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Abstract
In this paper, we focus on the class of almost-periodically forced higher-dimensional
beam equations

utt + (–� +μ)2u +ψ (ωt)u = 0, μ > 0, t ∈ R, x ∈ R
d ,

subject to periodic boundary conditions, where ψ (ωt) is real analytic and
almost-periodic in t. We show the existence of almost-periodic solutions for this
equation under some suitable hypotheses. In the proof, we improve the KAM
iteration to deal with the infinite-dimensional frequency ω = (ω1,ω2, . . .).
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1 Introduction
Recently, many researchers focus on some physical models appeared in dynamics of the
suspension bridge, nonrelativistic quantum mechanics, supersymmetric field theoriesk
and inflation cosmology [1–11]. For those models, there are many remarkable results on
the global existence or the blowup of solutions for wave equations [2–4], elliptic equa-
tions [5, 6], and some semilinear evolution equations [7]. As in the fundamental models,
the dynamical behavior of the solutions is studied. The decay estimate of the solution at
both subcritical and critical initial energy levels was obtained by Xu [2]. Nguyen [8] con-
sidered the compactness and stability for the Maxwell equations. Goubet and Manoubi
[9] investigated the asymptotic convergence of the solutions.

For one-dimensional Hamiltonian systems, the existence of quasiperiodic solutions or
almost-periodic solutions is also very significant in physics. It is well known that the
infinite-dimensional KAM theory is powerful to obtain it (see [12–21]). However, the
standard KAM theory fails to study higher-dimensional Hamiltonian PDEs because of
the multiplicity of the eigenvalues.
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It is worth noting that the first breakthrough in higher-dimensional PDEs is due to
Bourgain. Bourgain [22] obtained quasiperiodic solutions for two-dimensional nonlin-
ear Schrödinger equations via the developed Craig–Wayne methods. The Craig–Wayne–
Bourgain methods can overcome the difficulty of the asymptotical multiplicity of eigen-
values in higher-dimensional PDEs. However, it should also be pointed out that the KAM
theory has some important advantages. We can construct a local normal form in a neigh-
borhood of the solutions using the KAM theory, which turns out the behavior and dynam-
ics of the equation of motion. Thereafter, the infinite KAM theorem was extended to the
existence of finite-dimensional tori for higher-dimensional Hamiltonian systems. Geng
and You [23, 24] constructed KAM theorems for the higher-dimensional beam equation.
Yuan [25] obtained a KAM theorem to apply to partial differential equations of higher
dimensions.

However, there is a crucial condition in the KAM theorems in [23] and [24] that the
nonlinearity f (u) does not explicitly contain the time variable t and the space variable x.
Thus their KAM approaches failed in the case of the nonlinearity depending on t or x.
Physically, it requires no external force acting when the string is at rest, tending to distort
its equilibrium of u = 0. Up to now there are very few results on the reducibility in higher
dimensions. Eliasson and Kuksin [26] (also see [27]) showed the reducibility for the linear
Schrödinger equations in higher dimension

u̇ = –i
(
�u – εV (φ0 + tω, x;ω)u

)
, x ∈ T

d.

Eliasson, Grébert, and Kuksin [28] also considered the d-dimensional beam equation,
which is a good model for the Klein–Gordon equation. Rui and Liu [29] proved the
existence of quasiperiodic solutions for a linear d-dimensional beam equation with a
quasiperiodic in time potential.

Comparing with the case of quasiperiodic solutions in higher dimensions, as far as we
know, the reducibility results for almost-periodic solutions in higher dimensions have not
been previously regarded in the literature. In this paper, we focus on the reducibility of the
linear d-dimensional beam equation with almost-periodic forcing

utt + (–� + μ)2u + ψ(ωt)u = 0, μ > 0, t ∈ R, x ∈R
d, (1.1)

with periodic boundary conditions

u(t, x1 + 2π , . . . , xd) = · · · = u(t, x1, . . . , xd + 2π ) = u(t, x1, . . . , xd), (1.2)

where ψ(ωt) is real analytic and almost-periodic in t. Our aim is to construct almost-
periodic solutions of small amplitude for the beam equation (1.1). This equation is an
important model of mathematical physics. It is of great interest in applying to many engi-
neering fields.

Our beam equation (1.1) is quite different from the equations mentioned. There is
almost-periodic forcing in higher dimensions, because the reducibility is complex and
doubtful. Unfortunately, all those KAM theorems fail to handle infinite-dimensional fre-
quency ω = (ω1,ω2, . . .) in Eq. (1.1). Using the method of Pöschel [19] and Xu and You
[30], we succeed in decomposing infinite-dimensional frequency in the reducibility. Our
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nonresonance condition of an infinite-dimensional frequency benefits a lot from Pöschel
[14]. The main difficulty in this problem is estimating measures of small divisors, since the
infinite-dimensional frequency will handle at each step of the KAM iteration. The KAM
theory in Kuksin [12] and Pöschel [13] cannot be directly applied to the d-dimensional
beam equation with almost-periodic forcing, and we will improve the KAM iteration (see
Sect. 3). A new strategy to overcome the difficulty are the techniques of decomposing in-
finitely many frequencies and expanding Hamiltonian into proper series, which are the
main achievements of this paper. The author of this paper in [31] and [32] obtained the
existence of almost-periodic solutions with almost-periodic forcing using similar tech-
niques. However, Eq. (1.1) is a higher-dimensional equation, and therefore the analysis of
Birkhoff normal forms and more precise estimation of new perturbation is very difficult
because of the effects of infinite-dimensional frequency,

To state the main results of our paper, we need the following assumptions and sets.
To dispose the infinite-dimensional frequency, we construct a sequence {bν}ν≥0 satisfying
b0 = 2b ≥ 2, bν+1 > bν , and bν ∈ Z

+. We choose the index set

Iν =
{

ij : j ≤ bν , j, ij ∈ Z
+}, ν = 0, 1, . . . . (1.3)

The frequencies can be split up as ω = (ωbν ,ω′
ν) = (ωi1 , . . . ,ωibν

,ωibν +1 , . . .). Let θ = ωt. For
fixed 
 ∈ (0, 1), by [14] the frequency ω satisfies the following nonresonance conditions

O :=
{
ω =
(
ωbν ,ω′

ν

) ∈Oν ×O′
ν ∈ [
, 2
]Z

+
:

∣
∣〈k,ω〉∣∣≥ α̃

exp(4|k|α̃/α̃)
, k ∈ Z

∞ \ {0}
}

, (1.4)

where 0 < α̃ < 1 is arbitrary and fixed, |k| =
∑∞

i=1 |ki|, Oν is a closed set in R
bν , and O′

ν is
a closed set. The frequencies ωbν will be chosen properly by the KAM iteration. We also
need the following notation:

θbν = (θi1 , . . . , θibν
), θ

b0
1 = (θi1 , . . . , θib0

), θ
bν+1
1 = (θibν +1 , . . . , θibν+1

),

ω
b0
1 = (ωi1 , . . . ,ωib0

), ω
bν+1
1 = (ωibν +1 , . . . ,ωibν+1

), ν = 0, 1, . . . .

To apply the KAM theory, we introduce the following assumptions:
(H1) The function ψ(ωt) is real analytic and almost-periodic with ω ∈O.
(H2) The function ψ(θ ) has a special series expansion of the form

ψ(θ ) =
∞∑

j=0

εbjψbj

(
θ

bj
1
)
,

which is absolutely convergent. There exists an absolute constant C such that

∣
∣ψ(θ )

∣
∣≤ C,

∣
∣ψbj

(
θ

bj
1
)∣∣≤ C,

∣
∣∂θjψb0

(
θ

b0
1
)∣∣≤ C, j ∈ I0,

∣
∣∂θjψbj

(
θ

bj
1
)∣∣≤ C, j ∈ Ij\Ij–1, j = 1, . . . .
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By assumption (H1) we can expand ψbj (θ
bj
1 ) (j = 0, 1, . . .) into the converging Fourier–

Taylor series

ψb0

(
θ

b0
1
)

=
∑

k∈Zb0

ψ̄
b0
k ei〈k,θb0

1 〉, ψbj

(
θ

bj
1
)

=
∑

k∈Zbj–bj–1

ψ̄
bj
k ei〈k,θ

bj
1 〉, j = 1, . . . . (1.5)

Theorem 1.1 (Main Theorem) Assume that ψ(θ ) in (1.1) satisfies assumptions (H1) and
(H2). For ω = (ω1, . . . ,ωj, . . .)j∈Z ∈ O, there exists ε small enough and a positive Lebesgue
measure set O∗ ⊂ O such that meas(O\O∗) ≤ Cε

1
6 . Moreover, for all ω∗ = (ωi1 , . . .)ij∈I∞ ∈

O∗, the higher-dimensional beam equation (1.1) with periodic boundary conditions (1.2)
admits a family of almost periodic solutions of the form

u(t, x) =
∑

k∈Z∞∗

uk(x)ei〈k,λ∗〉t ,

where λ∗ = (· · · ,λn∞, . . .)n∈Zd and λn∞ = |n|2 + μ + εb0 ψ̄
b0
0

2λn
+ O(εb1 ).

Remark 1.2 Assumption (H2) is crucial to have a successful KAM iteration. We will split
the Hamiltonian and add some proper parts of perturbations to increase the number of
frequencies in the next KAM step. Moreover, for the reducibility, we need to ensure that
the new perturbation in the next KAM step is smaller than the previous one. Thus ψ(θ )
needs a special series expansion, and the form of the series is decided by KAM iteration.

Remark 1.3 The function ψ(θ ) in (1.1) depends only on t to conserve the partial zero-
momentum property in the KAM iteration. Otherwise, in the case of higher dimension
the estimate of the new perturbations becomes doubtful, and the terms of new normal
form cannot be handled. It is harder than one-dimensional equations in [31] and [32].

The rest of the paper is organized as follows. In Sect. 2, we discuss the Hamiltonian
setting corresponding Eq. (1.1). Section 3 is devoted to the reducibility of proving the
existence of almost-periodic solutions for the linear d-dimensional beam equation using
an improved KAM iteration. The small divisors estimate in reducibility is given in the
Appendix.

2 The Hamiltonian of the higher-dimensional beam equation
In this section, we analyze the Hamiltonian of the higher-dimensional beam equation,
which will be transformed into the KAM iteration.

We first introduce some notations. Let la,ρ be the Banach spaces of complex-valued
sequences q = (· · · , qn, . . .)n∈Zd and its complex conjugate q̄ = (· · · , q̄n, . . .)n∈Zd with the
weighted norm

‖q‖a,ρ =
∑

n∈Zd

|qn||n|ae|n|ρ ,

where a ≥ 0,ρ > 0, |n| =
√

n2
1 + · · · , n2

d, n = (n1, . . . , nd). Let α ≡ (· · · ,αn, . . .)n∈Zd , β ≡
(· · · ,βn, . . .)n∈Zd , αn,βn ∈ N, with finitely many nonzero components of positive integers.
The product qα q̄β denotes Πnqαn

n q̄βn
n .
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In the following, we reduce the Hamiltonian of the higher-dimensional beam equation
(1.1). The Hamilton systems (1.1)–(1.2) are equivalent to the systems

ut = v, vt = –A2u – ψ(ωt)u, Au = (–� + μ)u.

By a simple computation, λn = |n|2 + μ are the eigenvalues of the operator A = –� + μ

subject to periodic boundary conditions with eigenfunctions φn(x) =
√

1
(2π )d ei〈n,x〉, n ∈ Z

d .

Letting q = 1√
2 A 1

2 u – i 1√
2 A– 1

2 v, we have

qt = i
(

Aq +
1√
2
ψ(ωt)A–1

(
q + q̄√

2

))
. (2.1)

Let q(x) =
∑

n∈Zd qnφn(x). Equation (2.1) is equivalent to the nonautonomous lattice
Hamiltonian system

q̇n = i
(

λnqn +
∂G
∂ q̄n

)
, G(q, q̄) =

1
2
ψ(ωt)

∫

Td

(∑

n∈Zd

qnφn + q̄nφ̄n√
2λn

)2

dx (2.2)

with the corresponding Hamiltonian function

H =
∑

n∈Zd

λnqnq̄n +
1
2
ψ(ωt)

∫

Td

(∑

n∈Zd

qnφn + q̄nφ̄n√
2λn

)2

dx. (2.3)

Letting θ = ωt, we introduce a pair of action-angle variables (J , θ ) ∈R
∞ ×T

∞ with

θ̇ = ω, J̇ = –
∂H
∂θ

, q̇n = i
∂H
∂ q̄n

, n ∈ Z
d.

Thus the corresponding Hamiltonian function of system (2.2) may be rewritten as

H = 〈ω, J〉 +
∑

n∈Zd

λnqnq̄n +
1
2
ψ(θ )

∫

Td

(∑

n∈Zd

qnφn + q̄nφ̄n√
2λn

)2

dx (2.4)

with the symplectic structure dJ ∧ dθ + i
∑

n∈Zd dqn ∧ dq̄n.
By Assumption (H2) the Hamiltonian (2.4) can be split into the following form

H = Λ + P = H1
0 + H1 + · · · + Hj + · · ·

= (Λ0 + R0) + (Λ1 + R1) + · · · + (Λj + Rj) + · · · , (2.5)

where for j = 1, . . . ,

H1
0 = Λ0 + R0 =

〈
ω0, J0〉 +

∑

n∈Zd

λnqnq̄n

+
1
2
εb0ψb0

(
θ

b0
1
)∫

Td

(∑

n∈Zd

qnφn + q̄nφ̄n√
2λn

)2

dx,

Hj = Λj + Rj =
〈
ω

bj
1 , Jbj

1
〉
+

1
2
εbjψbj

(
θ

bj
1
)∫

Td

(∑

n∈Zd

qnφn + q̄nφ̄n√
2λn

)2

dx.

(2.6)
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Furthermore, for j = 0, 1, . . . , Rj may be rewritten in detail as follows:

Rj =
∑

n,m∈Zd

(
R20bj

jnm qnqm + R11bj
jnm qnq̄m + R02bj

jnm q̄nq̄m
)

(2.7)

with

R11bj
jnm =

εbjψbj (θ
bj
1 )

2
√

λnλm

∫

Td
φnφ̄m dx, R20bj

jnm =
εbjψbj (θ

bj
1 )

4
√

λnλm

∫

Td
φnφm dx,

R02bj
jnm =

εbjψbj (θ
bj
1 )

4
√

λnλm

∫

Td
φ̄nφ̄m dx.

(2.8)

Let b–1 = 0. By q(x) =
∑

n∈Zd qnφn(x) we can rewrite Rj(θ
bj
1 , q, q̄), j = 0, 1, . . . , as follows:

Rj
(
θ

bj
1 , q, q̄

)
=
∑

α,β

Rjαβ (θ )qα q̄β =
∑

α,β

∑

k∈Zbj–bj–1

1√
λα+β

Rjkαβei〈k,θ
bj
1 〉qα q̄β ,

where λ = (· · · ,λn, . . .)n∈Zd . It is easy to see that Rj(θ
bj
1 , q, q̄), j = 0, 1, . . . , admit the partial

zero-momentum property

Rjkαβ = 0 whenever
∑

n∈Zd

(αn – βn)n �= 0. (2.9)

Remark 2.1 Property of (2.9) is important for higher-dimensional Hamiltonian systems.
It ensures the form of perturbations and the obtained normal form in the KAM iteration.
There is a crucial difference from the one-dimensional case. Thus, to conserve this prop-
erty at each KAM step, we require that ψ does not explicitly depend on space variable
x.

Remark 2.2 By (2.9) we get R20bj
jknm = Rjkαβ ,α = en + em,β = 0; R02bj

jknm = Rjkαβ ,α = 0,β = en + em;

and R11bj
jknm = Rjkαβ ,α = en,β = em. The perturbation Rj(θ

bj
1 , q, q̄) satisfying (2.9) means that

R11bj
jknm = 0 if n �= m. Then the normal variables qn, q̄m with n �= m in the new normal form

will not be coupled. Moreover, there are no terms of the forms
∑

n Rjk(en+e–n)0qnq–n and
∑

n Rjk0(en+e–n)q̄nq̄–n.

Lemma 2.3 For a ≥ 0 and ρ > 0, the gradient Rq̄ is a real analytic map from a neighbor-
hood of the origin of la,ρ into la+1,ρ , with

‖XR‖ā,ρ = O
(‖q‖a,ρ

)
, ā = a + 1.

For the proof of Lemma 2.3, see [33].

Remark 2.4 We require that ā > a, which means that the weight of vector fields is a little
heavier than that of q, q̄. The regularity of ‖XR‖ā,ρ ensures that XR sends a decaying q-
sequence to a faster decaying sequence.
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3 Reducibility
In this section, we state the important Theorem 3.2 and give a detailed proof of the re-
ducibility to obtain the Theorem 1.1. The main program of proof comes form the KAM
iteration, which involves an infinite sequence of change of variables. Thus, at each step of
KAM iteration the estimates of the coordinate transformation and the Lebesgue measure
of a small devisor are necessary (see Sects. 3.2–3.4). Because of our infinite frequencies
in beam equations, we need to improve the program of the KAM iteration (see Sect. 3.5).
Since at each KAM step the perturbation must become more smaller than at the previous
KAM step, we estimate the new perturbation (see Sect. 3.6). For a high-dimensional beam
equation, we need to verify the partial zero-momentum property at each KAM step (see
Sect. 3.7). The normal form is obtained by the infinite transforms. Thus the convergence
of the infinite transforms needs to be considered (see Sect. 3.8).

3.1 A theorem of reducibility
We further give a theorem of reducibility for the Hamiltonian systems (2.5). To this end,
we firstly introduce some notations and spaces.

We choose a proper sequence {bν}∞ν=0 defined by b0 = 2b > 2, bν+1 = bν + b = (ν + 3)b, bν ∈
Z

+. Let εν = εbν ,ν = 0, 1, . . . . For given σ > 0 and r > 0, we define the sequences {σν}∞ν=0 and
{rν}∞ν=0, as follows:

σ0 = σ , σν = σ0

(
1 –

∑ν
i=1 i–2

2
∑∞

i=1 i–2

)
,

r0 = r, rν+1 =
1
4
ε

1
8 νb+ 1

12 b
((

256(bν + 4)
e

)bν+4

(σν – σν+1)–2bν– 7
2

) 1
3

rν .

We easily to see that σ0 > · · · > σν > σν+1 > · · · > σ /2. Denote

Dν = D(σν , rν) =
{

(θ , J , q, q̄) : |Imθ | < σν , |J| < r2
ν ,‖q‖a,ρ < rν ,‖q̄‖a,ρ < rν

}
,

where | · | denotes the sup-norm for complex vectors or matrixes. For ν = 0, 1, . . . , we define
that

Θν =
{
θ : θ :=

(
θbν , θ ′) := (θi1 , . . . , θibν

, θibν +1 , . . .), |Imθj| < σν , j = i1, . . . , ibν , ibν+1, . . .
}

,

Oν =
{
ω : ω :=

(
ωbν ,ω′) := (ωi1 , . . . ,ωibν

,ωibν +1 , . . .) ∈Obν ×O′
ν , ij ∈ Iν

}
,

Jbν = (Ji1 , . . . , Jibν
), Jb0

1 = (Ji1 , . . . , Jib0
), Jbν+1

1 = (Ji(bν +1) , Ji(bν +2) , . . . , Jib(ν+1)
).

We assume that the given analytic function has the following form:

F(θ , J , q, q̄) =
∑

α,β

Fαβ(θ , J)qα q̄β (3.1)

with the weighted norm

‖F‖D(σ ,r),O = sup
‖q‖a,ρ<r,‖q̄‖a,ρ<r

∑

α,β

‖Fαβ‖Θ×O
∣∣qα
∣∣∣∣q̄β
∣∣, (3.2)
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where

Fαβ =
∑

k∈Z,l̂∈N
Fkl̂αβ

J l̂ei<k,θ>

and

‖Fαβ‖Θ×O ≡
∑

k,l̂

∣∣Fkl̂αβ
(ω)
∣∣
Or2|l̂|e|k|σ ,

∣∣Fkl̂αβ
(ω)
∣∣
O = sup

ω∈O

(
|Fkl̂αβ

| +
∣
∣∣
∣
∂Fkl̂αβ

∂ω

∣
∣∣
∣

)
.

(3.3)

Let w∗ = (θ , J , q, q̄) ∈ D(σ , r). The weighted norm of w∗ is

∣
∣w∗∣∣

D(σ ,r) = |θ | +
1
r2 |J| +

1
r
‖q‖a,ρ +

1
r
‖q̄‖a,ρ .

For B(η;ω) : D(σ , r) → D(σ , r) and (η;ω) ∈ D(σ , r) ×O, we denote the operator norms

∣
∣B(η;ω)

∣
∣
D(σ ,r)×O = sup

(η;ω)∈D(σ ,r)×O
sup
w∗ �=0

|B(η;ω)w∗|a,ρ

|w∗|ρ ,

∣∣B(η;ω)
∣∣∗
D(σ ,r)×O = max

{∣∣B(η;ω)
∣∣
D(σ ,r)×O ,

∣∣∂ωB(η;ω)
∣∣
D(σ ,r)×O

}
.

For the Hamiltonian vector field XF = (FJ , –Fθ , {iFqn}, {–iFq̄n}) associated with a function F
on D(σ , r) ×O, its weighted norm is defined as

‖XF‖D(σ ,r),O

≡ ‖FJ‖D(σ ,r),O +
1
r2 ‖Fθ‖D(σ ,r),O

+
1
r

(∑

n∈Zd

‖Fqn‖D(σ ,r),O|n|āe|n|ρ +
∑

n∈Zd

‖Fq̄n‖D(σ ,r),O|n|āe|n|ρ
)

.

Lemma 3.1 For ε∗ > 0 sufficiently small and r = ε∗, if |J| < r2 and ‖q‖a,ρ < r, then for ε =
ε(ε∗), we have

‖XR‖D(σ ,r),O < ε, ā = a + 1. (3.4)

For the proof, see [24].
Now we state our theorem.

Theorem 3.2 Suppose that the Hamiltonian H in (2.5) satisfies assumption (H1)–(H2).
Then there exist ε > 0 small enough and a Cantor set O∗ ⊂O such that meas(O\O∗) = ε

1
6

and (the smallness condition)

‖XR‖D(σ ,r),O < ε, ā = a + 1.

Moreover, we have:
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(i) For each ω ∈O∗, there exists a real analytic linearly symplectic coordinate
transformation

Σ∞ : D(σ /2, 0) ×O∗ → D(σ , r).

The symplectic coordinate transformation Σ∞ is close to the identity:

∣
∣Σ∞ – id

∣
∣∗
D(σ /2,0)×O∗ < Cεb,

where C > 0 is an absolute constant.
(ii) The symplectic coordinate transformation Σ∞ transforms the Hamiltonian (2.5) into

H∞ = H ◦ Σ∞ =
∞∑

m=i1

ωmJm +
∑

n∈Zd

λn∞qnq̄n, (3.5)

where ω∗ = (ωi1 ,ωi2 , . . .) ∈O∗, ij ∈ I∞, and λn∞ = |n|2 + μ + εb0 ψ̄
b0
0

2λn
+ O(εb1 ).

Remark 3.3 The forced term ψ(ωt) is almost periodic with an infinite-dimensional fre-
quency ω = (ω1, . . . ). A significantly difficult problem is estimating the small divisors at
each KAM step because of treating infinite frequencies at the same time. To overcome
this difficulty, we split the infinite frequencies to the sum of some finite frequencies, which
means that at each KAM step, we only treat some finite frequencies.

Remark 3.4 By the chosen finitely many frequencies at each KAM step the Hamiltonian
H in (2.5) needs to be expanded into the proper series of H = H1

0 + H1 + · · · + Hj + · · · . We
will transform them in a proper order at the KAM iteration. Thus, in the reducibility, we
construct the proper Hamiltonian iteration sequences {H1

l }∞l=0 and {H3
jl}∞l=0, j = l + 1, . . . .

Remark 3.5 Assumption (H2) is crucial. The KAM iteration is successful because of the
new perturbation reducing speedily after each KAM step. The new added perturbation
εν+1P3

(ν+1)(ν+1) defined in (3.34) at the next KAM step should be smaller than the previous

one. The coefficients εbj of ψ(θ ) =
∑∞

j=0 εbjψbj (θ
bj
1 ) will be decided by the estimations of

the small divisor measure and the new perturbation in reducibility.

In Sects. 3.2–3.8, we will prove Theorem 3.2 via an improved KAM reducibility.

3.2 Construction of iterative series and verification of the first KAM iteration
We iteratively construct Hamiltonian series {H1

l }∞l=0 as follows:

H1
l = Λ1

l +εlP1
l
(
q, q̄,ωbl , ε

)
, l = 0, 1, . . . ,ν, (3.1)l

where

Λ1
l =
〈
ωbl , Jbl

〉
+
∑

n∈Zd

λnl(ε)qnq̄n,

P1
l =
∑

α,β

P1
lαβ

(
θbl
)
qα q̄β =

∑

n,m∈Zd

(
P120bl

nm
(
θbl
)
qnqm + P111bl

nm
(
θbl
)
qnq̄m + P102bl

nm
(
θbl
)
q̄nq̄m

)
,
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with P120b0
nm = R20b0

0nm , P111b0
nm = R11b0

0nm , P102b0
nm = R102b0

0nm defined in (2.7) and

P1
lαβ

(
θbl
)

=
∑

k∈Zbl

1√
λα+β

P1
lkαβei〈k,θbl 〉,

P1m1m2bl
nm =

∑

k∈Zbl

1√
λnλm

P1m1m2bl
knm ei〈k,θbl 〉, (m1, m2) =

{
(2, 0), (1, 1), (0, 2)

}
.

Moreover,

P1
lkαβ = 0 whenever

∑

n∈Zd

(αn – βn)n �= 0, l = 0, 1, . . . ,ν, (3.2)l

∥
∥P1

l
(
q, q̄,ωbl , ε

)∥∥
Θl×Obl ≤ C, l = 0, 1, . . . ,ν, ā = a + 1, (3.3)l

λn0 = λn = |n|2 + μ, λnl = λn +
l–1∑

s̃=0

εs̃λ̃n,s̃(ε), l ≥ 1, (3.4)l

where

ε0λ̃n,0(ε) =
εb0ψ̄

b0
0

2λn
, aλ̃n,s̃(ε) =

1
λn

P111bs̃
0nn , s̃ = 1, . . . , l – 1.

We also need another Hamiltonian series {H3
jl}∞l=0, j = l + 1, . . . , of the form

H3
jl =

bj∑

m=bj–1+1

ωim Jim +εjP3
jl
(
q, q̄,ωbj

1 , ε
)
, j ≥ l+1, (3.5)l

where

P3
jl
(
q, q̄,ωbj

1 , ε
)

=
∑

α,β

P3
jlαβ

(
θ

bj
1
)
qα q̄β =

∑

n,m∈Zd

(
P320

jlnmqnqm + P311
jlnmqnq̄m + P302

jlnmq̄nq̄m
)

with

P3
jlαβ

(
θ

bj
1
)

=
∑

k∈Zbj–bj–1

1√
λα+β

P3
jlkαβei〈k,θ

bj
1 〉,

P3m1m2
jlnm =

∑

k∈Zbj–bj–1

1√
λnλm

P3m1m2
jlknm ei〈k,θ

bj
1 〉, (m1, m2) =

{
(2, 0), (1, 1), (0, 2)

}
.

Moreover,

P3
jlkαβ = 0, whenever

∑

n∈Zd

(αn – βn)n �= 0, l = 0, 1, . . . ,ν, (3.6)l

∥∥P3
jl
(
q, q̄,ωbj

1 , ε
)∥∥

Θj×Obj ≤ C, j ≥ l + 1, l = 0, 1, . . . ,ν, ā = a + 1. (3.7)l

We easily verify that H1
0 = H1

l |l=0, that is, (3.1)0 is satisfied. It is easy to obtain λn0 by (2.7),
that is, (3.4)0 is satisfied. Let Hj = H3

jl |l=0, that is, (3.5)0, be satisfied. From Assumption (H2)
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and Lemma 3.1 we obtain that

∥
∥P0
(
q, q̄, θbl , ε

)∥∥
Θ0×Ob0 ≤ C,

∥
∥P3

j0
(
q, q̄,ωbj

1 , ε
)∥∥

Θj×Obj ≤ C,

which means that (3.3)0 and (3.7)0 are satisfied. From (2.9) by Plkαβ |l=0 = R0kαβ , P3
jlkαβ |l=0 =

Rjkαβ we get (3.2)0 and (3.6)0.

3.3 Solve the homological equations
At each step of the KAM iteration, we will meet the small divisors in finding the coordinate
transforms. Now we first estimate the measure of the small divisor about the frequency
ω ∈O, which will be proved in Appendix.

Lemma 3.6 For k ∈ Z
bs , n, m ∈ Z

d , l = 0, 1, . . . ,ν , there exist closed subsets

Obl∗ =
{
ωbl : ωbl = (ωi1 , . . . ,ωij , . . . ,ωibl

), ij ∈ Il
}

such that, for all ωbl ∈Obl∗ , we have the following inequalities:

∣
∣〈k,ωbl

〉∣∣≥ ε
1
4
l

(1 + l3)(|k| + 1)bl+2 ,

∣
∣〈k,ωbl

〉± (λnl + λml)
∣
∣≥ ε

1
4
l

(1 + l3)(|k| + 1)bl+2 ,

∣∣〈k,ωbl
〉
+ (λnl – λml)

∣∣≥ ε
1
4
l

(1 + l3)(|k| + 1)bl+2 ,
∣∣k| +

∣∣|n| – |m|∣∣ �= 0,

(3.6)

where λnl and λml are defined in (3.4)l .
Moreover, letting

O∗
ν =
{
ω : ω =

(
ωbν ,ω′) = (ωi1 , . . . ,ωibν

,ωibν +1 , . . .) ∈Obν∗ ×O′
ν , ij ∈ Iν

}
,

O∗ =
∞⋂

ν=0

O∗
ν , (3.7)

we get

O∗
ν ⊆O∗

ν–1 ⊆ · · · ⊆O∗
0 ⊆O,

meas
(
O∗

ν\O∗
ν+1
)≤ 2ε

5
24
ν+1

(1 + (ν + 1)3)1– 1
d

, meas
(
Oν\O∗

ν

)

≤ 2ε
5

24
ν

(1 + ν3)1– 1
d

, meas
(
O\O∗)≤ Cε

1
6 ,

where C is a constant depending on μ and 
.

We look for a change of variables Sν defined in a domain Dν+1 by the time-one map
X1
Fν

of the Hamiltonian vector field XFν . Let Xt
Fν

be the time-t map of the flow of the
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Hamiltonian vector field XFν given by the Hamiltonian

Fν = ενFν

= εν

∑

k∈Zbν

( ∑

n,m∈Zd

(
F20bν

knm qnqm + F02bν

knm q̄nq̄m
)

+
∑

|k|+||n|–|m||�=0

F11bν

knm qnq̄m

)
ei〈k,θbν 〉. (3.8)

For ωbν ∈Obν∗ , Sν transforms system (3.1)ν into

H2
ν+1 := H1

ν ◦ Sν

= Λ1
ν + ενP1

ν + εν

{
Λ1

ν , Fν

}

+ ε2
ν

∫ 1

0
(1 – t)

{{
Λ1

ν , Fν

}
, Fν

} ◦ Xt
Fν

dt + ε2
ν

∫ 1

0

{
P1

ν , Fν

} ◦ Xt
Fν

dt, (3.9)

and for j ≥ ν + 1, Hamiltonian (3.5)ν is transformed into

H3
j(ν+1) := H3

jν ◦ Sν =
bj∑

m=bj–1+1

ωim Jim + ενP3
jν + εν

{ bj∑

m=bj–1+1

ωim Jim , Fν

}

+ ε2
ν

∫ 1

0
(1 – t)

{{ bj∑

m=bj–1+1

ωim Jim , Fν

}

, Fν

}

◦ Xt
Fν

dt

+ ε2
ν

∫ 1

0

{
P3

jν , Fν

} ◦ Xt
Fν

dt. (3.10)

Now the unknown function Fν needs to satisfy the following equation:

P1
ν +
{
Λ1

ν , Fν

}
=
∑

n∈Zd

1
λn

P111bν
0nn qnq̄n, (3.11)

which is equivalent to

(〈
k,ωbν

〉
– λn – λm

)
F20bν

knm = i
1√

λnλm
P120bν

knm ,

(〈
k,ωbν

〉
+ λn + λm

)
F02bν

knm = i
1√

λnλm
P102bν

knm ,

(〈
k,ωbν

〉
– λn + λm

)
F11bν

knm = i
1√

λnλm
P111bν

knm ,
∣∣k| +

∣∣|n| – |m|∣∣ �= 0. (3.12)

Inserting F into (3.8), we have

F20bν
nm =

∑

k∈Zbν

iP120bν

knn√
λnλm(〈k,ωbν 〉 – (λnν + λmν))

ei〈k,θbν 〉,

F02bν
nm =

∑

k∈Zbν

iP102bν

knm√
λnλm(〈k,ωbν 〉 + (λnν + λmν))

ei〈k,θbν 〉, (3.13)

F11bν
nm =

∑

k∈Zbν ,|k|+||n|–|m||�=0

iP111bν

knm√
λnλm(〈k,ωbν 〉 – λnν + λmν))

ei〈k,θbν 〉.
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Since j ≥ ν + 1, we obtain bj ≥ bν+1. From the definition of Fν(θbν ) in (3.8) and θbν =
(θi1 , . . . , θibν

) we obtain that ∂θm Fν = 0, m = bj–1 + 1, . . . , bj. Thus

{ bj∑

m=bj–1+1

ωim Jim , Fν

}

=
bj∑

m=1

[

∂Jm

( bj∑

s=bj–1+1

ωis Jis

)]
[
∂θm (Fν)

]

=
bj–1∑

m=1

[

∂Jm

( bj∑

s=bj–1+1

ωis Jis

)]
[
∂θm (Fν)

]
+

bj∑

m=bj–1+1

[

∂Jm

( bj∑

s=bj–1+1

ωis Jis

)]
[
∂θm (Fν)

]

= 0.

Thus (3.10) can be rewritten as

H3
j(ν+1) = H3

jν ◦ Sν =
bj∑

m=bj–1+1

ωim Jim + εjP3
jν + ενεj

∫ 1

0

{
P3

jν , Fν

} ◦ Xt
Fν

dt. (3.14)

3.4 Estimation on the coordinate transformation
We proceed to estimate XFν and φ1

Fν
.

Lemma 3.7 Let Di
ν = D(σν+1 + i

4 (σν – σν+1), i
4 rν), 0 < i ≤ 4. Then

‖XFν ‖D3
ν ,Obν∗ ≤ Cε

3
4
ν

(
256(bν + 4)

e

)bν+4

(σν – σν+1)–2bν– 5
2 . (3.15)

Proof Recall that by ωbν ∈Obν∗ , (3.6), and (3.12) we get, for (m1, m2) = {(2, 0), (0, 2)},

sup
ωbν ∈Obν∗

∣
∣Fm1m2bν

knm
∣
∣≤ C

∣∣
∣∣

1√
λnλm

P1m1m2bν

knm

∣∣
∣∣
Obν∗

ε
– 1

4
ν

(
1 + ν3)(|k| + 1

)bν+2, (3.16)

sup
ωbν ∈Obν∗

∣∣F11bν

knm
∣∣≤ C

∣
∣∣∣

1√
λnλm

P111bν

knm

∣
∣∣∣
Obν∗

ε
– 1

4
ν

(
1 + ν3)(|k| + 1

)bν+2,

∣∣k| +
∣∣|n| – |m|∣∣ �= 0. (3.17)

Recalling (3.4)ν , we get

∣∣∂ωbν λn,ν(ε)
∣∣≤ εb0

λn
. (3.18)

Thus, in view of (3.12), (3.18), and (3.3)ν , for (θbν ;ωbν ) ∈ Θν+1 × Obν∗ , we deduce that for
|k| + ||n| – |m|| �= 0,

∣∣∂ωbν F11bν

knm
∣∣≤
∣
∣∣
∣

i∂ωbν P111bν

knm√
λnλm(〈k,ωbν 〉 + λnν – λmν)

∣
∣∣
∣ +
∣
∣∣
∣

i(|k| + Cεb0 )P111bν

knm√
λnλm(〈k,ωbν 〉 + λnν – λmν)2

∣
∣∣
∣
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≤ C
∣∣
∣∣

1√
λnλm

P111bν

knm

∣∣
∣∣
Obν∗

ε
– 1

4
ν

(
1 + ν3)(|k| + 1

)bν+3. (3.19)

Similarly, we get, for (m1, m2) = {(2, 0), (0, 2)},

∣∣∂ωbν Fm1m2bν

knm
∣∣≤
∣
∣∣
∣

1√
λnλm

P1m1m2bν

knm

∣
∣∣
∣
Obν∗

ε
– 1

4
ν

(
1 + ν3)(|k| + 1

)bν+3. (3.20)

Thus by (3.16)–(3.20) we get, for (m1, m2) = {(2, 0), (1, 1), (0, 2)},

∣∣Fm1m2bν

knm
∣∣
Obν∗ ≤ C

∣
∣∣
∣

1√
λnλm

P1m1m2bν

knm

∣
∣∣
∣
Obν∗

ε
– 1

4
ν

(
1 + ν3)(|k| + 1

)bν+3. (3.21)

By the definition of the weighted norm, σν+1 + 3
4 (σν – σν+1) = σν – 1

4 (σν – σν+1), (3.3)ν ,
and (3.21) it follows that

1
r2
ν

‖∂θbν Fν‖D3
ν ,Obν∗

≤ 1
r2
ν

∑

|k|+||n|–|m||�=0

∣∣F11bν

knm
∣∣
Obν∗ |qn||q̄m||k|e|k|(σν– 1

4 (σν–σν+1))

+
1
r2
ν

∑

k,n,m

(∣∣F20bν

knm
∣
∣
Obν∗ |qn||qm| +

∣
∣F02bν

knm
∣
∣
Obν∗ |q̄n||q̄m|)|k|e|k|(σν– 1

4 (σν–σν+1))

≤ 1
r2
ν

ε
– 1

4
ν

(
1 + ν3)(|k| + 1

)bν+4e– 1
4 (σν–σν+1))

×
[ ∑

|k|+||n|–|m||�=0

∣
∣∣
∣

1√
λnλm

P11bν

knm

∣
∣∣
∣
Obν∗

|qn||q̄m|e|k|σν

+
∑

k,n,m

(∣∣
∣∣

1√
λnλm

P20bν

knm

∣∣
∣∣
Obν∗

|qn||qm| +
∣∣
∣∣

1√
λnλm

P02bν

knm

∣∣
∣∣
Obν∗

|q̄n||q̄m|
)

e|k|σν

]

≤ ε
– 1

4
ν

(
256(bν + 4)

e

)bν+4

(σν – σν+1)–2bν– 5
2 ‖XP1

ν
‖D3

ν ,Obν∗

≤ Cε
– 1

4
ν

(
256(bν + 4)

e

)bν+4

(σν – σν+1)–2bν– 5
2 . (3.22)

By the definition of Fν we easily see that ∂Jbν Fν = 0 and

‖∂qn Fν‖D3
ν ,Obν∗

≤
∥
∥∥
∥
∑

k,m

F11bν

knm q̄mei<k,θbν > +
∑

k,m

F20bν

knm qmei<k,θbν >
∥
∥∥
∥

D3
ν ,Obν∗

≤ ε
– 1

4
ν

(
1 + ν3)(|k| + 1

)bν+4∑

k,m

∣∣
∣∣

1√
λnλm

P11bν

knm

∣∣
∣∣
Obν∗

|q̄m|e|k|(σν– 1
4 (σν–σν+1))

+ ε
– 1

4
ν

(
1 + ν3)(|k| + 1

)bν+4∑

k,m

∣
∣∣∣

1√
λnλm

P20bν

knm

∣
∣∣∣
Obν∗

|qm|e|k|(σν– 1
4 (σν–σν+1)). (3.23)
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Similarly,

‖∂q̄n Fν‖D3
ν ,Obν∗

≤ ε
– 1

4
ν

(
1 + ν3)(|k| + 1

)bν+4∑

k,m

∣
∣∣∣

1√
λnλm

P11bν

kmn

∣
∣∣∣
Obν∗

|qm|e|k|(σν– 1
4 (σν–σν+1))

+ ε
– 1

4
ν

(
1 + ν3)(|k| + 1

)bν+4∑

k,m

∣
∣∣
∣

1√
λnλm

P02bν

knm

∣
∣∣
∣
Obν∗

|q̄m|e|k|(σν– 1
4 (σν–σν+1)). (3.24)

Similarly to the proof of (3.22), by the definition of Fν in (3.8), (3.22)–(3.24), and (3.3)ν we
obtain

‖XFν ‖D3
ν ,Obν∗ ≤ ενε

– 1
4

ν

(
256(bν + 4)

e

)bν+4

(σν – σν+1)–2bν– 5
2 ‖XP1

ν
‖D3

ν ,Obν∗

≤ Cε
3
4
ν

(
256(bν + 4)

e

)bν+4

(σν – σν+1)–2bν– 5
2 . �

Now we give some estimates for φt
Fν

. We obtain that our coordinate transformation is
well defined by the following formula (3.25). We will use inequality (3.26) to check the
convergence of the iteration.

Lemma 3.8 Let ην = ε
1
8 νb+ 1

12 b(( 256(bν+4)
e )bν+4(σν – σν+1)–2bν– 7

2 ) 1
3 , Diην

ν = D(σν+1 + i
4 (σν –

σν+1), i
4ηνrν), 0 < i ≤ 4. If εν � (( 256(bν+4)

e )–bν–4(σν – σν+1)2bν+ 5
2 ) 3

2 , then we have

φt
Fν

: D2ην
ν → D3ην

ν , –1 ≤ t ≤ 1. (3.25)

Moreover,

∥∥Dφt
Fν

– Id
∥∥

D1ην
ν

< Cε
3
4
ν

(
256(bν + 4)

e

)bν+4

(σν – σν+1)–2bν– 5
2 . (3.26)

Proof Let

∣
∣DmFν

∣
∣
Dν ,Obν∗ = max

{∣∣
∣∣

∂ |j|+|i|+|α|+|β|

∂J j ∂θ i ∂qα ∂ q̄β
Fν

∣∣
∣∣
Dν ,Obν∗

, |j| + |i| + |α| + |β| = m ≥ 2
}

.

Note that Fν is a polynomial of degree 2 in q, q̄. By (3.15), the weighted norm, and the
Cauchy inequality we get that for any m ≥ 2,

∣
∣DmFν

∣
∣
D2

ν ,O ≤ Cε
3
4
ν

(
256(bν + 4)

e

)bν+4

(σν – σν+1)–2bν– 5
2 . (3.27)

We consider the integral equation

φt
Fν

= id +
∫ t

0
XFν ◦ φs

Fν
ds,

so that φt
Fν

: D2ην
ν → D3ην

ν , –1 ≤ t ≤ 1, which directly follows from (3.13). Since

Dφt
Fν

= Id +
∫ t

0
(DXFν )Dφs

Fν
ds = Id +

∫ t

0
J
(
D2Fν

)
Dφs

Fν
ds,
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where J = ( 0 –I
I 0

)
, from the Gronwall inequality we get that

∥∥Dφt
Fν

– Id
∥∥≤ ∥∥D2Fν

∥∥e
∫ 1

0 ‖D2Fν‖ds ≤ 2
∥∥D2Fν

∥∥

< Cε
3
4
ν

(
256(bν + 4)

e

)bν+4

(σν – σν+1)–2bν– 5
2 .

Consequently, Lemma 3.8 follows. �

3.5 Rewrite the new normal form and new perturbation
We expand the Hamiltonian H to deal with infinite frequencies ω. Thus we need to rewrite
the new Hamiltonian to increase some new finite frequencies in the next iteration. The
map φ1

Fν
= Sν transforms H1

ν into H2
ν+1 = H1

ν ◦ φ1
Fν

= Λ2
ν+1 + εν+1P2

ν+1. Due to the special
form of P1

ν in (3.2)ν , the terms in
∑

nm
1√

λnλm
P11bν

0nm qnq̄m with n �= m are absent. Then the
new normal form Λ2

ν+1 is

Λ2
ν+1 = Λ1

ν + εν

∑

n∈Zd

1
λn

P111bν
0nn qnq̄n =

〈
ωbν , Jν

〉
+
∑

n∈Zd

(
λnν + εν

1
λn

P111bν
0nn

)
qnq̄n. (3.28)

We consider the following form of P2
ν+1:

εν+1P2
ν+1 = ε2

ν

∫ 1

0
(1 – t)

{{
Λ1

ν , Fν

}
, Fν

} ◦ Xt
Fν

dt + ε2
ν

∫ 1

0

{
P1

ν , Fν

} ◦ Xt
Fν

dt

:=
∑

n,m∈Zd

∑

k∈Zbν

ε2
ν√

λnλm

(
P̃220bν

knm qnqm + P̃211bν

knm qnq̄m + P̃202bν

knm q̄nq̄m
)
ei〈k,θbν 〉, (3.29)

where P̃2m1m2bν

knm are linear combinations of the products of Fm1m2bν

knm and P1m1m2bν

knm . Recalling
that b0 = 2b > 2, bν+1 = bν + b, bν ∈ Z

+,ν = 0, 1, . . . , εν = εbν , we get

ε2
ν = ε2bν = εν+1ε

b+bν , ν = 0, 1, . . . .

Moreover, we rewrite (3.29) in the form

P2
ν+1 :=

∑

n,m∈Zd ,k∈Zbν

1√
λnλm

(
P220bν+1

knm qnqm + P211bν+1
knm qnq̄m

+ P202bν+1
knm q̄nq̄m

)
ei〈k,θbν 〉, (3.30)

where

∣
∣P2m1m2bν+1

knm
∣
∣ = εb+bν

∣
∣P̃2m1m2bν

knm
∣
∣, (m1, m2) =

{
(2, 0), (1, 1), (0, 2)

}
. (3.31)

Let

λn,ν+1(ε) = λn,ν(ε) + ενλ̃n,ν(ε).

Recalling (3.11), we obtain that

ενλ̃n,ν(ε) =
εν

λn
P111bν

0nn ,
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which means that λn,ν+1(ε) satisfy (3.4)ν+1. By the regularity of XP1
ν

and Cauchy estimates
we have

∣
∣λn,ν+1(ε) – λn,ν(ε)

∣
∣ < εν ,

∣
∣P111bν

0nn
∣
∣ < C. (3.32)

Thus we get

H2
ν+1 := H1

ν ◦ φ1
Fν

:= Λ2
ν+1 + εν+1P2

ν+1 =
〈
ωbν , Jbν

〉
+
∑

n∈Zd

λn,ν+1(ε)qnq̄n + εν+1P2
ν+1. (3.33)

For j = ν + 1, . . . , we consider H3
j(ν+1) = H3

jν ◦ Sν with H3
jν defined in (3.5)ν . From (3.14) we

can assume that

H3
j(ν+1) = H3

jν ◦ Sν = Λ3
jν + εjP3

j(ν+1) = Λ3
jν + εj

(
P3

jν + εν

∫ 1

0

{
P3

jν , Fν

} ◦ Xt
Fν

dt
)

, (3.34)

where Λ3
jν =
∑bj

m=bj–1+1 ωim Jim , and

P3
j(ν+1) =

∑

n,m∈Zd

∑

k∈Zbj–bj–1

1√
λnλm

(
P320

j(ν+1)knmqnqm + P311
j(ν+1)knmqnq̄m

)
ei〈k,θ

bj
1 〉

+
∑

n,m∈Zd

∑

k∈Zbj–bj–1

1√
λnλm

P302
j(ν+1)knmq̄nq̄mei〈k,θ

bj
1 〉,

where P3m1m2
j(ν+1)knm are linear combinations of the products of Fm1m2bν

knm and P3m1m2
jνknm .

From (3.33), (3.34), and the proper expansion of Hamiltonian H in (2.5), we will con-
struct a new Hamiltonian to transform by Sν+1 at the next KAM step

H1
ν+1 := H2

ν+1 + H3
(ν+1)(ν+1)

:= Λ1
ν+1 + εν+1P1

ν+1
(
q, q̄, θbν+1 ,ωbν+1 , ε

)

=
〈
ωbν+1 , Jbν+1

〉
+
∑

n∈Zd

λn,ν+1(ε)qnq̄n + εν+1P2
ν+1 + εν+1P3

(ν+1)(ν+1), (3.35)

where

〈
ωbν+1 , Jbν+1

〉
=
〈
ωbν , Jbν

〉
+
〈
ω

bν+1
1 , Jbν+1

1
〉
,

Λ1
ν+1 =

〈
ωbν+1 , Jbν+1

〉
+
∑

n∈Zd

λn,ν+1(ε)qnq̄n,

εν+1P1
ν+1
(
q, q̄, θbν+1 ,ωbν+1

)
= εν+1P2

ν+1 + εν+1P3
(ν+1)(ν+1). (3.36)

Now we consider the perturbation term in H ◦ S0 ◦ · · · ◦ Sν . According to (3.33) and
(3.34), we get

H (ν+1) := H ◦ S0 ◦ · · · ◦ Sν =

(

H1
0 +

∞∑

j=1

Hj

)

◦ S0 ◦ · · · ◦ Sν = H1
ν+1 +

∑

j≥ν+2

H3
jν+1
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:= Λν+1 + Pν+1 (3.37)

with the new normal form

Λν+1 = Λ1
ν+1 +

∑

j≥ν+2

〈
ω

bj
1 , Jbj

1
〉

=
〈
ωbν+1 , Jbν+1

〉
+
∑

j≥ν+2

〈
ω

bn
1 , Jbn

1
〉
+
∑

n∈Zd

λn,ν+1(ε)qnq̄n

and the new perturbation

Pν+1 = εν+1P1
ν+1
(
q, q̄, θbν+1 ,ωbν+1

)
+
∑

j≥ν+2

εjP3
j(ν+1)
(
q, q̄, θbj

1 ,ωbj
1
)
. (3.38)

3.6 Estimation of the new Hamiltonian
Firstly, we estimate the small term P2

ν+1. Let yν(t) = (1 – t)({Λ1
ν ,Fν} + ενP1

ν) + tενP1
ν . From

(3.11) and (3.29) we have that

εν+1P2
ν+1 =

∫ 1

0
(1 – t)

{{
Λ1

ν ,Fν

}
,Fν

} ◦ Xt
Fν

dt +
∫ 1

0

{
ενP1

ν ,Fν

} ◦ Xt
Fν

dt

=
∫ 1

0

{
(1 – t)

{
Λ1

ν ,Fν

}
+ (1 – t)ενP1

ν + tενP1
ν ,Fν

} ◦ Xt
Fν

dt

=
∫ 1

0

{
yν(t),Fν

} ◦ Xt
Fν

dt. (3.39)

Hence

εν+1XP2
ν+1

=
∫ 1

0

(
Xt
Fν

) ∗ X{yν (t),Fν } dt. (3.40)

Due to the Lemma 7.2 in [33], we obtain

‖X{yν (t),Fν }‖D2ην
ν

≤ Cη–2
ν ε

7
4
ν

(
256(bν + 4)

e

)bν+4

(σν – σν+1)–2bν– 7
2 . (3.41)

From [13] we have

∣∣(Xt
Fν

) ∗ Y
∣∣
D1ην

ν
≤ |Y |D2ην

ν
, 0 ≤ t ≤ 1. (3.42)

Let ην = ε
1
8 νb+ 1

12 b(( 256(bν+4)
e )bν+4(σν – σν+1)–2bν– 7

2 ) 1
3 � 1. For rν+1 = 1

4ηνrν and ā = a + 1,
usingf (3.40), (3.41), and (3.42), we get

εν+1‖XP2
ν+1

‖Dν+1 ≤ Cη–2
ν ε

7
4
ν

(
256(bν + 4)

e

)bν+4

(σν – σν+1)–2bν– 7
2

≤ Cε
3
2 νb+ 10

3 b
((

256(bν + 4)
e

)bν+4

(σν – σν+1)–2bν– 7
2

) 1
3

≤ Cεν+1ε
1
2 νb+ 1

3 b
((

256(bν + 4)
e

)bν+4

(σν – σν+1)–2bν– 7
2

) 1
3

≤ Cεν+1. (3.43)
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From (3.34) it follows that

P3
j(ν+1) = P3

jν + εν

∫ 1

0

{
P3

jν , Fν

} ◦ Xt
Fν

dt, j ≥ ν + 1.

Similarly to the previous proof, using (3.7)ν we obtain

εj‖XP3
j(ν+1)

‖Dν+1 ≤ Cεj, j ≥ ν + 1, ā = a + 1. (3.44)

By (3.36), (3.43), and (3.44) we estimate the new perturbation at the next KAM iteration:

εν+1
∥
∥P1

ν+1
∥
∥

Dν+1
≤ εν+1

∥
∥P2

ν+1
∥
∥

Dν+1
+ εν+1

∥
∥P3

(ν+1)(ν+1)
∥
∥

Dν+1
≤ Cεν+1. (3.45)

By (3.38), (3.44), and (3.45) we estimate the whole perturbation after the νth step of the
KAM iteration:

‖Pν+1‖Dν+1 ≤ εν+1
∥
∥P1

ν+1
∥
∥

Dν+1
+
∑

j≥ν+2

εj
∥
∥P3

j(ν+1)
∥
∥

Dν+1
≤ Cεν+1. (3.46)

3.7 Verification of (3.3)ν+1 and (3.6)ν+1

Now we prove that P1
ν+1 satisfies (3.3)ν+1 and P3

j(ν+1) satisfies (3.6)ν+1.
From (3.29), (3.35), and (3.34) it follows that

εν+1P1
ν+1 =

∫ 1

0
(1 – t)

{{
Λ1

ν ,Fν

}
,Fν

} ◦ Xt
Fν

dt +
∫ 1

0

{
ενP1

ν ,Fν

} ◦ Xt
Fν

dt

+ εν+1P3
(ν+1)ν +

∫ 1

0

{
εν+1P3

(ν+1)ν ,Fν

} ◦ Xt
Fν

dt,

P3
j(ν+1) = P3

jν +
∫ 1

0

{
P3

jν ,Fν

} ◦ Xt
Fν

dt, j = 1, . . . .

Recall assumption P1
ν satisfying (3.3)ν and P3

jν satisfying (3.6)ν , we easily see that the nor-
mal form at each KAM step has the same form. From the homological equations (3.11)
it follows that {Λ1

ν ,Fν} has the same form. Thus, to prove that P1
ν+1 satisfies (3.3)ν+1 and

P3
j(ν+1) satisfies (3.6)ν+1, we only need to prove that the special form is closed under the

Poisson bracket. Now we prove the following lemma.

Lemma 3.9 Suppose that

G(θ , q, q̄) =
∑

kα1β1

Gkα1β1 ei〈k,θbν 〉qα1 q̄β1 , F(θ , q, q̄) =
∑

k′α2β2

Fk′α2β2 ei〈k′ ,θbν 〉qα2 q̄β2

satisfies

Gkα1β1 = 0 whenever
∑

n
(α1 – β1)n �= 0,

Fk′α2β2 = 0 whenever
∑

n
(α2 – β2)n �= 0.
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Then

B(θ , q, q̄) = {G, F} :=
∑

k′′α3β3

Bk′′α3β3 ei〈k,θbν 〉qα3 q̄β3

satisfies

Bk′′α3β3 = 0 whenever
∑

n
(α3 – β3)n �= 0. (3.47)

Proof Let

G(θ , q, q̄) =
∑

k,
∑

n(α1n–β1n)n=0

Gkα1β1 ei〈k,θbν 〉qα1 q̄β1 ,

F(θ , q, q̄) =
∑

k′ ,∑n(α2n–β2n)n=0

Fk′α2β2 ei〈k′ ,θbν 〉qα2 q̄β2 .

Since

{G, F} = i
∑

n∈Zd

(
∂G
∂qn

∂F
∂ q̄n

–
∂G
∂ q̄n

∂F
∂qn

)

= i
∑

n∈Zd

∑

A1

Gkα1β1 Fk′α2β2 ei〈k,θbν 〉ei〈k′ ,θbν 〉qα1–en q̄β1 qα2 q̄β2–en

– i
∑

n∈Zd

∑

A2

Gkα1β1 Fk′α2β2 ei〈k,θbν 〉ei〈k′ ,θbν 〉qα1 q̄β1–en qα2–en q̄β2

= i
∑

n∈Zd

∑

A3

Bk′′α3β3 ei〈k+k′ ,θbν 〉qα1+α2–en q̄β1+β2–en ,

Let A1 denote

(
(α1n – 1) – β1n

)
n +

∑

m∈Zd\{n}
(α1m – β1m)m = –n,

(
α2n – (β2n – 1)

)
n +

∑

m∈Zd\{n}
(α2m – β2m)m = n,

(3.48)

A2 denote

(
α1n – (β1n – 1)

)
n +

∑

m∈Zd\{n}
(α1m – β1m)m = n,

(
(α2n – 1) – β2n

)
n +

∑

m∈Zd\{n}
(α2m – β2m)m = –n,

(3.49)

and A3 denote

[
(α1n + α2n – 1) – (β1n + β2n – 1)

]
n +

∑

m∈Zd\{n}

[
(α1m + α2m) – (β1m + β2m)

]
m, (3.50)
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with k′′ = k + k′,α3 = α1 +α2 – en,β3 = β1 +β2 – en. By (3.48) and (3.49) we obtain that (3.48)
is equal to

[
(α1n + α2n – 1) – (β1n + β2n – 1)

]
n +

∑

m∈Zd\{n}

[
(α1m + α2m) – (β1m + β2m)

]
m

=
[(

α1n – (β1n – 1)
)
n +
(
(α2n – 1) – β2n

)
n
]

+
∑

m∈Zd\{n}

[
(α1m – β1m)m + (α2m – β2m)m

]

= n + (–n)

= 0.

This means that {G, F} satisfies (3.47). �

The proof of the partial zero-momentum property of the perturbation at each KAM step
is obtained by this lemma.

3.8 Convergence of transformations
Now we consider the convergence of transformations at the KAM iteration. Firstly, we
consider the whole KAM iteration on the reducibility. Recalling (2.5), (3.33), (3.34), and
(3.37), we get

H = H1
0 + H1 + · · · + Hj + · · · = H1

0 +
∞∑

j=1

H3
j0,

H ◦ S0 = H1
0 ◦ S0 +

∞∑

j=1

Hj ◦ S0 = H2
1 +

∞∑

j=1

H3
j1,

H ◦ S0 ◦ S1 =
(
H2

1 + H3
11
) ◦ S1 +

∞∑

j=2

H3
j1 ◦ S1

=
(
H1

0 ◦ S0 + H1 ◦ S0
) ◦ S1 +

∞∑

j=2

Hj ◦ S0 ◦ S1,

· · ·

H ◦ S0 ◦ · · · ◦ Sν =
(
H2

ν + H3
νν

) ◦ Sν +
∞∑

j=ν+1

H3
jν ◦ Sν

= H1
0 ◦ S0 ◦ · · · ◦ Sν +

∞∑

j=1

Hj ◦ S0 ◦ · · · ◦ Sν .

Let Σν+1 := S0 ◦ · · · ◦ Sν . Then

H ◦ S0 ◦ · · · ◦ Sν = H1
0 ◦ Σν+1 +

∞∑

j=1

Hj ◦ Σν+1.
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Thus we only need to prove the limiting transformation S0 ◦S1 ◦ · · · converging to a trans-
formation Σ∞. Recalling (3.12), we use the KAM iteration inductively:

Σν+1 := S0 ◦ · · · ◦ Sν : D(σν+1, rν+1) ×Obν+1∗ → D(σ0, r0). (3.51)

For any ω ∈O∗ and M ≥ 0 large enough, we denote

ΣM(·;ωbM–1
)

:= S0
(·;ωb0

) ◦ · · · ◦ SM–1
(·;ωbM–1

)
: DM → D0;

as usual, Σ0 is the identity mapping. From (3.12) we get

∣∣DΣM∣∣∗
DM×O∗ ≤

M–1∏

s=0

|DSs|∗Ds+1×O∗

≤
∏

s≥0

(
1 + Cε

3
4
s

(
256(bs + 4)

e

)bs+4

(σs – σs+1)–2bs– 5
2

)
,

≤ 2

provided that ε is small enough. Thus we have that

∣∣ΣM+1 – ΣM∣∣∗
DM+1×O∗ ≤ ∣∣DΣM∣∣∗

DM×O∗ · |SM – id|∗DM+1×O∗

≤ Cε
3
4
M

(
256(bM + 4)

e

)bM+4

(σM – σM+1)–2bM– 5
2

≤ Cε
Mb
2 +b.

This means that the sequence {ΣM} converges uniformly in DM to an analytic map

Σ∞ : D(σ /2, 0) → D(σ , r).

So (i) in this theorem is obtained.
Recalling that O∗ =

⋂∞
ν=0 O∗

ν and meas(O\O∗) ≤ Cε
1
6 , we get a countable infinite se-

quence of nonresonance frequencies ω∗ = (ωi1 ,ωi2 , . . .) ∈ O∗(ij ∈ I∞) of ψ(θ ) close to the
original frequencies ω = (ω1, . . .).

Because the Hamiltonian H in (2.5) satisfies (3.1)ν and (3.5)ν with ν = 0, the above iter-
ative procedure can run repeatedly. Inductively, it follows that

H∞ := H ◦ Σ∞ :=
〈
ω∗, J∗〉 +

∑

n∈Zd

λn∞qnq̄n,

where ω∗ = (ωi1 ,ωi2 , . . .) ∈O∗, ij ∈ I∞,

λn∞ = |n|2 + μ + εb0
ψ̄

b0
0

2λn
+ O
(
εb1
)

= |n|2 + μ + O
(
εb0
)(

c̃n + r̃n
(
εb)),

where c̃n are constants, and |r̃n(εb)| → 0 as ε → 0. So (ii) in this theorem is obtained. This
completes the proof.
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Appendix
Now we show the small divisors lemma applied in the proof of the Theorem 3.2.

Proof Lemma 3.6 From the (3.1)l and (3.4)l we get

ωbl = (ωi1 , . . . ,ωibl
),

λn0 = λn = |n|2 + μ, λnl = |n|2 + μ +
εb0ψ̄

b0
0

2λn
+ O(ε1), l ≥ 1.

Let

gl
2
(
ωbl
)

=
〈
k,ωbl

〉
– (λnl – λml), |k| +

∣∣|n| – |m|∣∣ �= 0,

gl
1
(
ωbl
)

=
〈
k,ωbl

〉± (λnl + λml), g0
1
(
ωbl
)

=
〈
k,ωbl

〉

and

R0
kl :=
{
ωbl :

∣∣〈k,ωbl
〉∣∣ <

ε
1
4
l

(1 + l3)(|k| + 1)bl+2 ,
}

,

R1
knml :=

{
ωbl :

∣
∣〈k,ωbl

〉± (λnl + λml)
∣
∣ <

ε
1
4
l

(1 + l3)(|k| + 1)bl+2 ,
}

,

R2
knml :=

{
ωbl :

∣∣〈k,ωbl
〉
– (λnl – λml)

∣∣ <
ε

1
4
l

(1 + l3)(|k| + 1)bl+2 , |k| +
∣∣|n| – |m|∣∣ �= 0

}
.

We can choose a vector vbl satisfying 〈k,ωbl 〉 = |k|. Thus we have that

∣
∣∣
∣
dg0

1 (ωbl + tvbl )
dt

∣
∣∣
∣≥ |〈k, vbl

〉≥ 1
3
|k|,

∣∣
∣∣
dgl

1(ωbl + tvbl )
dt

∣∣
∣∣≥
∣
∣〈k, vbl

〉∣∣ –
∣
∣O(ε1)

∣
∣≥ 1

3
|k|,

∣∣
∣∣
dgl

2(ωbl + tvbl )
dt

∣∣
∣∣≥
∣
∣〈k, vbl

〉∣∣ –
∣
∣O(ε1)

∣
∣≥ 1

3
|k|, |k| +

∣
∣|n| – |m|∣∣ �= 0,

provided that ε is small enough. From (1.4) for arbitrary fixed 
 ∈ (0, 1), we get ωij ∈ [
, 2
],
ij ∈ Il . By the Fubini theorem we have that

measR0
kl ≤ 6
bl–1 ε

1
4
l

(1 + l3)(|k| + 1)bl+3 ,

measR1
knml ≤ 6
bl–1 ε

1
4
l

(1 + l3)(|k| + 1)bl+3 ,

measR2
knml ≤ 6
bl–1 ε

1
4
l

(1 + l3)(|k| + 1)bl+3 , |k| +
∣∣|n| – |m|∣∣ �= 0.
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Let Rl
0 =
⋃

k∈Zbl R1
kl and Rl

1 =
⋃

k∈Zbl ,n,m∈Zd R1
knml . Similarly to the proof in Appendix in

[32], we obtain

measR0
1 ≤ ε

5
24
l

1 + l3 , measRl
1 ≤ ε

5
24
l

1 + l3 .

Thus we consider gl
2(ωbl ) = 〈k,ωbl 〉 – (λnl – λml), |k| + ||n| – |m|| �= 0.

Case 1. If |k| �= 0 and ||n| – |m|| = 0, then gl
2(ωbl ) = 〈k,ωbl 〉. By the definition of O in (1.4)

we obtain that R2
knml is empty.

Case 2. We consider ||n| – |m|| �= 0. Without loss of generality, we suppose that |n|2 –
|m|2 = a ≥ 1. Then there exists δ > 0 such that

|λnl – λml – a| ≤ C
∣
∣εb0ψ̄

b0
0
∣
∣
∣∣
∣∣

1
λn

–
1

λm

∣∣
∣∣ + O(ε1) ≤O

(
ε

1
6
l |m|–δ

)
, (A.1)

Case 2.1. We may suppose |n|2 – |m|2 = a ≥ |k||ωbl | + 1. Then

∣∣gl
2
(
ωbl
)∣∣ =
∣∣〈k,ωbl

〉
– (λnl – λml)

∣∣ =
∣∣〈k,ωbl

〉
– |n|2 – μ + |m|2 + μ + O(ε0)

∣∣

≥ a –
(∣∣〈k,ωbl

〉∣∣ +
∣∣O(ε0)

∣∣)≥ 1 –
∣∣O(ε0)

∣∣

>
ε

1
4
l

(1 + l3)(|k| + 1)bl+2 .

This means that R2
knml is empty.

Case 2.2. If a < |k||ωbl | + 1, then we have

R2
knml ⊆R2

kam :=
{
ωbl :

∣
∣〈k,ωbl

〉
+ a
∣
∣≤ ε

1
4
l

(1 + l3)(|k| + 1)bl+2 + O
(
ε

1
6
l |m|–δ

)}
,

Moreover, R2
knml ⊆R2

kam ⊆R2
kam0

for |m| ≥ |m0|.
Now we estimate R2

kam0
. We choose a vector vbl satisfying 〈k, vbl 〉 = |k|. It follows that

d(〈k,ωbl + tvbl 〉 + a)
dt

=
〈
k, vbl

〉
= |k| > 0.

By the Fubini theorem, since ωij ∈ [
, 2
], ij ∈ Il , we get that

measR2
kam0 ≤ ε

1
4
l

(1 + l3)(|k| + 1)bl+3 +
1

|k| + 1
O
(
ε

1
6
l |m0|–δ

)
.

Let Rl
2 =
⋃

k∈Zbl ,n,m∈Zd ,|n|2–|m|2=a R2
knml . We get that

measRl
2 = meas

( ⋃

k∈Zbl

⋃

n,m∈Zd ,|n|2–|m|2=a,a<|k||ωbl |+1

R2
knml

)

= meas

( ⋃

k∈Zbl

( ⋃

n,m∈Zd ,|m|≤|m0|,
|n|2–|m|2<|k||ωbl |+1

⋃

n,m∈Zd ,|m|>|m0|,
|n|2–|m|2<|k||ωbl |+1

R2
knml

))
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≤
∑

k∈Zbl

∑

n,m∈Zd ,|m|≤|m0|,
|n|2–|m|2<|k||ωbl |+1

measR2
knml +

∑

k∈Zbl

∑

n,m∈Zd ,|m|>|m0|,
|n|2–|m|2<|k||ωbl |+1

measR2
knml

≤
∑

k∈Zbl

( ∑

n,m∈Zd ,|m|≤|m0|,
|n|2–|m|2<|k||ωbl |+1

measR2
knml +

∑

n,m∈Zd ,
a<|k||ωbl |+1

measR2
kam0

)

≤
∑

k∈Zbl

(|k|∣∣ωbl
∣∣ + 1
)
( |m0|dε

1
4
l

(1 + l3)(|k| + 1)bl+3 +
1

|k| + 1
O
(
ε

1
6
l |m0|–δ

)
)

≤
∑

k∈Zbl

( |m0|dε
1
4
l

(1 + l3)(|k| + 1)bl+2 + O
(
ε

1
6
l |m0|–δ

)
)

.

We choose |m0|dε
1
4

l
(1+l3)(|k|+1)bl+2 = ε

1
6
l |m0|–δ , that is,

m0 =
(

(1 + l3)(|k| + 1)bl+2

ε
1

12
l

) 1
d+δ

.

Since δ > 0 and d ≥ 2, we have

1
4

–
1

12
1

d + δ
≥ 5

24
, 1 –

1
d + δ

≥ 1 –
1
d

.

Thus it follows that

measRl
2 ≤
∑

k∈Zbl

(
ε

1
4 – 1

12
1

d+δ

l

((1 + l3)(|k| + 1)bl+2)1– 1
d+δ

)

≤
∑

k∈Zbl

(
ε

5
24
l

((1 + l3)(|k| + 1)bl+2)1– 1
d

)

≤ ε
5

24
l

(1 + l3)1– 1
d

by the convergence of
∑

k∈Zbl
1

((|k|+1)bl+2)1– 1
d

.

Letting Rl = Rl
0 ∪Rl

1 ∪Rl
2,R =

⋃
l≥0 Rl , we get

measR≤ meas

(⋃

l≥0

R0
1

)
meas +

(⋃

l≥0

Rl
1

)
+ meas

(⋃

l≥0

Rl
2

)

≤
∞∑

l=0

(
2ε

5
24
l

1 + l3 +
ε

5
24
l

(1 + l3)1– 1
d

)
≤

∞∑

l=0

2ε
5

24
l

(1 + l3)1– 1
d

≤ ε
1
6
0

by the convergence of
∑∞

l=0
2

(1+l3)1– 1
d

.
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By (3.7) we get that

meas
(
O∗

ν\O∗
ν+1
)≤ measRν+1 ≤ 2ε

5
24
ν+1

(1 + (ν + 1)3)1– 1
d

,

meas
(
Oν\O∗

ν

)≤ measRν ≤ 2ε
5

24
ν

(1 + ν3)1– 1
d

,

From (3.7) and ε0 = ε we get

meas
(
O\O∗)≤ meas

(⋃

l≥0

Rl
)

≤ Cε
1
6 .
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3. Lian, W., Xu, R.Z., Rădulescu, V.D., Yang, Y.B., Zhao, N.: Global well-posedness for a class of fourth order nonlinear

strongly damped wave equations. Adv. Calc. Var. (2020). https://doi.org/10.1515/acv-2019-0039
4. Lian, W., Xu, R.Z.: Global well-posedness of nonlinear wave equation with weak and strong damping terms and

logarithmic source term. Adv. Nonlinear Anal. 9(1), 613–632 (2020)
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10. Bahrouni, A., Rădulescu, V.D., Repovš, D.D.: Double phase transonic flow problems with variable growth: nonlinear

patterns and stationary waves. Nonlinearity 32(7), 2481–2495 (2019)
11. Simon, B.: Tosio Kato’s work on non-relativistic quantum mechanics, part 2. Bull. Math. Sci. 9(1), 1950005 (2019)
12. Kuksin, S.B.: Nearly Integrable Infinite-Dimensional Hamiltonian Systems. Lecture Notes in Math., vol. 1556. Springer,

New York (1993)

https://doi.org/10.1515/acv-2019-0039


Rui and Wang Boundary Value Problems         (2020) 2020:77 Page 27 of 27

13. Pöschel, J.: A KAM-theorem for some nonlinear PDEs. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4) 23(15), 119–148 (1996)
14. Pöschel, J.: Small divisors with spatial structure in infinite-dimensional Hamiltonian systems. Commun. Math. Phys.

127(2), 351–393 (1990)
15. Yuan, X.: Quasi-periodic solutions of completely resonant nonlinear wave equations. J. Differ. Equ. 230, 213–274

(2005)
16. Si, J.: Quasi-periodic solutions of a non-autonomous wave equations with quasi-periodic forcing. J. Differ. Equ. 252,

5274–5360 (2012)
17. Lou, Z.W., Si, J.G.: Quasi-periodic solutions for the reversible derivative nonlinear Schrodinger equations with periodic

boundary conditions. J. Dyn. Differ. Equ. 29, 1031–1069 (2017)
18. Bourgain, J.: Construction of approximative and almost-periodic solutions of perturbed linear Schrödinger and wave

equations. Geom. Funct. Anal. 6, 201–230 (1996)
19. Pöschel, J.: On the construction of almost-periodic solutions for a nonlinear Schrödinger equation. Ergod. Theory

Dyn. Syst. 22, 1537–1549 (2002)
20. Geng, J.S., Xu, X.: Almost-periodic solutions of one dimensional Schrödinger equation with the external parameters.

J. Dyn. Differ. Equ. 25, 435–450 (2013)
21. Gao, M.N., Liu, J.J.: Invariant Cantor manifolds of quasi-periodic solutions for the derivative nonlinear Schrödinger

equation. J. Differ. Equ. 267, 1322–1375 (2019)
22. Bourgain, J.: Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. Math.

148, 363–439 (1998)
23. Geng, J.S., You, J.G.: KAM tori for higher-dimensional beam equations with constant potentials. Nonlinearity 19,

2405–2423 (2006)
24. Geng, J.S., You, J.G.: A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces.

Commun. Math. Phys. 262, 343–347 (2006)
25. Yuan, X.P.: A KAM theorem with applications to partial differential equations of higher dimensions. Commun. Math.

Phys. 275, 97–137 (2007)
26. Eliasson, L.H., Kuksin, S.B.: On reducibility of Schrödinger equations with quasiperiodic in time potentials. Commun.

Math. Phys. 286, 125–135 (2009)
27. Eliasson, L.H., Kuksin, S.B.: KAM for the nonlinear Schrödinger equations. Ann. Math. 172, 371–435 (2010)
28. Eliasson, L.H., Grébert, B., Kuksin, S.B.: KAM for the nonlinear beam equation. Geom. Funct. Anal. 26, 1588–1715 (2016)
29. Rui, J., Liu, B.C.: Reducibility of beam equations in higher-dimensional spaces. Bound. Value Probl. 2017, 82 (2017)
30. Xu, J.X., You, J.G.: Reducibility of linear differential equations with almost-periodic coefficients. Chin. Ann. Math., Ser. A

17(5), 607–616 (1996) (Chinese)
31. Rui, J., Liu, B.C., Zhang, J.: Almost-periodic solutions for a class of linear Schrödinger equations with almost-periodic

forcing. J. Math. Phys. 57, 1–26 (2016)
32. Rui, J., Liu, B.C.: Almost-periodic solutions of an almost-periodically forced wave equation. J. Math. Anal. Appl. 451(2),

629–658 (2017)
33. Niu, H.W., Geng, J.S.: Almost periodic solutions for a class of higher-dimensional beam equations. Nonlinearity 20,

2499–2517 (2007)


	Invariant tori of full dimension for higher-dimensional beam equations with almost-periodic forcing
	Abstract
	MSC
	Keywords

	Introduction
	The Hamiltonian of the higher-dimensional beam equation
	Reducibility
	A theorem of reducibility
	Construction of iterative series and veriﬁcation of the ﬁrst KAM iteration
	Solve the homological equations
	Estimation on the coordinate transformation
	Rewrite the new normal form and new perturbation
	Estimation of the new Hamiltonian
	Veriﬁcation of (3.3)nu+1 and (3.6)nu+1
	Convergence of transformations

	Appendix
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


