm. In fact ζ is the

closure of set of indicator functions {1[0,T], t ∈ [0, T]} with respect to the scalar product
〈1[0,t], 1[0,s]〉ζ = RH (t, s).

The mapping 1[0,T] → βH (t) can be extended to an isometry from ζ onto the first Wiener
chaos and we will denote by βH (ϕ) the image of ϕ under this isometry.

We recall that for ψ ,ϕ ∈ ζ their scalar product in ζ is given by

〈ψ ,ϕ〉ζ = H(2H – 1)
∫ T

0

∫ T

0
ψ(s)ϕ(t)|t – s|2H–2 ds dt.

Let us consider the operator K∗ from ζ to L2([0, T]) defined by

(
K∗

Hϕ
)
(s) =

∫ T

s
ϕ(t)

∂KH

∂t
(t, s) dt.

Let Q ∈ L(Y , Y ) be an operator defined by Qen = λnen with finite trace

Tr Q =
∞∑

n=1

λn < ∞, λn ≥ 0 (n = 1, 2, . . .),

are non-negative real numbers and {en}∞n=1 is a complete orthonormal basis in Y .
We define the infinite-dimensional fBm on Y with covariance Q as

BH (t) = BH
Q (t) =

∞∑

n=1

√
λnenβ

H
n (t),
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where βH
n (t) are standard fBms mutually independent on (Ω ,Υ , P). In order to define

Wiener integrals with respect to the Q-fBm, we introduce the space L0
2 := L0

2(Y , X) of all
Q-Hilbert Schmidt operators ψ : Y → X. We recall that ψ ∈ L(Y , X) is called a Q-Hilbert–
Schmidt operator, if

‖ψ‖2
L0

2
:=

∞∑

n=1

‖√λnψen‖2 < ∞

and that the space L0
2 equipped with the inner product 〈ϕ,ψ〉L0

2
=

∑∞
n=1〈ϕen,ψen〉 is a sep-

arable Hilbert space.
Let φ(s); s ∈ [0, T] be a function with values in L0

2(Y , X), the Wiener integral of φ with
respect to BH is defined by

∫ t

0
φ(s) dBH(s) =

∞∑

n=1

∫ t

0

√
λnφ(s)en dβH

n =
∞∑

n=1

∫ t

0

√
λnK∗(φen)(s) dβn(s), (2.1)

where βn is the standard Brownian motion.

Lemma 2.1 (see [4]) If ψ : [0, T] → L0
2(Y , X) satisfies

∫ T
0 ‖ψ(s)‖2

L0
2

< ∞ then the above sum
in (2.1) is well defined as X-valued random variable and we have

E
∥
∥
∥
∥

∫ t

0
ψ(s) dBH(s)

∥
∥
∥
∥

2

≤ 2Ht2H–1
∫ t

0

∥
∥ψ(s)

∥
∥2

L0
2

ds.

We suppose that 0 ∈ ρ(A), the resolvent set of A, and ‖S(t)‖ ≤ M for some constant
M ≥ 1 and every t ≥ 0. We define the fractional power A–γ by

A–γ =
1

Γ (γ )

∫ ∞

0
tγ –1S(t) dt, γ > 0.

For γ ∈ (0, 1], Aγ is a closed linear operator on its domain D(Aγ ). Furthermore, the sub-
space D(Aγ ) is dense in X. We will introduce the following basic properties of Aγ .

Theorem 2.1 (see [31])
(1) Let 0 < γ ≤ 1, then Xγ := D(Aγ ) is a Banach space with the norm ‖x‖γ = ‖Aγ x‖,

x ∈ Xγ .
(2) If 0 < β < γ ≤ 1, then D(Aγ ) ↪→ D(Aβ ) and the embedding is compact whenever the

resolvent operator of A is compact.
(3) For every 0 < γ ≤ 1, there exists a positive constant Cγ such that

∥
∥Aγ S(t)

∥
∥ ≤ Cγ

tγ
, 0 < t ≤ T .

The collection of all strongly-measurable, square-integrable, X-valued random vari-
ables, denoted by L2(Ω , X), is a Banach space equipped with norm

∥
∥x(·)∥∥L2(Ω ,X) =

(
E
∥
∥x(·,ω)

∥
∥2) 1

2 ,

where the expectation, E is defined by E(x) =
∫

Ω
x(ω) dP.
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Let C(J , L2(Ω , X)) be the Banach space of all continuous maps from J into L2(Ω , X) sat-
isfying the condition supt∈J E‖x(t)‖2 < ∞.

Define C̄ = {x : t(1–ν)(1–μ)x(t) ∈ C(J , L2(Ω , X))}, with norm ‖ · ‖C̄ defined by

‖ · ‖C̄ =
(

sup
t∈J

E
∣
∣t(1–ν)(1–μ)x(t)

∣
∣2

) 1
2 .

Obviously, C̄ is a Banach space.
We impose the following conditions on data of the problem:
(H1) F : J × Xm+1 → X is a continuous function, and there exist a constant β ∈ (0, 1) and

M1, M2 > 0 such that the function (–A)βF satisfies the Lipschitz condition:

E
∥
∥AβF(s1, x0, x1, . . . , xm)–AβF(s2, y0, y1, . . . , ym)

∥
∥2 ≤ M1

(
|s1 –s2|+ max

i=0,1,...,m
E‖xi –yi‖2

)
,

for 0 ≤ s1, s2 ≤ b, xi, yi ∈ X , i = 0, 1, . . . , m and the inequality

E
∥
∥AβF(t, x0, x1, . . . , xm)

∥
∥2 ≤ M2

(
max

i=0,1,...,m
E‖xi‖2 + 1

)
(2.2)

holds for (t, x0, x1, . . . , xm) ∈ J × Xm+1.
(H2) The function G : J × Xk+1 → L(K , X) satisfies the following conditions:

(i) for each t ∈ J , the function G(t, ·) : Xk+1 → L(K , X) is continuous and for
each (x0, x1, . . . , xn) ∈ Xn+1; the function G(·, x0, x1, . . . , xk) : J → L(K , X) is Υt-
measurable;

(ii) for each positive number q ∈ N , there is a positive function hq(·) : (0, T] → R+

such that

sup
‖x0‖2,...,‖xn‖2≤q

∫ t

0
E
∥
∥G(s, x0, x1, . . . , xk)

∥
∥2

Q ds ≤ hq(t),

the function s → (t – s)μ–1hq(s) ∈ L1((0, T], R+) and there exists a Λ1 > 0 such
that

lim
q→∞ inf

∫ t
0 (t – s)μ–1hq(s) ds

q
= Λ1 < ∞, t ∈ (0, T].

(H3) The function σ : J × Xp+1 → L0
2(Y , X) satisfies the following conditions:

(i) for each t ∈ J , the function σ (t, ·) : Xp+1 → L0
2(Y , X) is continuous and for

each (x0, x1, . . . , xp) ∈ Xp+1; the function σ (·, x0, x1, . . . , xp) : J → L0
2(Y , X) is

Υt-measurable;
(ii) for each positive number q ∈ N , there is a positive function h̄q(·) : (0, T] → R+

such that

sup
‖x0‖2,...,‖xn‖2≤q

E
∥
∥σ (t, x0, x1, . . . , xp)

∥
∥2

L0
2
≤ h̄q(t),

the function s → (t – s)μ–1h̄q(s) ∈ L1((0, T], R+) and there exists a Λ2 > 0 such
that

lim
q→∞ inf

∫ t
0 (t – s)μ–1h̄q(s) ds

q
= Λ2 < ∞, t ∈ (0, T],
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(H4) The function gi : (ti, si] × X → X is continuous and satisfies the following two con-
ditions:

(i) There exists a constant M3 > 0, such that

E
∥
∥gi(t, x)

∥
∥2 ≤ M3E‖x‖2, ∀x ∈ X; t ∈ (ti, si], i = 1, 2, . . . , m.

(ii) There exists a constant M6 > 0, such that

E
∥
∥gi(t, x1) – gi(t, x2)

∥
∥2 ≤ M6E‖x1 – x2‖2, ∀x1, x2 ∈ X; t ∈ (ti, si], i = 1, 2, . . . , m.

(H5) The function ξ : C(J , X) → X satisfies the following two conditions:
(i) There exist positive constants M4 and M5 such that

E
∥
∥ξ (x)

∥
∥2 ≤ M4E‖x‖2 + M5 ∀x ∈ X;

(ii) There exists a constant M7 > 0, such that

E
∥
∥ξ (x1) – ξ (x2)

∥
∥2 ≤ M7E‖x1 – x2‖2, ∀x1, x2 ∈ X.

Theorem 2.2 Let Φ be a condensing operator on a Banach space X, that is, Φ is continuous
and takes bounded sets into bounded sets, and μ(Φ(B̄)) ≤ μ(B̄) for every bounded set B̄ of
X with μ(B̄) > 0. If Φ(Z) ⊂ Z for a convex, closed and bounded set Z of X, then Φ has a
fixed point in X (where μ(·) denotes Kuratowski’s measure of noncompactness).

Definition 2.3 An Υt-adapted stochastic process x(t) : J → X is said to be a mild solution
of problem (1.1) if x0 ∈ X for each s ∈ [0, T) the function APμ(t – s)F(s, x(s), x(b1(s)), . . . ,
x(bm(s))) is integrable and the following stochastic integral equation is verified:

x(t) = Sν,μ(t)
[
x0 – ξ (x) + F

(
0, x(0), x

(
b1(0)

)
, . . . , x

(
bm(0)

))]

– F
(
t, x(t), x

(
b1(t)

)
, . . . , x

(
bm(t)

))

–
∫ t

0
APμ(t – s)F

(
s, x(s), x

(
b1(s)

)
, . . . , x

(
bm(s)

))
ds +

∫ t

0
Pμ(t – s)Bu(s) ds

+
∫ t

0
Pμ(t – s)

∫ s

0
G

(
τ , x(τ ), x

(
a1(τ )

)
, . . . , x

(
ak(τ )

))
dω(τ ) ds

+
∫ t

0
Pμ(t – s)σ

(
s, x(s), x

(
c1(s)

)
, . . . , x

(
cp(s)

))
dBH (s), t ∈ (0, t1],

x(t) = gi
(
t, x(t)

)
, t ∈ (ti, si], i = 1, 2, . . . , m, (2.3)

x(t) = Sν,μ(t – si)gi
(
si, x(si)

)
– F

(
t, x(t), x

(
b1(t)

)
, . . . , x

(
bm(t)

))

–
∫ t

si

APμ(t – s)F
(
s, x(s), x

(
b1(s)

)
, . . . , x

(
bm(s)

))
ds +

∫ t

si

Pμ(t – s)Bu(s) ds

+
∫ t

si

Pμ(t – s)
∫ s

0
G

(
τ , x(τ ), x

(
a1(τ )

)
, . . . , x

(
ak(τ )

))
dω(τ ) ds

+
∫ t

si

Pμ(t – s)σ
(
s, x(s), x

(
c1(s)

)
, . . . , x

(
cp(s)

))
dBH (s),

t ∈ (si, ti+1], i = 1, 2, . . . , m,
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where

Sν,μ(t) = Iν(1–μ)
0+ Pμ(t),

Pμ(t) = tμ–1Tμ(t),

Tμ(t) =
∫ ∞

0
μθΨμ(θ )S

(
tμθ

)
dθ ,

(2.4)

where

Ψμ(θ ) =
∞∑

n=1

(–θ )n–1

(n – 1)!Γ (1 – nμ)
, 0 < μ < 1, θ ∈ (0,∞),

is a function of Wright-type which satisfies the following inequality
∫ ∞

0 θτΨμ(θ ) dθ =
Γ (1+τ )

Γ (1+μτ ) for θ ≥ 0.

Lemma 2.2 (see [32]) The operator Sν,μ and Pμ have the following properties.
(i) {Pμ(t) : t > 0} is continuous in the uniform operator topology.

(ii) For any fixed t > 0, Sν,μ(t) and Pμ(t) are linear and bounded operators, and

∥
∥Pμ(t)x

∥
∥ ≤ Mtμ–1

Γ (μ)
‖x‖,

∥
∥Sν,μ(t)x

∥
∥ ≤ Mt(ν–1)(1–μ)

Γ (ν(1 – μ) + μ)
‖x‖. (2.5)

(iii) {Pμ(t) : t > 0} and {Sν,μ(t) : t > 0} are strongly continuous.

Lemma 2.3 For any x ∈ X, β ∈ (0, 1) and δ ∈ (0, 1], we have ATμ(t)x = A1–βTμ(t)Aβx, 0 ≤
t ≤ T and

∥
∥AδTμ(t)x

∥
∥ ≤ μCδΓ (2 – δ)

tδμΓ (1 + μ(1 – δ))
‖x‖, 0 < t ≤ T .

In order to study the approximate controllability for the fractional control system (1.1),
we introduce the following linear fractional differential system

⎧
⎨

⎩

Dν,μ
0+ x(t) + Ax(t) = Bu(t), t ∈ (0, T],

I(1–ν)(1–μ)
0+ x(0) = x0.

(2.6)

It is convenient at this point to introduce the operators associated with (2.6) as

Γ T
0 =

∫ T

0
(T – s)μ–1Tμ(T – s)BB∗T∗

μ(T – s) ds,

and R(T ,Γ T
0 ) = (TI + Γ T

0 )–1, T > 0, where B∗ and T∗
μ denote the adjoint of B and Tμ, re-

spectively.
Let x(T ; x0, u) be the state value of (1.1) at terminal state T , corresponding to the control

u and the initial value x0. Denote by R(T , x0) = {x(T ; x0, u) : u ∈ L2(J , U)} the reachable set
of system (1.1) at terminal time T, its closure in X is denoted by R(T , x0)

Definition 2.4 The system (1.1) is said to be approximately controllable on the interval J
if R(T , x0) = L2(Ω , X).
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Lemma 2.4 (see [20]) The fractional linear control system (2.6) is approximately control-
lable on J if and only if z(zI + Γ T

0 )–1 → 0 as z → 0+.

Lemma 2.5 For any x̄T ∈ L2(Ω , X) there exist ψ̄ and ϕ̄ ∈ L2(Ω ; L2(J ; L0
2)) such that

x̄T = Ex̄T +
∫ T

0
ψ̄(s) dω(s) +

∫ T

0
ϕ̄(s) dBH(s).

Now for any δ > 0 and x̄T ∈ L2(Ω , X), we define the control function in the following
form

uδ(t) = B∗T∗
μ(T – t)

(
zI + Γ T

0
)–1

×
{

Ex̄T – Sν,μ(T)
[
x0 – ξ (x) + F

(
0, x(0), x

(
b1(0)

)
, . . . , x

(
bm(0)

))]

– F
(
T , x(T), x

(
b1(T)

)
, . . . , x

(
bm(T)

))
+

∫ T

0
ψ̄(s) dω(s) +

∫ T

0
ϕ̄(s) dBH(s)

}

– B∗T∗
μ(T – t)

∫ T

0

(
zI + Γ T

0
)–1Pμ(T – s)AF

(
s, x(s), x

(
b1(s)

)
, . . . , x

(
bm(s)

))
ds

– B∗T∗
μ(T – t)

∫ T

0

(
zI + Γ T

0
)–1Pμ(T – s)

×
∫ s

0
G

(
τ , x(τ ), x

(
a1(τ )

)
, . . . , x

(
ak(τ )

))
dω(τ ) ds

– B∗T∗
μ(T – t)

∫ T

0

(
zI + Γ T

0
)–1Pμ(T – s)

× σ
(
s, x(s), x

(
c1(s)

)
, . . . , x

(
cp(s)

))
dBH (s), t ∈ (0, t1],

(2.7)

uδ(t) = B∗T∗
μ(T – t)

(
zI + Γ T

0
)–1

{

Ex̄T – Sν,μ(T – si)gi
(
si, x(si)

)

– F
(
T , x(T), x

(
b1(T)

)
, . . . , x

(
bm(T)

))
+

∫ T

0
ψ̄(s) dω(s) +

∫ T

0
ϕ̄(s) dBH(s)

}

– B∗T∗
μ(T – t)

∫ T

si

(
zI + Γ T

0
)–1Pμ(T – s)AF

(
s, x(s), x

(
b1(s)

)
, . . . , x

(
bm(s)

))
ds

– B∗T∗
μ(T – t)

∫ T

si

(
zI + Γ T

0
)–1Pμ(T – s)

×
∫ s

0
G

(
τ , x(τ ), x

(
a1(τ )

)
, . . . , x

(
ak(τ )

))
dω(τ ) ds

– B∗T∗
μ(T – t)

∫ T

si

(
zI + Γ T

0
)–1Pμ(T – s)

× σ
(
s, x(s), x

(
c1(s)

)
, . . . , x

(
cp(s)

))
dBH (s), t ∈ (si, ti+1].

3 Approximate controllability
In this section, we formulate sufficient conditions for the approximate controllability of
the system (1.1). For this purpose, we first prove the existence of a mild solution for the
system (1.1). Second we shall prove the system (1.1) is approximately controllable under
certain assumptions.
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Theorem 3.1 If the assumptions (H1)–(H5) are satisfied, then the system (1.1) has a mild
solution on J , provided that

[

1 +
M4T2μM4

B
z2μ2Γ 4(μ)

]{
36M2(M2

0M2 + M3 + M4)
Γ 2(ν(1 – μ) + μ)

+ 36T2(1–ν)(1–μ)
[

M0
2M2 +

M2TμΛ1 Tr(Q)
μΓ 2(μ)

+
2HM2Λ2T2H+μ–1

μΓ 2(μ)
+

(C1–β)2Γ 2(1 + β)T2μβM2

β2Γ 2(1 + μβ)

]}

+ T2(1–ν)(1–μ)M3 < 1 (3.1)

and

γ1 = 9
[

M2(M0
2M1 + M6 + M7)

Γ 2(ν(1 – μ) + μ)
+ T2(1–ν)(1–μ)(M6 + M0

2M1
)

+
M1(C1–β)2Γ 2(1 + β)T2μβ+2(1–ν)(1–μ)

β2Γ 2(1 + μβ)

]

(3.2)

< 1, (3.3)

where M0 = ‖A–β‖ and MB = ‖B‖.

Proof For any δ > 0, consider the map Φδ on C̄ defined by

(Φδx)(t) = Sν,μ(t)
[
x0 – ξ (x) + F

(
0, x(0), x

(
b1(0)

)
, . . . , x

(
bm(0)

))]

– F
(
t, x(t), x

(
b1(t)

)
, . . . , x

(
bm(t)

))

–
∫ t

0
APμ(t – s)F

(
s, x(s), x

(
b1(s)

)
, . . . , x

(
bm(s)

))
ds +

∫ t

0
Pμ(t – s)Buδ(s) ds

+
∫ t

0
Pμ(t – s)

∫ s

0
G

(
τ , x(τ ), x

(
a1(τ )

)
, . . . , x

(
ak(τ )

))
dω(τ ) ds

+
∫ t

0
Pμ(t – s)σ

(
s, x(s), x

(
c1(s)

)
, . . . , x

(
cp(s)

))
dBH (s), t ∈ (0, t1],

(Φδx)(t) = gi
(
t, x(t)

)
, t ∈ (ti, si], i = 1, 2, . . . , m,

(Φδx)(t) = Sν,μ(t – si)gi
(
si, x(si)

)
– F

(
t, x(t), x

(
b1(t)

)
, . . . , x

(
bm(t)

))

–
∫ t

si

APμ(t – s)F
(
s, x(s), x

(
b1(s)

)
, . . . , x

(
bm(s)

))
ds +

∫ t

si

Pμ(t – s)Buδ(s) ds

+
∫ t

si

Pμ(t – s)
∫ s

0
G

(
τ , x(τ ), x

(
a1(τ )

)
, . . . , x

(
ak(τ )

))
dω(τ ) ds

+
∫ t

si

Pμ(t – s)σ
(
s, x(s), x

(
c1(s)

)
, . . . , x

(
cp(s)

))
dBH (s),

t ∈ (si, ti+1], i = 1, 2, . . . , m.

We shall show that the operator Φδ has a fixed point, which then is a solution of system
(1.1).

For each positive integer q, set Bq = {x ∈ C̄,‖x‖2
C̄ ≤ q}.
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Then, for each q, Bq ⊂ C̄ is clearly a bounded closed convex set in C̄. From Lemma 2.2,
Lemma 2.3 and (2.2) together with the Hölder inequality,

E
∥
∥
∥
∥

∫ t

0
APμ(t – s)F

(
s, x(s), x

(
b1(s)

)
, . . . , x

(
bm(s)

))
ds

∥
∥
∥
∥

2

≤ E
[∫ t

0

∥
∥A1–βPμ(t – s)AβF

(
s, x(s), x

(
b1(s)

)
, . . . , x

(
bm(s)

))∥
∥ds

]2

≤ μ2(C1–β )2Γ 2(1 + β)
Γ 2(1 + μβ)

∫ t

0
(t – s)μβ–1 ds

×
∫ t

0
(t – s)μβ–1E

∥
∥AβF

(
s, x(s), x

(
b1(s)

)
, . . . , x

(
bm(s)

))∥
∥2 ds

≤ μ(C1–β)2Γ 2(1 + β)TμβM2

βΓ 2(1 + μβ)

∫ t

0
(t – s)μβ–1

(
max

i=1,2,...,m
E‖xi‖2 + 1

)
ds. (3.4)

It follows that APμ(t – s)F(s, x(s), x(b1(s)), . . . , x(bm(s))) is integrable on J , by Bochner’s the-
orem [33] so Φδ is well defined on Bq.

From (H2)(ii) together with Burkholder Gundy’s inequality, we obtain

E
∥
∥
∥
∥

∫ t

0
Pμ(t – s)

∫ s

0
G

(
τ , x(τ ), x

(
a1(τ )

)
, . . . , x

(
an(τ )

))
dω(τ ) ds

∥
∥
∥
∥

2

≤ Tr(Q)
M2Tμ

μΓ 2(μ)

∫ t

0
(t – s)μ–1

×
(

sup
‖x0‖2,...,‖xn‖2≤q

∫ s

0
E
∥
∥G

(
τ , x(τ ), x

(
a1(τ )

)
, . . . , x

(
ak(τ )

))∥
∥2

Q dτ

)

ds

≤ Tr(Q)
M2Tμ

μΓ 2(μ)

∫ t

0
(t – s)μ–1hq(s) ds. (3.5)

Similarly from (H3)(ii) together with Burkholder Gundy’s inequality, we obtain

E
∥
∥
∥
∥

∫ t

0
Pμ(t – s)σ

(
s, x(s), x

(
c1(s)

)
, . . . , x

(
cp(s)

))
dBH (s)

∥
∥
∥
∥

2

≤ 2HM2T2H+μ–1

μΓ 2(μ)

∫ t

0
(t – s)μ–1

× sup
‖x0‖2,...,‖xn‖2≤q

E
∥
∥σ

(
s, x(s), x

(
c1(s)

)
, . . . , x

(
cp(s)

))∥
∥2

L0
2

ds

≤ 2HM2T2H+μ–1

μΓ 2(μ)

∫ t

0
(t – s)μ–1h̄q(s) ds. (3.6)

Also, by using (H1)–(H5) together with Hölder inequality, we obtain

E
∥
∥
∥
∥

∫ t

0
Pμ(t – s)Buδ(s) ds

∥
∥
∥
∥

2

= E
∥
∥
∥
∥

∫ t

0
(t – s)μ–1Tμ(t – s)Buδ(s) ds

∥
∥
∥
∥

2

≤ M2TμM2
B

μΓ 2(μ)

∫ t

0
(t – s)μ–1E

∥
∥uδ(s)

∥
∥2 ds
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where, for t ∈ (0, t1],

E
∥
∥uδ(s)

∥
∥2

≤ M2
BM2

z2Γ 2(μ)

{

E‖x̄T‖2 +
M2T2(ν–1)(1–μ)

Γ 2(ν(1 – μ) + μ)
[
E
∥
∥x(0)

∥
∥2 + M4q + M5 + M2

0M2(q + 1)
]

+ M2
0M2(q + 1) + Tr(Q)

∫ T

0
E
∥
∥ψ̄(s)

∥
∥2

Q ds + 2HT2H–1
∫ T

0
E
∥
∥ϕ̄(s)

∥
∥2

L0
2

ds
}

+
M2

BM2

z2Γ 2(μ)

{
(C1–β)2Γ 2(1 + β)T2μβM2

β2Γ 2(1 + μβ)
(q + 1)

+ Tr(Q)
M2Tμ

μΓ 2(μ)

∫ T

0
(T – s)μ–1hq(s) ds +

2HM2T2H+μ–1

μΓ 2(μ)

∫ T

0
(T – s)μ–1h̄q(s) ds

}

,

and for t ∈ (si, ti+1]

E
∥
∥uδ(s)

∥
∥2

≤ M2
BM2

z2Γ 2(μ)

{

E‖x̄T‖2 +
M2T2(ν–1)(1–μ)

Γ 2(ν(1 – μ) + μ)
M3q + M2

0M2(q + 1)

+ Tr(Q)
∫ T

0
E
∥
∥ψ̄(s)

∥
∥2

Q ds + 2HT2H–1
∫ T

0
E
∥
∥ϕ̄(s)

∥
∥2

L0
2

ds
}

+
M2

BM2

z2Γ 2(μ)

{
(C1–β)2Γ 2(1 + β)T2μβM2

β2Γ 2(1 + μβ)
(q + 1)

+ Tr(Q)
M2Tμ

μΓ 2(μ)

∫ T

si

(T – s)μ–1hq(s) ds

+
2HM2T2H+μ–1

μΓ 2(μ)

∫ T

si

(T – s)μ–1h̄q(s) ds
}

,

thus, we have

E
∥
∥
∥
∥

∫ t

0
Pμ(t – s)Buδ(s) ds

∥
∥
∥
∥

2

≤ M4T2μM4
B

z2μ2Γ 4(μ)

{

E‖x̄T‖2 +
M2T2(ν–1)(1–μ)

Γ 2(ν(1 – μ) + μ)
[
E
∥
∥x(0)

∥
∥2

+ M4q + M5 + M2
0M2(q + 1)

]
+ M2

0M2(q + 1)

+ Tr(Q)
∫ T

0
E
∥
∥ψ̄(s)

∥
∥2

Q ds + 2HT2H–1
∫ T

0
E
∥
∥ϕ̄(s)

∥
∥2

L0
2

ds

+
(C1–β)2Γ 2(1 + β)T2μβM2

β2Γ 2(1 + μβ)
(q + 1)

+ Tr(Q)
M2Tμ

μΓ 2(μ)

∫ T

0
(T – s)μ–1hq(s) ds

+
2HM2T2H+μ–1

μΓ 2(μ)

∫ T

0
(T – s)μ–1h̄q(s) ds

}

, t ∈ (0, t1], (3.7)
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E
∥
∥
∥
∥

∫ t

si

Pμ(t – s)Buδ(s) ds
∥
∥
∥
∥

2

≤ M4T2μM4
B

z2μ2Γ 4(μ)

{

E‖x̄T‖2 +
M2T2(ν–1)(1–μ)

Γ 2(ν(1 – μ) + μ)
M3q

+ M2
0M2(q + 1) + Tr(Q)

∫ T

0
E
∥
∥ψ̄(s)

∥
∥2

Q ds + 2HT2H–1
∫ T

0
E
∥
∥ϕ̄(s)

∥
∥2

L0
2

ds

+
(C1–β)2Γ 2(1 + β)T2μβM2

β2Γ 2(1 + μβ)
(q + 1) + Tr(Q)

M2Tμ

μΓ 2(μ)

∫ T

si

(T – s)μ–1hq(s) ds

+
2HM2T2H+μ–1

μΓ 2(μ)

∫ T

si

(T – s)μ–1h̄q(s) ds
}

, t ∈ (si, ti+1].

We claim that there exists a positive number q such that Φδ(Bq) ⊆ Bq. If it is not true,
then, for each positive number q, there is a function xq(·) ∈ Bq, but Φδ(xq) /∈ Bq, that is
‖(Φδxq)(t)‖2

C̄ > q for some t = t(q) ∈ J , where t(q) denotes that t is dependent of q. However,
from (H4)–(H5) and Eqs. (2.2), (3.4), (3.5), (3.6) and (3.7), we have for t ∈ (0, t1]

‖Φδxq‖2
C̄

≤ 36 sup
t∈J

t2(1–ν)(1–μ)
{

E
∥
∥Sν,μ(t)

[
x0 + ξ (x) + F

(
0, x(0), x

(
b1(0)

)
, . . . , x

(
bm(0)

))]∥
∥2

+ E
∥
∥F

(
t, x(t), x

(
b1(t)

)
, . . . , x

(
bm(t)

))∥
∥2

+ E
∥
∥
∥
∥

∫ t

0
APμ(t – s)F

(
t, x(t), x

(
b1(t)

)
, . . . , x

(
bm(t)

))
ds

∥
∥
∥
∥

2

+ E
∥
∥
∥
∥

∫ t

0
Pμ(t – s)Buδ(s) ds

∥
∥
∥
∥

2

+ E
∥
∥
∥
∥

∫ t

0
Pμ(t – s)

∫ s

0
G

(
τ , x(τ ), x

(
a1(τ )

)
, . . . , x

(
ak(τ )

))
dω(τ ) ds

∥
∥
∥
∥

2

+ E
∥
∥
∥
∥

∫ t

0
Pμ(t – s)σ

(
s, x(s), x

(
c1(s)

)
, . . . , x

(
cp(s)

))
dBH (s)

∥
∥
∥
∥

2}

≤ 36
{

M2

Γ 2(ν(1 – μ) + μ)
[
E
∥
∥x(0)

∥
∥2 + M4q + M5 + M0

2M2(q + 1)
]

+ T2(1–ν)(1–μ)M0
2M2(q + 1)

+
(C1–β )2Γ 2(1 + β)T2μβ+2(1–ν)(1–μ)M2(q + 1)

β2Γ 2(1 + μβ)

+ Tr(Q)
(

M2Tμ+2(1–ν)(1–μ)

μΓ 2(μ)

)

q
1
q

∫ t

0
(t – s)μ–1hq(s) ds

+
2HM2T2H+μ–1+2(1–ν)(1–μ)

μΓ 2(μ)
q

1
q

∫ t

0
(t – s)μ–1h̄q(s) ds

+
M4T2μT2(1–ν)(1–μ)M4

B
z2μ2Γ 4(μ)

{

E‖x̄T‖2

+
M2T2(ν–1)(1–μ)

Γ 2(ν(1 – μ) + μ)
[
E
∥
∥x(0)

∥
∥2 + M4q + M5 + M2

0M2(q + 1)
]

+ M2
0M2(q + 1)
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+ Tr(Q)
∫ T

0
E
∥
∥ψ̄(s)

∥
∥2

Q ds + 2HT2H–1
∫ T

0
E
∥
∥ϕ̄(s)

∥
∥2

L0
2

ds

+
(C1–β )2Γ 2(1 + β)T2μβM2

β2Γ 2(1 + μβ)
(q + 1)

+ Tr(Q)
M2Tμ

μΓ 2(μ)
q

1
q

∫ T

0
(T – s)μ–1hq(s) ds

+
2HM2T2H+μ–1

μΓ 2(μ)
q

1
q

∫ T

0
(T – s)μ–1h̄q(s) ds

}}

, (3.8)

for t ∈ (ti, si]

‖Φδxq‖2
C̄ ≤ sup

t∈J
t2(1–ν)(1–μ)E

∥
∥g

(
t, x(t)

)∥
∥2 ≤ T2(1–ν)(1–μ)M3q, (3.9)

and for t ∈ (si, ti+1]

‖Φδxq‖2
C̄

≤ 36 sup
t∈J

t2(1–ν)(1–μ)
{

E
∥
∥Sν,μ(t – si)gi

(
si, x(si)

)∥
∥2

+ E
∥
∥F

(
t, x(t), x

(
b1(t)

)
, . . . , x

(
bm(t)

))∥
∥2

+ E
∥
∥
∥
∥

∫ t

si

APμ(t – s)F
(
t, x(t), x

(
b1(t)

)
, . . . , x

(
bm(t)

))
ds

∥
∥
∥
∥

2

+ E
∥
∥
∥
∥

∫ t

si

Pμ(t – s)Buδ(s) ds
∥
∥
∥
∥

2

+ E
∥
∥
∥
∥

∫ t

si

Pμ(t – s)
∫ s

0
G

(
τ , x(τ ), x

(
a1(τ )

)
, . . . , x

(
ak(τ )

))
dω(τ ) ds

∥
∥
∥
∥

2

+ E
∥
∥
∥
∥

∫ t

si

Pμ(t – s)σ
(
s, x(s), x

(
c1(s)

)
, . . . , x

(
cp(s)

))
dBH (s)

∥
∥
∥
∥

2}

≤ 36
{

M2

Γ 2(ν(1 – μ) + μ)
M3q + T2(1–ν)(1–μ)M0

2M2(q + 1)

+
(C1–β )2Γ 2(1 + β)T2μβ+2(1–ν)(1–μ)M2(q + 1)

β2Γ 2(1 + μβ)

+ Tr(Q)
(

M2Tμ+2(1–ν)(1–μ)

μΓ 2(μ)

)

q
1
q

∫ t

si

(t – s)μ–1hq(s) ds

+
2HM2T2H+μ–1+2(1–ν)(1–μ)

μΓ 2(μ)
q

1
q

∫ t

si

(t – s)μ–1h̄q(s) ds

+
M4T2μT2(1–ν)(1–μ)M4

B
z2μ2Γ 4(μ)

{

E‖x̄T‖2 +
M2T2(ν–1)(1–μ)

Γ 2(ν(1 – μ) + μ)
M3q + M2

0M2(q + 1)

+ Tr(Q)
∫ T

0
E
∥
∥ψ̄(s)

∥
∥2

Q ds + 2HT2H–1
∫ T

0
E
∥
∥ϕ̄(s)

∥
∥2

L0
2

ds

+
(C1–β )2Γ 2(1 + β)T2μβM2

β2Γ 2(1 + μβ)
(q + 1)
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+ Tr(Q)
M2Tμ

μΓ 2(μ)
q

1
q

∫ T

si

(T – s)μ–1hq(s) ds

+
2HM2T2H+μ–1

μΓ 2(μ)
q

1
q

∫ T

si

(T – s)μ–1h̄q(s) ds
}}

, (3.10)

Combining (3.8), (3.9), (3.10) in the inequality q ≤ ‖(Φxq)(t)‖2
C̄ then dividing both sides of

the inequality by q and taking the lower limit q → +∞, we get

[

1 +
M4T2μM4

B
z2μ2Γ 4(μ)

]{
36M2(M2

0M2 + M3 + M4)
Γ 2(ν(1 – μ) + μ)

+ 36T2(1–ν)(1–μ)
[

M0
2M2 +

M2TμΛ1 Tr(Q)
μΓ 2(μ)

+
2HM2Λ2T2H+μ–1

μΓ 2(μ)
+

(C1–β)2Γ 2(1 + β)T2μβM2

β2Γ 2(1 + μβ)

]}

+ T2(1–ν)(1–μ)M3 ≥ 1.

This contradicts (3.1). Hence for positive q, Φδ(Bq) ⊆ Bq.
Next we will show that the operator Φδ has a fixed point on Bq, which implies that

Eq. (1.1) has a mild solution. We decompose Φδ as Φδ = Φ1 + Φ2, where the operators
Φ1 and Φ2 are defined on Bq, respectively, by

(Φ1x)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sν,μ(t)[x0 – ξ (x) + F(0, x(0), x(b1(0)), . . . , x(bm(0)))]

– F(t, x(t), x(b1(t)), . . . , x(bm(t)))

–
∫ t

0 APμ(t – s)F(s, x(s), x(b1(s)), . . . , x(bm(s))) ds, t ∈ (0, t1],

gi(t, x(t)), t ∈ (ti, si], i = 1, 2, . . . , m,

Sν,μ(t – si)gi(si, x(si)) – F(t, x(t), x(b1(t)), . . . , x(bm(t)))

–
∫ t

si
APμ(t – s)F(s, x(s), x(b1(s)), . . . , x(bm(s))) ds,

t ∈ (si, ti+1], i = 1, 2, . . . , m,

(Φ2x)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t
si

Pμ(t – s)Bu(s) ds

+
∫ t

si
Pμ(t – s)

∫ s
0 G(τ , x(τ ), x(a1(τ )), . . . , x(ak(τ ))) dω(τ ) ds

+
∫ t

si
Pμ(t – s)σ (s, x(s), x(c1(s)), . . . , x(cp(s))) dBH(s),

t ∈ (si, ti+1], i = 0, 1, . . . , m,

0, otherwise,

for t ∈ J . We will show that Φ1 verifies a contraction condition while Φ2 is a compact
operator.

To prove that Φ1 satisfies a contraction condition, we take x1, x2 ∈ Bq, then, for each t ∈ J
and by condition (H1), (H4) and (H5), we have for t ∈ (0, t1]

E
∥
∥(Φ1x1)(t) – (Φ1x2)(t)

∥
∥2

≤ 9
{

E
∥
∥Sν,μ(t)

[
ξ (x1) – ξ (x2)

]∥
∥2

+ E
∥
∥Sν,μ(t)

[
F
(
0, x1(0), x1

(
b1(0)

)
, . . . , x1

(
bm(0)

))

– F
(
0, x2(0), x2

(
b1(0)

)
, . . . , x2

(
bm(0)

))]∥
∥2
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+ E
∥
∥F

(
t, x1(t), x1

(
b1(t)

)
, . . . , x1

(
bm(t)

))
– F

(
t, x2(t), x2

(
b1(t)

)
, . . . , x2

(
bm(t)

))∥
∥2

+ E
∥
∥
∥
∥

∫ t

0
APμ(t – s)

[
F
(
t, x1(t), x1

(
b1(t)

)
, . . . , x1

(
bm(t)

))

– F
(
t, x2(t), x2

(
b1(t)

)
, . . . , x2

(
bm(t)

))]
ds

∥
∥
∥
∥

2}

≤ 9
[

M2T2(ν–1)(1–μ)(M0
2M1 + M7)

Γ 2(ν(1 – μ) + μ)

+ M0
2M1 +

M1(C1–β)2Γ 2(1 + β)T2μβ

β2Γ 2(1 + μβ)

]

E
∥
∥x1(t) – x2(t)

∥
∥2, (3.11)

for t ∈ (ti, si]

E
∥
∥(Φ1x1)(t) – (Φ1x2)(t)

∥
∥2

≤ E
∥
∥gi

(
t, x1(t)

)
– gi

(
t, x2(t)

)∥
∥2

≤ M6E
∥
∥x1(t) – x2(t)

∥
∥2, (3.12)

and for t ∈ (si, ti+1]

E
∥
∥(Φ1x1)(t) – (Φ1x2)(t)

∥
∥2

≤ 9
{

E
∥
∥Sν,μ(t – si)

(
gi

(
si, x1(si)

)
– gi

(
si, x2(si)

))∥
∥2

+ E
∥
∥F

(
t, x1(t), x1

(
b1(t)

)
, . . . , x1

(
bm(t)

))
– F

(
t, x2(t), x2

(
b1(t)

)
, . . . , x2

(
bm(t)

))∥
∥2

+ E
∥
∥
∥
∥

∫ t

si

APμ(t – s)
[
F
(
t, x1(t), x1

(
b1(t)

)
, . . . , x1

(
bm(t)

))

– F
(
t, x2(t), x2

(
b1(t)

)
, . . . , x2

(
bm(t)

))]
ds

∥
∥
∥
∥

2}

≤ 9
[

M2T2(ν–1)(1–μ)

Γ 2(ν(1 – μ) + μ)
M6 + M0

2M1

+
M1(C1–β)2Γ 2(1 + β)T2μβ

β2Γ 2(1 + μβ)

]

E
∥
∥x1(t) – x2(t)

∥
∥2. (3.13)

Combining (3.11), (3.12), (3.13) and taking supt∈J t2(1–ν)(1–μ) for both sides of the inequal-
ity, we get

sup
t∈J

t2(1–ν)(1–μ)E
∥
∥(Φ1x1)(t) – (Φ1x2)(t)

∥
∥2

≤ 9
[

M2(M0
2M1 + M6 + M7)

Γ 2(ν(1 – μ) + μ)
+ T2(1–ν)(1–μ)(M6 + M0

2M1
)

+
M1(C1–β)2Γ 2(1 + β)T2μβ+2(1–ν)(1–μ)

β2Γ 2(1 + μβ)

]

× sup
t∈J

E
∥
∥x1(t) – x2(t)

∥
∥2
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hence, from the definition of C̄ and (3.3) we get

‖Φ1x1 – Φ1x2‖2
C̄ ≤ γ1‖x1 – x2‖2

C̄ .

Thus, Φ1 is a contraction.
To prove that Φ2 is compact, first we prove that Φ2 is continuous on Bq.
Let {xn} ⊆ Bq with xn → x in Bq and rewrite uδ(t) = uδ(t, x), the control function

defined above. Then, for each s ∈ J , xn(s) → x(s), and by H2(i) and H3(i), we have
G(s, xn(s), xn(a1(s)), . . . , xn(ak(s))) → G(s, x(s), x(a1(s)), . . . , x(ak(s))), as n → ∞, and
σ (s, xn(s), xn(c1(s)), . . . , xn(cp(s))) → σ (s, x(s), x(c1(s)), . . . , x(cp(s))), as n → ∞.

By the dominated convergence theorem, we have

‖Φ2xn – Φ2x‖2
C̄ = sup

t∈J
t2(1–ν)(1–μ)E

∥
∥
∥
∥

∫ t

si

Pμ(t – s)B
(
uδ(s, xn) – uδ(s, x)

)
ds

+
∫ t

si

Pμ(t – s)
∫ s

0

(
G

(
τ , xn(τ ), xn

(
a1(τ )

)
, . . . , xn

(
ak(τ )

))

– G
(
τ , x(τ ), x

(
a1(τ )

)
, . . . , x

(
ak(τ )

)))
dω(τ ) ds

+
∫ t

si

Pμ(t – s)
(
σ
(
s, xn(s), xn

(
c1(s)

)
, . . . , xn

(
cp(s)

))

– σ
(
s, x(s), x

(
c1(s)

)
, . . . , x

(
cp(s)

)))
dBH (s)

∥
∥
∥
∥

2

→ 0,

as n → ∞, which is continuous.
Next we prove that the family {Φ2x : x ∈ Bq} is an equicontinuous family of functions.
To do this, let ε > 0 be small, si < tα < tβ ≤ ti+1, then

E
∥
∥(Φ2x)(tβ) – (Φ2x)(tα)

∥
∥2

≤ E
∥
∥
∥
∥

∫ tβ

tα
Pμ(tβ – s)Buδ(s) ds

∥
∥
∥
∥

2

+ E
∥
∥
∥
∥

∫ tα–ε

si

(
Pμ(tβ – s) – Pμ(tα – s)

)
Buδ(s) ds

∥
∥
∥
∥

2

+ E
∥
∥
∥
∥

∫ tα

tα–ε

(
Pμ(tβ – s) – Pμ(tα – s)

)
Buδ(s) ds

∥
∥
∥
∥

2

+ E
∥
∥
∥
∥

∫ tα–ε

si

(
Pμ(tβ – s) – Pμ(tα – s)

)

×
∫ s

0
G

(
τ , x(τ ), x

(
a1(τ )

)
, . . . , x

(
ak(τ )

))
dω(τ ) ds

∥
∥
∥
∥

2

+ E
∥
∥
∥
∥

∫ tα

tα–ε

(
Pμ(tβ – s) – Pμ(tα – s)

)

×
∫ s

0
G

(
τ , x(τ ), x

(
a1(τ )

)
, . . . , x

(
ak(τ )

))
dω(τ ) ds

∥
∥
∥
∥

2
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+ E
∥
∥
∥
∥

∫ tβ

tα
Pμ(tβ – s)

∫ s

0
G

(
τ , x(τ ), x

(
a1(τ )

)
, . . . , x

(
ak(τ )

))
dω(τ ) ds

∥
∥
∥
∥

2

+ E
∥
∥
∥
∥

∫ tα–ε

si

(
Pμ(tβ – s) – Pμ(tα – s)

)
σ
(
s, x(s), x

(
c1(s)

)
, . . . , x

(
cp(s)

))
) dBH (s)

∥
∥
∥
∥

2

+ E
∥
∥
∥
∥

∫ tα

tα–ε

(
Pμ(tβ – s) – Pμ(tα – s)

)
σ
(
s, x(s), x

(
c1(s)

)
, . . . , x

(
cp(s)

))
) dBH (s)

∥
∥
∥
∥

2

+ E
∥
∥
∥
∥

∫ tβ

tα
Pμ(tβ – s)σ

(
s, x(s), x

(
c1(s)

)
, . . . , x

(
cp(s)

))
) dBH (s)

∥
∥
∥
∥

2

.

We see that E‖(Φ2x)(tβ ) – (Φ2x)(tα)‖2 tends to zero independently of x ∈ Bq as tβ → tα ,
with ε sufficiently small since the compactness of Sν,μ(t) for t > 0 (see [28]) implies the
continuity in the uniform operator topology. Similarly, we can prove that the function
Φ2x, x ∈ Bq are equicontinuous at t = 0. Hence Φ2 maps Bq into a family of equicontinuous
functions.

It remains to prove that V (t) = {(Φ2x)(t) : x ∈ Bq} is relatively compact in Bq. Obviously,
by condition (H3), V (0) is relatively compact in Bq.

Let si < t ≤ ti+1 be fixed, si < ε < t, arbitrary ρ > 0, for x ∈ Bq, we define

(
Φ

ε,ρ
2 x

)
(t)

= μ

∫ t–ε

si

∫ ∞

ρ

θ (t – s)μ–1Ψμ(θ )S
(
(t – s)μθ

)
Buδ(s) dθ ds

+ μ

∫ t–ε

si

∫ ∞

ρ

θ (t – s)μ–1Ψμ(θ )S
(
(t – s)μθ

)

×
∫ s

0
G(τ , x(τ ), x

(
a1(τ )

)
, . . . , x

(
ak(τ )

)
dω(τ ) dθ ds

+ μ

∫ t–ε

si

∫ ∞

ρ

θ (t – s)μ–1Ψμ(θ )S
(
(t – s)μθ

)

× σ
(
s, x(s), x

(
c1(s)

)
, . . . , x

(
cp(s)

))
dθ dBH (s)

= μS
(
εμρ

)
∫ t–ε

si

∫ ∞

ρ

θ (t – s)μ–1Ψμ(θ )S
(
(t – s)μθ – εμρ

)
Buδ(s) dθ ds

+ μS
(
εμρ

)
∫ t–ε

si

∫ ∞

ρ

θ (t – s)μ–1Ψμ(θ )S
(
(t – s)μθ – εμρ

)

×
∫ s

0
G(τ , x(τ ), x

(
a1(τ )

)
, . . . , x

(
ak(τ )

)
dω(τ ) dθ ds

+ μS
(
εμρ

)
∫ t–ε

si

∫ ∞

ρ

θ (t – s)μ–1θ (t – s)μ–1Ψμ(θ )S
(
(t – s)μθ – εμρ

)

× σ
(
s, x(s), x

(
c1(s)

)
, . . . , x

(
cp(s)

))
dθ dBH (s).

Since S(εμρ), εμρ > 0 is a compact operator, the set V ε,ρ(t) = {(Φε,ρ
2 x)(t) : x ∈ Bq} is rela-

tively compact in X for every ε, si < ε < t and for all ρ > 0.
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Moreover, for every x ∈ Bq, we have

∥
∥Φ2x – Φ

ε,ρ
2 x

∥
∥2

C̄

≤ 9 sup
t∈J

t2(1–ν)(1–μ)
{

μ2E
∥
∥
∥
∥

∫ t

si

∫ ρ

0
θ (t – s)μ–1Ψμ(θ )S

(
(t – s)μθ

)
Buδ(s) dθ ds

∥
∥
∥
∥

2

+ μ2E
∥
∥
∥
∥

∫ t

t–ε

∫ ∞

ρ

θ (t – s)μ–1Ψμ(θ )S
(
(t – s)μθ

)
Buδ(s) dθ ds

∥
∥
∥
∥

2

+ μ2E
∥
∥
∥
∥

∫ t

si

∫ ρ

0
θ (t – s)μ–1Ψμ(θ )S

(
(t – s)μθ

)

×
∫ s

0
G(τ , x(τ ), x

(
a1(τ )

)
, . . . , x

(
ak(τ )

)
dω(τ ) dθ ds

∥
∥
∥
∥

2

+ μ2E
∥
∥
∥
∥

∫ t

t–ε

∫ ∞

ρ

θ (t – s)μ–1Ψμ(θ )S
(
(t – s)μθ

)

×
∫ s

0
G(τ , x(τ ), x

(
a1(τ )

)
, . . . , x

(
ak(τ )

)
dω(τ ) dθ ds

∥
∥
∥
∥

2

+ μ2E
∥
∥
∥
∥

∫ t

si

∫ ρ

0
θ (t – s)μ–1Ψμ(θ )S

(
(t – s)μθ

)

× σ
(
s, x(s), x

(
c1(s)

)
, . . . , x

(
cp(s)

))
dθ dBH (s)

∥
∥
∥
∥

2

+ μ2E
∥
∥
∥
∥

∫ t

t–ε

∫ ρ

0
θ (t – s)μ–1Ψμ(θ )S

(
(t – s)μθ

)

× σ
(
s, x(s), x

(
c1(s)

)
, . . . , x

(
cp(s)

))
dθ dBH (s)

∥
∥
∥
∥

2}

≤ 9
{

Tμ+2(1–ν)(1–μ)μM2M2
B

∫ t

si

(t – s)μ–1E
∥
∥uδ(s)

∥
∥2 ds

(∫ ρ

0
θΨμ(θ ) dθ

)2

+ T2(1–ν)(1–μ)μM2M2
Bεμ

∫ t

t–ε

(t – s)μ–1E
∥
∥uδ(s)

∥
∥2 ds

(∫ ∞

ρ

θΨμ(θ ) dθ

)2

+ Tμ+2(1–ν)(1–μ)μM2 Tr(Q)
∫ t

si

(t – s)μ–1

×
∫ s

0
E
∥
∥G(τ , x(τ ), x

(
a1(τ )

)
, . . . , x

(
ak(τ )

)∥
∥2

Q dτ ds
(∫ ρ

0
θΨμ(θ ) dθ

)2

+ Tμ+2(1–ν)(1–μ)μM2 Tr(Q)εμ

∫ t

t–ε

(t – s)μ–1

×
∫ s

0
E
∥
∥G(τ , x(τ ), x

(
a1(τ )

)
, . . . , x

(
ak(τ )

)∥
∥2

Q dτ ds
(∫ ∞

ρ

θΨμ(θ ) dθ

)2

+ 2T2H+μ–1+2(1–ν)(1–μ)μM2

×
∫ t

si

(t – s)μ–1E
∥
∥σ

(
s, x(s), x

(
c1(s)

)
, . . . , x

(
cp(s)

))∥
∥2

L0
2

ds
(∫ ρ

0
θΨμ(θ ) dθ

)2

+ 2T2H–1+2(1–ν)(1–μ)μM2εμ

×
∫ t

t–ε

(t – s)μ–1E
∥
∥σ

(
s, x(s), x

(
c1(s)

)
, . . . , x

(
cp(s)

))∥
∥2

L0
2

ds
(∫ ∞

ρ

θΨμ(θ ) dθ

)2}

.
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We see that, for each x ∈ Bq, ‖Φ2x – Φ
ε,ρ
2 ‖2

C̄ → 0 as ε → 0+, ρ → 0+. Therefore, there are
relative compact sets arbitrarily close to the set V (t) = {(Φ2x)(t) : x ∈ Bq}, hence the set
V (t) is also relatively compact in Bq.

Thus, by the Ascoli–Arzela theorem Φ2 is a compact operator. These arguments enable
us to conclude that Φδ = Φ1 +Φ2 is a condensing map on Bq, and by the fixed point theorem
of Sadovskii there exists a fixed point x(·) for Φδ on Bq. Therefore the system (1.1) has a
mild solution. �

Theorem 3.2 Assume that (H1)–(H5) are satisfied. Furthermore, if the functions F , G,
and σ are uniformly bounded, then the system (1.1) is approximately controllable on J .

Proof Let xδ be a fixed point of Φδ . By using the stochastic Fubini theorem, it can be easily
seen that

xδ(T) = x̄T – z
(
zI + Γ T

0
)–1

{

Ex̄T – gm
(
T , x(T)

)

+ F
(
T , x(T), x

(
b1(T)

)
, . . . , x

(
bm(T)

))
+

∫ T

0
ψ̄(s) dω(s) +

∫ T

0
ϕ̄(s) dBH (s)

}

– z
∫ T

sm

(
zI + Γ T

0
)–1Pμ(T – s)AF

(
s, x(s), x

(
b1(s)

)
, . . . , x

(
bm(s)

))
ds

+ z
∫ T

sm

(
zI + Γ T

0
)–1Pμ(T – s)

∫ s

0
G

(
τ , x(τ ), x

(
a1(τ )

)
, . . . , x

(
ak(τ )

))
dω(τ ) ds

+ z
∫ T

sm

(
zI + Γ T

0
)–1Pμ(T – s)σ

(
s, x(s), x

(
c1(s)

)
, . . . , x

(
cp(s)

))
dBH (s).

It follows from the assumption on F , G and σ that there exists D > 0 such that

∥
∥F

(
s, xδ(s), xδ

(
b1(s)

)
, . . . , xδ

(
bm(s)

))∥
∥2 ≤ D,

∥
∥G

(
s, xδ(s), xδ

(
a1(s)

)
, . . . , xδ

(
ak(s)

))∥
∥2 ≤ D,

∥
∥σ

(
s, xδ(s), xδ

(
c1(s)

)
, . . . , xδ

(
cp(s)

))∥
∥2 ≤ D.

Consequently, the sequences {F(s, xδ(s), xδ(b1(s)), . . . , xδ(bm(s)))}, {G(s, xδ(s), xδ(a1(s)), . . . ,
xδ(ak(s)))}, {σ (s, xδ(s), xδ(c1(s)), . . . , xδ(cp(s)))} are weakly compact in L2(J , X), L2(LQ(K , X))
and L2(L0

2(Y , X)), so, there are subsequences, still denoted by {F(s, xδ(s), xδ(b1(s)), . . . ,
xδ(bm(s)))}, {G(s, xδ(s), xδ(a1(s)), . . . , xδ(ak(s)))}, {σ (s, xδ(s), xδ(c1(s)), . . . , xδ(cp(s)))}, that are
weakly converge to {F(s)}, {G(s)}, {σ (s)} in L2(J , X), L2(LQ(K , X)) and L2(L0

2(Y , X)).
From the last equation, we have

E
∥
∥xδ(T) – x̄T

∥
∥2

≤ 9E
∥
∥z

(
zI + Γ T

0
)–1{Ex̄T – gm

(
T , x(T)

)}∥
∥2

+ 9E
∥
∥z

(
zI + Γ T

0
)–1F

(
T , x(T), x

(
b1(T)

)
, . . . , x

(
bm(T)

))∥
∥2

+ 9E
∥
∥
∥
∥

∫ T

0
z
(
zI + Γ T

0
)–1

ψ̄(s) dω(s)
∥
∥
∥
∥

2
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+ 9E
∥
∥
∥
∥

∫ T

0
z
(
zI + Γ T

0
)–1

ϕ̄(s) dBH(s)
∥
∥
∥
∥

2

+ 9E
∥
∥
∥
∥

∫ T

sm

z
(
zI + Γ T

0
)–1Pμ(T – s)A

(
F
(
s, x(s), x

(
b1(s)

)
, . . . , x

(
bm(s)

))
– F(s)

)
ds

∥
∥
∥
∥

2

+ 9E
∥
∥
∥
∥

∫ T

sm

z
(
zI + Γ T

0
)–1Pμ(T – s)AF(s) ds

∥
∥
∥
∥

2

+ 9E
∥
∥
∥
∥

∫ T

sm

z
(
zI + Γ T

0
)–1Pμ(T – s)

×
∫ s

0
G

(
τ , x(τ ), x

(
a1(τ )

)
, . . . , x

(
ak(τ )

))
– G(τ ) dω(τ ) ds

∥
∥
∥
∥

2

+ 9E
∥
∥
∥
∥

∫ T

sm

z
(
zI + Γ T

0
)–1Pμ(T – s)

∫ s

0
G(τ ) dω(τ ) ds

∥
∥
∥
∥

2

+ 9E
∥
∥
∥
∥

∫ T

sm

z
(
zI + Γ T

0
)–1Pμ(T – s)σ

(
s, x(s), x

(
c1(s)

)
, . . . , x

(
cp(s)

))
– σ (s) dBH(s)

∥
∥
∥
∥

2

+ 9E
∥
∥
∥
∥

∫ T

sm

z
(
zI + Γ T

0
)–1Pμ(T – s)σ (s) dBH(s)

∥
∥
∥
∥

2

.

On the other hand, by Lemma 2.4, the operator z(zI +Γ T
0 )–1 → 0 strongly as z → 0+ for all

sm < s ≤ T , and, moreover, ‖z(zI + Γ T
0 )–1‖ ≤ 1. Thus, by the Lebesgue dominated conver-

gence theorem and the compactness of Pμ(t) implies that E‖xδ(T) – x̄T‖2 → 0 as z → 0+.
This proves the approximate controllability of (1.1). �

4 Application
In this section, we present an example to illustrate our main result.

Let us consider the following stochastic control Hilfer fractional partial differential
equation with fractional Brownian motion:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
1
3 , 3

5
0+ [x(t, z) +

∫ π

0 a(y, z)x(t, y) dy]

= ∂2

∂z2 x(t, z) + η(t, z) +
∫ t

0 3–sx(s, z) dω(s)

+ sin t
1+sin t x(t, z) dBH (t)

dt , t ∈ (0, 1
3 ] ∪ ( 2

3 , 1], 0 ≤ z ≤ π ,

x(t, 0) = x(t,π ) = 0, t ∈ (0, 1],

x(t, z) = 1
5 e–(t– 1

3 ) ‖x(t,z)‖
1+‖x(t,z)‖ , t ∈ ( 1

3 , 2
3 ], 0 ≤ z ≤ π ,

I
4

15
0+ (x(0, z)) +

∑2
i=1 cix(ti, z) = x0(z), 0 ≤ z ≤ π ,

(4.1)

where D
1
3 , 3

5
0+ is Hilfer fractional derivative of order ν = 1

3 , μ = 3
5 , ω is a Wiener process and

BH is a fractional Brownian motion with Hurst parameter H ∈ ( 1
2 , 1).

Let X = Y = K = U = L2([0,π ]) and A be defined by Ay = –( ∂2

∂z2 )y with domain D(A) =
{y ∈ X : y, dy

dz are absolutely continuous, and ( d2

dz2 )y ∈ X, y(0) = y(π ) = 0}.
Then –A generates a strongly continuous semigroup S(·) which is compact, analytic, and

self-adjoint. Furthermore, A has a discrete spectrum with eigenvalues n2, n ∈ N and the
corresponding normalized eigenfunctions are given by

en =
√

2
π

sin nx, n = 1, 2, . . . .



Ahmed et al. Boundary Value Problems        (2020) 2020:120 Page 22 of 25

In addition (en)n∈N is a complete orthonormal basis in X. Then

–Ay =
∞∑

n=1

n2〈y, en〉en, y ∈ D(A).

Furthermore, –A is the infinitesimal generator of an analytic semigroup of bounded linear
operator, {S(t)}t≥0 on X and is given by

S(t)y =
∞∑

n=1

e–n2t〈y, en〉en , y ∈ X, t ≥ 0,

with ‖S(t)‖ ≤ e–t ≤ 1.
Moreover, the two operators S 1

3 , 3
5

(t) and P 3
5

(t) can be defined by

S 1
3 , 3

5
(t)x =

3
5Γ ( 2

15 )

∫ t

0

∫ ∞

0
θ (t – s)

–13
15 s

–2
5 Ψ 3

5
(θ )S

(
s

3
5 θ

)
x dθ ds,

P 3
5

(t)x =
3
5

∫ ∞

0
θ t

–2
5 Ψ 3

5
(θ )S

(
s

3
5 θ

)
x dθ .

Clearly,

∥
∥P 3

5
(t)

∥
∥ ≤ t

–2
5

Γ ( 3
5 )

,
∥
∥S 1

3 , 3
5

(t)
∥
∥ ≤ t

–4
15

Γ ( 11
15 )

.

In order to define the operator Q : Y → Y , we choose a sequence {λn}n∈N ⊂ R+, set Qen =
λnen, and assume that

Tr(Q) =
∞∑

n=1

√
λn < ∞.

Define the fractional Brownian motion in Y by

BH (t) =
∞∑

n=1

√
λnβ

H (t)en

where H ∈ ( 1
2 , 1) and {βH

n }n∈N is a sequence of one-dimensional fractional Brownian mo-
tions mutually independent.

We also use the following properties:
(a) If y ∈ D(A), then Ay =

∑∞
n=1 n2〈y, xn〉xn.

(b) For each y ∈ X , A–1/2y =
∑∞

n=1
1
n 〈y, xn〉xn. In particular, ‖A–1/2‖2 = 1.

(c) The operator A1/2 is given by A1/2y =
∑∞

n=1 n〈y, xn〉xn on the space D[A1/2] = {y(·) ∈
X,

∑∞
n=1 n〈y, xn〉xn ∈ X}.

We assume the following conditions hold:
(i) The function a is measurable and

∫ π

0

∫ π

0
a2(y, z) dy dz < ∞.
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(ii) The function ∂
∂z a(y, z) is measurable, a(y, 0) = a(y,π ) = 0, and let

N1 =
[∫ π

0

∫ π

0

(
∂

∂z
a(y, z)

)2

dy dz
]1/2

< ∞.

Define the bounded operator B : U → X by Bu(t)(z) = η(t, z), 0 ≤ z ≤ π , u ∈ U .
We define F : (0, 1] × X → X, G : (0, 1] × X → L(K , X), σ : (0, 1] × X → L0

2(Y , X), gi :
(ti, si] × X → X and ξ : C((0, 1], X) → X by F(t, x) = Z1(x), G(s, x)(z) = 3–sx(s, z), σ (t, x)(z) =

sin t
1+sin t x(t, z), g1 = 1

5 e–(t– 1
3 ) ‖x(t,z)‖

1+‖x(t,z)‖ and ξ =
∑2

i=1 cix(ti, z), respectively, where

Z1(x)(z) =
∫ π

0
a(y, z)x(y) dy.

Then G, σ , g1 and ξ satisfy (H2)–(H5). From (i) it is clear that Z1 is a bounded linear oper-
ator on X. Furthermore, Z1(x) ∈ D[A1/2], and ‖A1/2Z1‖2 ≤ N1. In fact, from the definition
of Z1 and (ii) it follows that

〈
Z1(x), xn

〉
=

∫ π

0
xn(z)

[∫ π

0
a(y, z)x(y) dy

]

dz =
1
n

(
2
π

)1/2〈
Z2(x), cos(nx)

〉
,

where Z2 is defined by

Z2(x)(z) =
∫ π

0

∂

∂z
a(y, z)x(y) dy.

From (ii) we know that Z2 : X → X is a bounded linear operator with ‖Z2‖2 ≤ N1.
Hence ‖A1/2Z1(x)‖2 = ‖Z2(x)‖2.
If u ∈ L2((0, 1], U), then B = I , B∗ = I .
Therefore, with the above choice, the system (4.1) can be written in the abstract form

of (1.1). On the other hand the linear system corresponding to (4.1) is approximately con-
trollable. Therefore, all the hypotheses of Theorem 3.1 and Theorem 3.2 are satisfied and

[

1 +
M4T2μM4

B
z2μ2Γ 4(μ)

]{
36M2(M2

0M2 + M3 + M4)
Γ 2(ν(1 – μ) + μ)

+ 36T2(1–ν)(1–μ)
[

M0
2M2 +

M2TμΛ1 Tr(Q)
μΓ 2(μ)

+
2HM2Λ2T2H+μ–1

μΓ 2(μ)
+

(C1–β)2Γ 2(1 + β)T2μβM2

β2Γ 2(1 + μβ)

]}

+ T2(1–ν)(1–μ)M3 < 1

and

γ1 = 9
[

M2(M0
2M1 + M6 + M7)

Γ 2(ν(1 – μ) + μ)
+ T2(1–ν)(1–μ)(M6 + M0

2M1
)

+
M1(C1–β)2Γ 2(1 + β)T2μβ+2(1–ν)(1–μ)

β2Γ 2(1 + μβ)

]

< 1.
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Thus, we can conclude that the Hilfer fractional stochastic partial differential equation
with fractional Brownian motion and nonlocal conditions (4.1) is approximately control-
lable on (0, 1].

5 Conclusion
In this paper, by using fractional calculus, stochastic analysis, the fractional power of
operators and the Sadovskii fixed point theorem, we obtained sufficient conditions for
the approximate controllability of a class of noninstantaneous impulsive Hilfer fractional
stochastic integrodifferential equations with fractional Brownian motion and nonlocal
conditions. Also, we provided an example to illustrate our results. In the future we aim
to study the existence of mild solutions and controllability of a class of Sobolev-type non-
linear Hilfer fractional stochastic differential inclusions with noninstantaneous impulsive
in Hilbert space.
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