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Abstract
In this paper, based on the notation of time-dependent attractors introduced by
Conti, Pata and Temam in (J. Differ. Equ. 255:1254–1277, 2013), we prove the existence
of time-dependent global attractors inHt for a class of nonclassical reaction–diffusion
equations with the forcing term g(x) ∈ H–1(Ω ) and the nonlinearity f satisfying the
polynomial growth of arbitrary p – 1 (p≥ 2) order, which generalizes the results
obtained in (Appl. Anal. 94:1439–1449, 2015) and (Bound. Value Probl. 2016: 10, 2016).
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1 Introduction
Let Ω be a bounded domain in R

n (n ≥ 3) with smooth boundary, we consider the long-
time behavior of the solutions for the following nonclassical reaction–diffusion equation:

⎧
⎪⎪⎨

⎪⎪⎩

ut – ε(t)�ut – �u + f (u) = g(x) in Ω × (τ ,∞),

u = 0 on ∂Ω × (τ ,∞),

u(x, τ ) = uτ , x ∈ Ω ,

(1.1)

where t > τ , τ ∈R is the initial time, g(x) ∈ H–1(Ω) is an external force term, ε(t) ∈ C1(R)
is a decreasing bounded function satisfying

lim
t→+∞ ε(t) = 0, (1.2)

and there exists L > 0 such that

sup
t∈R

(∣
∣ε(t)

∣
∣ +

∣
∣ε′(t)

∣
∣
) ≤ L. (1.3)
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For the nonlinear term f ∈ C(R,R), similar to that in [3, 20, 24], we make the following
classical assumptions:

f ′(u) ≥ –l, ∀u ∈R, (1.4)

and

–c0 + c1|u|p ≤ f (u)u ≤ c0 + c2|u|p, p ≥ 2, (1.5)

for some positive constants c0, c1, c2.
Let F (u) =

∫ u
0 f (r) dr, then there are constants c̃i > 0 (i = 0, 1, 2) such that

–c̃0 + c̃1|u|p ≤F (u) ≤ c̃0 + c̃2|u|p, ∀u ∈R. (1.6)

For Eq. (1.1), when ε(t) > 0 is a constant, the existence and long-time behavior of
solutions have been extensively studied by several authors; see, e.g., [1, 4, 5, 23, 25–
27, 29, 30, 32]. In [4, 5, 29], the authors main considered the existence of solutions for
this type of equations. In [1, 23, 25–27, 30], the authors main considered the existence of
the global attractors (see [23, 25–27]) and the pullback (or the uniform) attractors (see
[1, 23, 30]) in H1

0 (Ω) (or H1(RN )). In particular, in [32], we obtained the existence of
the pullback attractors in CH1

0 (Ω) (rather than in H1
0 (Ω)) for the nonclassical reaction–

diffusion equations with delays.
When ε(t) = 0, Eq. (1.1) becomes the classical reaction–diffusion equation. The exis-

tence and the long-time behavior of solutions have also been extensively investigated by
several authors; see, e.g., [2, 11, 12, 17, 21, 28, 31]. In [2, 11, 12, 28], the authors mainly con-
sidered the existence (or the blowup), uniqueness and the long-time decay of the solutions
for the semilinear parabolic equation [11, 12], the nonlinear parabolic equation [2] and the
coupled parabolic systems [28]. In [17, 21, 31], the authors have proved the existence of
the global attractors in Lp(Ω), H1

0 (Ω), L2p–2(Ω), H2(Ω) (see [31]) and the existence of the
pullback attractors in Lp(Ω) and H1

0 (Ω) (see [17] and [21], respectively).
When ε(t) ∈ C1(R) satisfies (1.2)–(1.3), the long-time behavior of solutions for Eq. (1.1)

has been considered by some researchers; see, e.g., [16, 18]. In [16], the authors have
proved the existence of the time-dependent global attractors in Ht with the nonlinear-
ity f satisfying |f ′′(u)| ≤ c(1 + |u|) (see Theorem 3.4 in [16] for details). Furthermore, in
[18], the authors have considered the case of the nonlinearity f satisfying the critical ex-
ponent growth and proved the existence of the time-dependent global attractors in Ht

(see Theorem 3.3 in [18] for details).
In this paper, we consider Eq. (1.1) with the nonlinearity f satisfying polynomial growth

of arbitrary p – 1 (p ≥ 2) order, which makes that the Sobolev compact embedding is
no longer valid and brings more difficulty for verifying the corresponding asymptotic
compactness of the solutions process {U(t, τ )}t≥τ . In order to overcome the difficulty
mentioned above, we verify the existence of the time-dependent global attractors Â
in Ht for the process {U(t, τ )}t≥τ by applying the contractive function methods as in
[6, 13, 14, 19, 22, 27] (see Theorem 3.8).
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2 Preliminaries
In this section, we firstly review briefly some notations, basic definitions and results about
processes on time-dependent spaces (see [7–9, 19] for details).

2.1 Notations
Let {Xt}t∈R be a family of normed spaces, we introduce the R-ball of Xt as

Bt(R) =
{

z ∈ Xt : ‖z‖Xt ≤ R
}

.

For any given ε > 0, the ε-neighborhood of a set B ⊂ Xt is defined as

Oε
t (B) =

⋃

x∈B

{
y ∈ Xt : ‖x – y‖Xt < ε

}
=

⋃

x∈B

{
x + Bt(ε)

}
.

We denote the Hausdorff semidistance of two (nonempty) sets B, C ⊂ Xt by

δt(B, C) = sup
x∈B

inf
y∈C

‖x – y‖Xt .

Moreover, we introduce the time-dependent space Ht endowed with the norms

‖u‖2
Ht = ‖u‖2

2 + ε(t)‖∇u‖2
2,

where ‖ · ‖2 denotes the usual norm in L2(Ω).

2.2 Some concepts
In this subsection, we give some concepts about the time-dependent global attractors.

Definition 2.1 Let {Xt}t∈R be a family of normed spaces. A process is a two-parameter
family of mappings U(t, τ ) : Xτ → Xt , t ≥ τ , τ ∈R with properties

(i) U(τ , τ ) = Id is the identity operator on Xτ , τ ∈R;
(ii) U(t, s)U(s, τ ) = U(t, τ ), ∀t ≥ s ≥ τ , τ ∈ R.

Definition 2.2 A family Ĉ = {Ct}t∈R of bounded sets Ct ⊂ Xt is called uniformly bounded
if there exists a constant R > 0 such that Ct ⊂ Bt(R) for all t ∈ R.

Definition 2.3 A family B̂ = {Bt}t∈R is called pullback absorbing if it is uniformly bounded
and for every R > 0, there exists a constant t0 = t0(t, R) ≤ t such that U(t, τ )Bτ (R) ⊂ Bt for
all τ ≤ t0.

The process {U(t, τ )}t≥τ is called dissipative whenever it admits a pullback absorbing
family.

Definition 2.4 A time-dependent absorbing set for the process {U(t, τ )}t≥τ is a uniformly
bounded family B̂ = {Bt}t∈R with the following property: for every R ≥ 0 there exists a
t0 = t0(R) ≥ 0 such that

U(t, τ )Bτ (R) ⊂ Bt for all τ ≤ t – t0.
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Definition 2.5 The process {U(t, τ )}t≥τ is said to be pullback asymptotically compact if
for any t ∈ R, any bounded sequence {xn}∞n=1 ⊂ Xτn and any sequence {τn}∞n=1 with τn →
–∞ as n → ∞, the sequence {U(t, τn)xn}∞n=1 is precompact in {Xt}t∈R.

Definition 2.6 The time-dependent global attractor for the process {U(t, τ )}t≥τ is the
smallest family Â = {At}t∈R such that

(i) At is compact in Xt ;
(ii) Â is invariant, i.e., U(t, τ )Aτ = At ,∀t ≥ τ ;

(iii) Â is pullback attracting, i.e., it is uniformly bounded and the limit

lim
τ→–∞ δt

(
U(t, τ )Cτ ,At

)
= 0

holds for every uniformly bounded family Ĉ = {Ct}t∈R and every fixed t ∈R.

Remark 2.7 The attracting property can be equivalently stated in terms of pullback ab-
sorbing: a (uniformly bounded) family K = {Kt}t∈R is called pullback attracting if for any
ε > 0 the family {Oε

t (Kt)}t∈R is pullback absorbing.

Similarly to Theorem 4.2 in [8], we have the following theorem.

Theorem 2.8 The time-dependent global attractor Â exists and it is unique if and only if
the process {U(t, τ )}t≥τ is asymptotically compact, namely, the set

K =
{
K = {Kt}t∈R : Kt ⊂ Xt is compact ,K is pullback attracting

}

is not empty.

2.3 Some results
In order to obtain the time-dependent global attractors of Eq. (1.1), we need the following
definitions and conclusions, which are similar to those in [6, 13, 14, 19, 22, 27].

Definition 2.9 Let {Xt}t∈R be a family of Banach spaces and Ĉ = {Ct}t∈R be a family of uni-
formly bounded subset of {Xt}t∈R. We call a function ψ t

τ (·, ·), defined on {Xt}t∈R ×{Xt}t∈R,
a contractive function on Cτ × Cτ if for fixed t ∈ R and any sequence {xn}∞n=1 ⊂ Cτ , there
is a subsequence {xnk }∞k=1 ⊂ {xn}∞n=1 such that

lim
k→∞

lim
l→∞

ψ t
τ (xnk , xnl ) = 0 for all t ≥ τ .

We denote the set of all contractive functions on Cτ × Cτ by Contr(Cτ ).

Theorem 2.10 Let {U(t, τ )}t≥τ be a process on Banach spaces {Xt}t∈R and have a pullback
absorbing set B̂ = {Bt}t∈R. Moreover, assume that, for any ε > 0, there exist τ0 = τ0(ε) < t and
ψ t

τ0 (·, ·) ∈ Ĉ(Bτ0 ) such that

∥
∥U(t, τ0)x – U(t, τ0)y

∥
∥

Xt
≤ ε + ψ t

τ0 (x, y), ∀x, y ∈ Bτ0 ,

for any t ∈R. Then {U(t, τ )}t≥τ is pullback asymptotically compact in {Xt}t∈R.
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Proof We need to prove that, for any {xn}∞n=1 ⊂ Bτn and any τn → –∞ as n → ∞,

the sequence
{

U(t, τn)xn
}∞

n=1 is precompact in {Xt}t∈R.

In the following, we will show that {U(t, τn)xn}∞n=1 has a convergent subsequence via diag-
onal methods.

Taking εm > 0 with εm → 0 as m → ∞.
Then, for ε1 > 0, by the assumptions, there exist τ0 = τ0(ε1) < t and ψ t

τ0 (·, ·) ∈ Ĉ(Bτ0 ) such
that

∥
∥U(t, τ0)x – U(t, τ0)y

∥
∥

Xt
≤ ε1 + ψ t

τ0 (x, y), ∀x, y ∈ Bτ0 , (2.1)

for any t ∈R, where ψ t
τ0 depends on τ0.

Since τn → –∞, without loss of generality, we assume that τn ≤ τ0 such that U(τ0, τn)xn ∈
Bτ0 for each n ∈N. Set yn = U(τ0, τn)xn, then from (2.1) we have

∥
∥U(t, τn)xn – U(t, τm)xm

∥
∥

Xt
=

∥
∥U(t, τ0)U(τ0, τn)xn – U(t, τ0)U(τ0, τm)xm

∥
∥

Xt

=
∥
∥U(t, τ0)yn – U(t, τ0)ym

∥
∥

Xt

≤ ε1 + ψ t
τ0 (yn, ym). (2.2)

By the definition of Ĉ(Bτ0 ) and ψ t
τ0 ∈ Ĉ(Bτ0 ), we know that {yn}∞n=1 have a subsequence

{y(1)
nk }∞k=1 such that

lim
k→∞

lim
l→∞

ψ t
τ0

(
y(1)

nk
, y(1)

nl

) ≤ ε1. (2.3)

Similarly to [13, 22, 27], we have

lim
k→∞

sup
q∈N

∥
∥U

(
t, τ (1)

nk+q

)
x(1)

nk+q
– U

(
t, τ (1)

nk

)
x(1)

nk

∥
∥

Xt

≤ lim
k→∞

sup
q∈N

lim sup
l→∞

∥
∥U

(
t, τ (1)

nk+q

)
x(1)

nk+q
– U

(
t, τ (1)

nl

)
x(1)

nl

∥
∥

Xt

+ lim sup
k→∞

lim sup
l→∞

∥
∥U

(
t, τ (1)

nk

)
x(1)

nk
– U

(
t, τ (1)

nl

)
x(1)

nl

∥
∥

Xt

≤ ε1 + lim
k→∞

sup
q∈N

lim sup
l→∞

ψ t
τ0

(
y(1)

nk+q
, y(1)

nl

)
+ ε1 + lim

k→∞
lim

l→∞
ψ t

τ0

(
y(1)

nk
, y(1)

nl

)
,

which, combining with (2.2) and (2.3), implies that

lim
k→∞

sup
q∈N

∥
∥U

(
t, τ (1)

nk+q

)
x(1)

nk+q
– U

(
t, τ (1)

nk

)
x(1)

nk

∥
∥

Xt
≤ 4ε1.

Therefore, there exists a K1 ∈N such that

lim
k→∞

sup
q∈N

∥
∥U

(
t, τ (1)

nk

)
x(1)

nk
– U

(
t, τ (1)

nl

)
x(1)

nl

∥
∥

Xt
≤ 5ε1, for all k, l ≥ K1.
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By induction, we can obtain that, for each m ≥ 1, there exists a subsequence {U(t,
τ

(m+1)
nk )x(m+1)

nk }∞k=1 of {U(t, τ (m)
nk )x(m)

nk }∞k=1 and certain Km+1 such that

lim
k→∞

sup
q∈N

∥
∥U

(
t, τ (m+1)

nk

)
x(m+1)

nk
– U

(
t, τ (m+1)

nl

)
x(m+1)

nl

∥
∥

Xt
≤ 5εm+1, for all k, l ≥ Km+1.

Now, we consider the diagonal subsequence {U(t, τ (k)
nk )x(k)

nk }∞k=1. Since for each m ∈ N,
{U(t, τ (k)

nk )x(k)
nk }∞k=m is a subsequence of {U(t, τ (k)

nk )x(k)
nk }∞k=1, then

lim
k→∞

sup
q∈N

∥
∥U

(
t, τ (k)

nk

)
x(k)

nk
– U

(
t, τ (l)

nl

)
x(l)

nl

∥
∥

Xt
≤ 6εm, for all k, l ≥ max{m, Km},

which combining with εm → 0 as m → ∞, implies that {U(t, τ (k)
nk )x(k)

nk }∞k=1 is a Cauchy se-
quence in {Xt}t∈R. This shows that {U(t, τn)xn}∞n=1 is precompact in {Xt}t∈R. �

Similarly to Theorem 3.3 in [19], we have the following conclusion, which will be used
to verify the existence of the time-dependent global attractor.

Theorem 2.11 Let {U(t, τ )}t≥τ be a process on Banach space {Xt}t∈R, then {U(t, τ )}t≥τ has
a time-dependent global attractor in {Xt}t∈R if the following conditions hold:

(i) {U(t, τ )}t≥τ has a pullback absorbing set B̂ = {Bt}t∈R in {Xt}t∈R;
(ii) {U(t, τ )}t≥τ is pullback asymptotically compact in B̂ = {Bt}t∈R.

3 Time-dependent global attractors
In this section, we will establish the existence of the time-dependent global attractors.

3.1 Existence and uniqueness of solutions
In this subsection, we consider the well-posedness of the solutions for Eq. (1.1) with (1.4)–
(1.5). At first, we define the weak solutions as follows.

Definition 3.1 A weak solution of Eq. (1.1) is a function u ∈ C([τ , T];Ht) ∩ L2(τ , T ;
H1

0 (Ω)) ∩ Lp(τ , T ; Lp(Ω)) for all T > τ , with u(τ ) = uτ and such that, for all ϕ ∈ H1
0 (Ω),

it satisfies

d
dt

[(
u(t),ϕ

)
+ ε(t)

(∇u(t),∇ϕ
)]

+
(
1 – ε′(t)

)(∇u(t),∇ϕ
)

+
(
f
(
u(t)

)
,ϕ

)

=
(
g(x),ϕ

)
, in D′(τ , +∞).

Remark 3.2 We notice that, if u(t) is a weak solution of Eq. (1.1), then it satisfies the energy
equality

∥
∥u(t)

∥
∥2

2 + ε(t)
∥
∥∇u(t)

∥
∥2

2 +
∫ t

s

(
2 – ε′(r)

)∥
∥∇u(r)

∥
∥2

2 dr + 2
∫ t

s

(
f
(
u(r)

)
, u(r)

)
dr

=
∥
∥u(s)

∥
∥2

2 + ε(s)
∥
∥∇u(s)

∥
∥2

2 + 2
∫ t

s

(
g(r), u(r)

)
dr for all τ ≤ s ≤ t.

The following theorem gives the existence of the weak solutions, which is similar to that
in [10] and can be obtained by the Faedo–Galerkin methods.
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Theorem 3.3 Let f satisfy (1.4)–(1.5), g ∈ H–1(Ω) and uτ ∈ Hτ . Then, for any τ ∈ R

and t > τ , there exists a weak solution u(t) to Eq. (1.1), which satisfies u ∈ C([τ , t];Ht) ∩
L2(τ , t; H1

0 (Ω)) ∩ Lp(τ , t; Lp(Ω)), ut ∈ L2(τ , t;Ht).

Proof Let {wj}j≥1 ⊂ H1
0 (Ω) ∩ Lp(Ω) be a Hilbert basis of L2(Ω) such that span{wj}j≥1 is

dense in H1
0 (Ω) ∩Lp(Ω). In order to establish the existence of the weak solutions, we need

the approximate system for any m ≥ n seeking ũm(t, x) = Σm
j=1γmj(t)ωj(x) that satisfies

⎧
⎪⎪⎨

⎪⎪⎩

d
dt [(ũm(t),ωj) + ε(t)(∇ũm(t),∇ωj)] + (1 – ε′(t))(∇ũm(t),∇ωj) + (f (ũm(t)),ωj)

= (g(x),ωj),

ũm
τ = uτ ,

for a.e. t > τ , 1 ≤ j ≤ m.
We will provide a priori estimates that show that these solutions are well-defined in the

interval [τ , t] for any t > τ .
Step 1: First a priori estimates. Multiplying each equation in the above system by γmj(t),

respectively, and summing from j = 1 to m, we obtain

1
2

d
dt

(∥
∥ũm(t)

∥
∥2

2 + ε(t)
∥
∥∇ũm(t)

∥
∥2

2

)
+

(
1 – ε′(t)

)∥
∥∇ũm(t)

∥
∥2

2

+
(
f
(
ũm(t)

)
, ũm(t)

)
=

(
g(x), ũm(t)

) ≤ 1
2
‖g‖2

H–1 +
1
2
∥
∥∇ũm(t)

∥
∥2

2, a.e. t > τ ,

where we have used the Hölder and Young inequalities.
Furthermore, by (1.5), we know that

d
dt

(∥
∥ũm(t)

∥
∥2

2 + ε(t)
∥
∥∇ũm(t)

∥
∥2

2

)
+

(
1 – 2ε′(t)

)∥
∥∇ũm(t)

∥
∥2

2 + 2c1
∥
∥ũm(t)

∥
∥p

p

≤ 2c0|Ω| + ‖g‖2
H–1 , a.e. t > τ .

Integrating it in [τ , t], we have

∥
∥ũm(t)

∥
∥2

2 + ε(t)
∥
∥∇ũm(t)

∥
∥2

2 +
∫ t

τ

(
1 – 2ε′(s)

)∥
∥∇ũm(s)

∥
∥2

2 ds + 2c1

∫ t

τ

∥
∥ũm(s)

∥
∥p

p ds

≤ ∥
∥ũm(τ )

∥
∥2

2 + ε(τ )
∥
∥∇ũm(τ )

∥
∥2

2 +
(
2c0|Ω| + ‖g‖2

H–1
)
(t – τ ) for all t ≥ τ .

Hence,

∥
∥ũm(t)

∥
∥2

2 + ε(t)
∥
∥∇ũm(t)

∥
∥2

2 +
∫ t

τ

∥
∥∇ũm(s)

∥
∥2

2 ds + 2c1

∫ t

τ

∥
∥ũm(s)

∥
∥p

p ds

≤ ∥
∥ũm(τ )

∥
∥2

2 + ε(τ )
∥
∥∇ũm(τ )

∥
∥2

2 +
(
2c0|Ω| + ‖g‖2

H–1
)
(t – τ ) for all t ≥ τ . (3.1)

So, from (3.1), we can get

{
ũm}

m≥n is bounded in L∞(τ , t;Ht) ∩ L2(τ , t; H1
0 (Ω)

) ∩ Lp(τ , t; Lp(Ω)
)

(3.2)

for all t > τ .
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Moreover, combining with (1.5) and (3.2), we obtain

{
f
(
ũm)}

m≥n is bounded in Lq(τ , t; Lq(Ω)
)

for all t > τ ,

where q = p/(p – 1).
Then there exist functions ũ ∈ L∞(τ , t;Ht) ∩ L2(τ , t; H1

0 (Ω)) ∩ Lp(τ , t; Lp(Ω)) and χ̃ ∈
Lq(τ , t; Lq(Ω)) for all t > τ , and a subsequence such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ũm → ũ weakly-star in L∞(τ , t;Ht),

ũm → ũ weakly in L2(τ , t; H1
0 (Ω)),

ũm → ũ weakly in Lp(τ , t; Lp(Ω)),

f (ũm) → χ̃ weakly in Lq(τ , t; Lq(Ω)).

(3.3)

Step 2: Uniform estimate for the time derivatives. Multiplying each equation of the ap-
proximate system by γ ′

mj(t) and summing from j = 1 to m, we arrive at

∥
∥
(
ũm)′(t)

∥
∥2

2 + ε(t)
∥
∥
(∇ũm)′(t)

∥
∥2

2 +
1
2

d
dt

∥
∥∇ũm(t)

∥
∥2

2

+
(
f
(
ũm)

,
(
ũm)′(t)

)
=

(
g(x),

(
ũm)′(t)

)
, a.e. t > τ .

By the Hölder and Young inequalities, we have

∥
∥
(
ũm)′(t)

∥
∥2

2 + 2ε(t)
∥
∥
(∇ũm)′(t)

∥
∥2

2 +
d
dt

∥
∥∇ũm(t)

∥
∥2

2

+ 2
d
dt

∫

Ω

F
(
ũm(t, x)

)
dx ≤ ‖g‖2

2, a.e. t > τ .

Integrating it from τ to t, and from (1.6) we can get

∥
∥∇ũm(t)

∥
∥2

2 + 2c̃1
∥
∥ũm(t)

∥
∥p

p +
∫ t

τ

(∥
∥
(
ũm)′(s)

∥
∥2

2 + ε(t)
∥
∥
(∇ũm)′(s)

∥
∥2

2

)
ds

≤ 4c̃0|Ω| +
∥
∥∇ũm(τ )

∥
∥2

2 + 2c̃2
∥
∥ũm(τ )

∥
∥p

p + ‖g‖2
2(t – τ ) (3.4)

for all t ≥ τ and any m ≥ n.
Since ũm

τ = uτ for all m ≥ n and ũm
τ ∈ H1

0 (Ω) ∩ Lp(Ω), by (3.4), we obtain

{
ũm(t)

}

m≥n is bounded in L∞(
τ , t; H1

0 (Ω) ∩ Lp(Ω)
)

(3.5)

and

{(
ũm)′(t)

}

m≥n is bounded in L2(τ , t;Ht) (3.6)

for all t > τ . Then there exist functions ũ ∈ L∞(τ , t; H1
0 (Ω) ∩ Lp(Ω)) and ũt ∈ L2(τ , t;Ht)

for all t > τ , which improve the regularity of ũ obtained in Step 1.
For any fixed t > τ , since

∥
∥ũm(t2) – ũm(t1)

∥
∥2
Ht

=
∥
∥ũm(t2) – ũm(t1)

∥
∥2

2 + ε(t)
∥
∥∇ũm(t2) – ∇ũm(t1)

∥
∥2

2



Zhu et al. Boundary Value Problems         (2020) 2020:95 Page 9 of 14

=
∥
∥
∥
∥

∫ t2

t1

(
ũm)′(s) ds

∥
∥
∥
∥

2

2
+ ε(t)

∥
∥
∥
∥

∫ t2

t1

(∇ũm)′(s) ds
∥
∥
∥
∥

2

2

≤ (∥
∥
(
ũm)′∥∥2

L2(τ ,t;L2(Ω)) + ε(t)
∥
∥
(∇ũm)′∥∥2

L2(τ ,t;L2(Ω))

)|t2 – t1|
=

∥
∥
(
ũm)′∥∥2

L2(τ ,t;Ht )|t2 – t1|, (3.7)

for all t1, t2 ∈ [τ , t], from (3.5), (3.6) and (3.7), by the Ascoli–Arzelà Theorem, and taking
into account the initial data for all the sequence, we deduce that there is a subsequence
such that

ũm → ũ in C
(
[τ , t];Ht

)
(3.8)

for all t > τ and a.e. in Ω × (τ ,∞).
Since f ∈ C(R,R), we conclude that f (ũm) → f (ũ)a.e. in Ω × (τ ,∞). So, combining with

(3.3) and [15] (Lemma 1.3, p. 12) we obtain χ̃ = f (ũ).
Thus, together with (3.3) and (3.8), by taking the limit in the equations satisfied by {ũm}

and, thanks to the fact that span{ωj}j≥1 is dense in H1
0 (Ω) ∩ Lp(Ω), we conclude that ũ is a

weak solution of Eq. (1.1).
Step 3: Proof of the general statement by density. For each n ∈ N, we define un

τ =
Σn

j=1(uτ ,ωj)ωj. (Due to the fact that {ωj}j≥1 is a Hilbert basis of L2(Ω), it is easy to check
that un

τ → uτ in Hτ .)
Let also consider a sequence {gn}∞n=1 ⊂ L2(Ω) converging to g ∈ H–1(Ω).
Denote by un the corresponding solution to Eq. (1.1) with g replaced by gn and initial

data un
τ .

Then, by the energy equality for each un, we have

∥
∥un(t)

∥
∥2

2 + ε(t)
∥
∥∇un(t)

∥
∥2

2 + 2
∫ t

τ

∥
∥∇un(s)

∥
∥2

2 ds + 2
∫ t

τ

(
f
(
un(s)

)
, un(s)

)
ds

=
∥
∥un(τ )

∥
∥2

2 + ε(τ )
∥
∥∇un(τ )

∥
∥2

2 + 2
∫ t

τ

(
gn(x), un(s)

)
ds, ∀t ≥ τ .

Similar to the reasoning process in Step 1, we get

{
un} is bounded in L∞(τ , t;Ht) ∩ L2(τ , t; H1

0 (Ω)
) ∩ Lp(τ , t; Lp(Ω)

)
(3.9)

for all t > τ .
Now, combining with (1.5) and (3.9), we see that {f (un)} is bounded in Lq(τ , t; Lq(Ω)) for

all t > τ .
Therefore, there exist functions u ∈ L∞(τ , t;Ht) ∩ L2(τ , t; H1

0 (Ω)) ∩ Lp(τ , t; Lp(Ω)) and
χ ∈ Lq(τ , t; Lq(Ω)) for all t > τ , and a subsequence such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

un → u weakly-star in L∞(τ , t;Ht),

un → u weakly in L2(τ , t; H1
0 (Ω)),

un → u weakly in Lp(τ , t; Lp(Ω)),

f (un) → χ weakly in Lq(τ , t; Lq(Ω)),

(3.10)

for all t > τ .
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Moreover, we may improve some of the above convergence. Taking into account the
energy equality for un – um, we have

∥
∥un(t) – um(t)

∥
∥2

2 + ε(t)
∥
∥∇un(t) – ∇um(t)

∥
∥2

2 +
∫ t

τ

∥
∥∇un(s) – ∇um(s)

∥
∥2

2 ds

≤ ∥
∥un(τ ) – um(τ )

∥
∥2

2 + ε(τ )
∥
∥∇un(τ ) – ∇um(τ )

∥
∥2

2 + 2l
∫ t

τ

∥
∥un(s) – um(s)

∥
∥2

2 ds

+
∥
∥gn – gm∥

∥2
H–1 (t – τ ), ∀t ≥ τ . (3.11)

By (3.11), we know that

{
un} is a Cauchy sequence in C

(
[τ , t];Ht

) ∩ L2(τ , t; H1
0 (Ω)

)
for all t > τ .

Thus, we have un → u a.e. in Ω × (τ ,∞).
Therefore, as before, combining with (3.10) and [15] (Lemma 1.3, p. 12) we obtain χ =

f (u); and from (3.10) we may take the limit in the equations satisfied by un and conclude
that u is a weak solution of Eq. (1.1). �

For the solutions of Eq. (1.1), the following theorem shows the uniqueness and continuity
with respect to initial data.

Theorem 3.4 Let f satisfy (1.4)–(1.5), g ∈ H–1(Ω) and uτ ∈Hτ , then the weak solution of
Eq. (1.1) is unique. Moreover, for every two solutions u1(t) and u2(t) (with different initial
data), the following Lipschitz continuity holds:

∥
∥ω(t)

∥
∥2

2 + ε(t)
∥
∥∇ω(t)

∥
∥2

2 ≤ (‖ωτ‖2
2 + ε(τ )‖∇ωτ‖2

2
)
e2l(t–τ ), ∀t ≥ τ ,

where ω(t) = u1(t) – u2(t).

Proof Let ω(t) = u1(t) – u2(t), then ω(t) satisfies the following equation:

⎧
⎪⎪⎨

⎪⎪⎩

ωt – ε(t)�ωt – �ω = f (u1) – f (u2) in Ω × (τ ,∞),

ω(x, t) = 0 on ∂Ω × (τ ,∞),

ω(x, τ ) = u1
τ – u2

τ , x ∈ Ω .

(3.12)

Taking the L2-inner product between (3.12) and ω, and using (1.4), we have

d
dt

(‖ω‖2
2 + ε(t)‖∇ω‖2

2
)

+
(
2 – ε′(t)

)‖∇ω‖2
2 ≤ 2l‖ω‖2

2.

Then

d
dt

(‖ω‖2
2 + ε(t)‖∇ω‖2

2
) ≤ 2l

(‖ω‖2
2 + ε(t)‖∇ω‖2

2
)
.

By the Gronwall lemma, it yields

∥
∥ω(t)

∥
∥2

2 + ε(t)
∥
∥∇ω(t)

∥
∥2

2 ≤ (‖ωτ‖2
2 + ε(τ )‖∇ωτ‖2

2
)
e2l(t–τ ),

and the uniqueness holds. �
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Thus, we define the solution processes {U(t, τ )}t≥τ in the spaces Ht as:

U(t, τ ) : Hτ →Ht , U(t, τ )uτ = u(t), ∀t ≥ τ . (3.13)

Moreover, Theorem 3.4 shows that the process {U(t, τ )}t≥τ is Lipschitz in Ht :

∥
∥U(t, τ )u1

τ – U(t, τ )u2
τ

∥
∥
Ht

≤ ∥
∥u1

τ – u2
τ

∥
∥
Hτ

e2l(t–τ ), ∀t ≥ τ .

3.2 Time-dependent global attractors
In this subsection, we will verify the existence of the time-dependent global attractors in
Ht for the process {U(t, τ )}t≥τ defined by (3.13).

3.2.1 Time-dependent absorbing sets
In the following, we will obtain the time-dependent global absorbing sets.

Lemma 3.5 Let f satisfy (1.4)–(1.5), g ∈ H–1(Ω) and uτ ∈ Bτ (R) ⊂Hτ . Then there exists a
R0 > 0 such that the family B̂ = {Bt(R0)}t∈R is a time-dependent absorbing set for the process
{U(t, τ )}t≥τ .

Proof Multiplying (1.1) by u(t) and integrating over x ∈ Ω , we arrive at

1
2

d
dt

(‖u‖2
2 + ε(t)‖∇u‖2

2
)

+
(

1 –
1
2
ε′(t)

)

‖∇u‖2
2 +

(
f (u), u

)
=

〈
g(x), u

〉
.

Thanks to (1.5) and the Hölder inequality, we have

d
dt

(‖u‖2
2 + ε(t)‖∇u‖2

2
)

+
(
1 – ε′(t)

)‖∇u‖2
2 + 2c1‖u‖p

p ≤ 2c0|Ω| + ‖g‖2
H–1 .

Furthermore, by (1.3), we can get

d
dt

(‖u‖2
2 + ε(t)‖∇u‖2

2
)

+
1

1 + L
(
λ1‖u‖2

2 + ε(t)‖∇u‖2
2
) ≤ 2c0|Ω| + ‖g‖2

H–1 .

Setting λ = min{λ1, 1} and β = λ
1+L , we deduce that

d
dt

(‖u‖2
2 + ε(t)‖∇u‖2

2
)

+ β
(‖u‖2

2 + ε(t)‖∇u‖2
2
) ≤ 2c0|Ω| + ‖g‖2

H–1 . (3.14)

Multiplying (3.14) by eβt and integrating it in [τ , t], we obtain

(∥
∥u(t)

∥
∥2

2 + ε(t)
∥
∥∇u(t)

∥
∥2

2

)
eβt

≤ (∥
∥u(τ )

∥
∥2

2 + ε(τ )
∥
∥∇u(τ )

∥
∥2

2

)
eβτ +

(
2c0|Ω| + ‖g‖2

H–1
)
∫ t

τ

eβs ds, ∀t ≥ τ .

Therefore,

(∥
∥u(t)

∥
∥2

2 + ε(t)
∥
∥∇u(t)

∥
∥2

2

) ≤ (∥
∥u(τ )

∥
∥2

2 + ε(τ )
∥
∥∇u(τ )

∥
∥2

2

)
e–β(t–τ ) +

1
β

(
2c0|Ω| + ‖g‖2

H–1
)



Zhu et al. Boundary Value Problems         (2020) 2020:95 Page 12 of 14

≤ 1 +
1
β

(
2c0|Ω| + ‖g‖2

H–1
)

= R0,

provided that t – τ ≥ t0 with t0 = 1
β

ln(‖uτ‖2
2 + ε(τ )‖∇uτ‖2

2), from which we obtain the
existence of the time-dependent absorbing set. �

3.2.2 Time-dependent global attractors
At first, we have the following lemma, which is similar to that in [15].

Lemma 3.6 Let f satisfy (1.4)–(1.5), g ∈ H–1(Ω), uτ ∈ Hτ and {un(t)}∞n=1 be a sequence of
solutions for Eq. (1.1) with initial data un

τ ∈Hτ (n = 1, 2, . . .), then there exists a subsequence
of {un(t)}∞n=1 that converges strongly in L2(τ , t; L2(Ω)).

Proof By (1.5) and Theorem 3.3, we know that there exists a sequence {un(t)}∞n=1 ⊂
L2(τ , T ; H1

0 (Ω)), {f (un(t))}∞n=1 ⊂ Lq(τ , T ; Lq(Ω)). Then, from Eq. (1.1), we obtain ∂tun –
ε(t)∂t�un = �un – f (un) + g(x) ∈ L2(τ , T ; H–1(Ω)) + Lq(τ , T ; Lq(Ω)) ⊂ L2(τ , T ; H–2(Ω)). By
the regularization theory for elliptic equations, we know that ∂tun ∈ L2(τ , T ; L2(Ω)). As in
[15], there exists a subsequence of {un(t)}∞n=1 (still denoted by {un(t)}∞n=1) that converges
strongly in L2(τ , T ; L2(Ω)). �

Then we have the following theorem, which will obtain the pullback asymptotic com-
pactness for the process {U(t, τ )}t≥τ defined by (3.13).

Theorem 3.7 Let f satisfy (1.4)–(1.5), g ∈ H–1(Ω) and uτ ∈ Bτ (R) ⊂Hτ , then {U(t, τ )}t≥τ

is pullback asymptotically compact in Ht .

Proof Let ui(t) (i = 1, 2) be the solutions corresponding to initial data ui
τ ∈ Bτ (R) ⊂ Hτ ,

that is, ui(t) satisfies the following equation:

ut – ε(t)�ut – �u + f (u) = g(x), in Ω × (τ ,∞),

with initial data

ui(x, τ ) = ui
τ , x ∈ Ω .

Denoting ω(t) = u1(t) – u2(t), then ω(t) satisfies the following equation:

ωt – ε(t)�ωt – �ω + f
(
u1) – f

(
u2) = 0, in Ω × (τ ,∞), (3.15)

with initial data

ω(x, τ ) = u1
τ – u2

τ , x ∈ Ω .

Multiplying (3.15) by ω(t) and integrating it in Ω , then, by (1.4), we obtain

d
dt

(‖ω‖2
2 + ε(t)‖∇ω‖2

2
)

+
(
2 – ε′(t)

)‖∇ω‖2
2 ≤ 2l‖ω‖2

2.
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By the Poincaré inequality, we have

d
dt

(‖ω‖2
2 + ε(t)‖∇ω‖2

2
)

+ β1
(‖ω‖2

2 + ε(t)‖∇ω‖2
2
) ≤ 2l‖ω‖2

2,

where β1 = 2β , β is given by (3.14).
Thanks to the Gronwall lemma, we get

∥
∥ω(t)

∥
∥2

2 + ε(t)
∥
∥∇ω(t)

∥
∥2

2

≤ (∥
∥ω(τ )

∥
∥2

2 + ε(τ )
∥
∥∇ω(τ )

∥
∥2

2

)
e–β1(t–τ ) + 2l

∫ t

τ

∥
∥ω(s)

∥
∥2

2 ds, ∀t ≥ τ .

Setting

ψ t
τ (u1

τ , u2
τ ) =2l

∫ t

τ

∥
∥ω(s)

∥
∥2

2 ds,

combining with Definition 2.9 and Lemma 3.6, we know that ψ t
τ (·, ·) is a contractive func-

tion. Then, for any ε > 0 and any fixed t ∈ R, let τ0 = t – 1
β1

ln
‖wτ ‖2

2+ε(τ )‖∇wτ ‖2
2

ε
, we easily see

that {U(t, τ )}t≥τ is pullback asymptotically compact in Ht by Theorem 2.10. �

Combining with Lemma 3.5 and Theorem 3.7, we have the main result of this paper.

Theorem 3.8 Let f satisfy (1.4)–(1.5), g ∈ H–1(Ω) and uτ ∈ Bτ (R) ⊂Hτ , then {U(t, τ )}t≥τ

possesses a time-dependent global attractor Â = {At}t∈R in Ht ; that is, At is compact, Â is
nonempty, invariant in Ht and pullback attracts every bounded subset of Ht with respect
to the Ht-norm.

Remark 3.9 In Theorem 3.8, we have obtained the time-dependent global attractor Â =
{At}t∈R in Ht . From (1.2) we know that ε(t) → 0 as t → +∞, then Eq. (1.1) becomes the
classical reaction–diffusion equation ut –�u+ f (u) = g(x). An interesting question is about
the limitation of At as t → +∞, that is, how to describe limt→+∞ At? We will consider this
problem in our next work.
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