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Abstract
We consider a class of generalized quasilinear Schrödinger equations

–div(l2(u)∇u) + l(u)l′(u)|∇u|2 + V(x)u = f (u), x ∈ R
N ,

where l(t) :R →R
+ is a nondecreasing function with respect to |t|, the potential

function V is allowed to be sign-changing so that the Schrödinger operator –� + V
possesses a finite-dimensional negative space. We obtain existence and multiplicity
results for the problem via the Symmetric Mountain Pass Theorem and Morse theory.
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1 Introduction
In our article, we study the generalized quasilinear Schrödinger problem as follows:

– div
(
l2(u)∇u

)
+ l(u)l′(u)|∇u|2 + V (x)u = f (u), x ∈R

N , (1.1)

where N ≥ 1, f ∈ C(R,R) and the function l satisfies the following assumptions:
(l) l ∈ C2(R,R+), l(t) = l(–t), l(0) = 1, l′(t) ≥ 0 for all t ≥ 0, tl′(t) ≤ l(t) for all t ∈ R and

l′′(t) ≥ 0 is strict on a subset of positive measure in R.
Solutions of (1.1) are related to the solitary wave solutions for the following quasilinear

Schrödinger equations:

i∂tz = –�z + W (x)z – f̃ (z) – �g
(|z|2)g ′(|z|2)z, (1.2)

where z : RN ×R → C, W : RN → R is a given potential, and f̃ , g are real functions. The
above problem (1.2) has been studied in several areas of physics corresponding to various
types of g . For example, the case g(t) = t was used in [9] for the superfluid film equation
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in plasma physics. If g(t) = (1 + t)1/2, equation (1.2) models the self-channeling of a high-
power ultrashort laser in matter (see [2] and [3]). Equation (1.2) also has relations with
condensed matter theory (see [12]).

Taking z(x, t) = exp(–iEt)u(x) in (1.2), with E > 0, we are led to investigate the following
elliptic equation:

–�u + V (x)u – �g
(
u2)g ′(u2)u = f (u), x ∈R

N , (1.3)

with V (x) = W (x) – E. If we choose

l2(u) = 1 +
((g(u2))′)2

2
,

then (1.3) turns into (1.1). In particular, if g(t) = t, we have

–�u + V (x)u – �
(
u2)u = f (u), x ∈R

N . (1.4)

For equation (1.4), to the best of our knowledge, the first results were proved by Poppen-
berg, Schmitt, and Wang in [13]. The idea in [13] is a constrained minimization argument.
Subsequently, a general existence result for (1.4) was derived by Liu, Wang, and Wang
[10]. The main existence results were obtained, through making a change of variable, re-
ducing the quasilinear problem (1.4) to a semilinear one, and an Orlicz space framework
was used to prove the existence of a positive solutions via Mountain Pass Theorem. The
same method of variable change was also used by Colin and Jeanjean in [4], but the usual
Sobolev space H1(RN ) framework was chosen as the working space. We refer the readers
to [5, 6, 11, 15, 17, 18, 20, 22, 23] for more results.

In all these papers, it is required that the potential V satisfies the positivity condition

m := inf
x∈RN

V (x) > 0. (1.5)

With this assumption and suitable conditions on the nonlinearity f , one can show that
u = 0 is a local minimizer of the energy functional associated with (1.4), which would
then verify the mountain pass geometry and so Mountain Pass Theorem can be applied
to produce a solution. However, from V (x) = W (x) – E we can see that, if the frequency E
is large, then the potential V (x) in (1.4) could not satisfy (1.5).

In the literature (see [7]), there are some existence results which allow the potential V
to be negative somewhere. The strategy is to write V = V + – V – with V ± = max{0,±V }.
Then if V – is in some sense small, the function

u �→
(∫

RN

(|∇u|2 + V (x)u2)dx
)1/2

(1.6)

is still a norm on the function space. This is the key to verify that 0 is a local minimizer of
the corresponding energy functional.

Recently, Shi and Chen [19] studied problem (1.1) with a sign-changing potential V .
Compared with [7], (1.6) fails to be a norm any more. To overcome this difficulty, the
authors chose a constant V0 > 0 satisfying

Ṽ (x) = V (x) + V0 > 0,
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and considered the equivalent problem

– div
(
l2(u)∇u

)
+ l(u)l′(u)|∇u|2 + Ṽ (x)u = f̃ (u), x ∈R

N ,

where f̃ (u) = f (u) + V0u. Unfortunately, from

F(t) =
f (t)L(t)

2l(t)
– F(t) ≥ 0

in their condition (f3), we cannot ensure

F̃(t) =
f̃ (t)L(t)

2l(t)
– F̃(t) = F(t) +

V0tL(t)
2l(t)

–
V0

2
t2 ≥ 0, (1.7)

since tL(t)
l(t) – t2 ≤ 0, where L(t) =

∫ t
0 l(s) ds, F(t) =

∫ t
0 f (s) ds, and F̃(t) =

∫ t
0 f̃ (s) ds.

Here we give an example to indicate why (1.7) fails. Consider

l(t) =
√

1 + 2t2 and f (t) = l(t)
∣
∣L(t)

∣
∣p–2L(t),

where L(t) =
∫ t

0 l(s) ds = 1
2
√

2 ln(
√

2t +
√

1 + 2t2) + 1
2 t

√
1 + 2t2. Of course, we have F(t) =

∫ t
0 f (s) ds = 1

p |L(t)|p. It is easy to find that f (t) and l(t) satisfy conditions (f1)–(f4) (see [19])
and (l), respectively. Then we denote

f̃ (t) = f (t) + V0t = l(t)
∣∣L(t)

∣∣p–2L(t) + V0t,

F̃(t) = F(t) +
V0

2
t2 =

1
p
∣∣L(t)

∣∣p +
V0

2
t2,

F̃(t) =
f̃ (t)L(t)

2l(t)
– F̃(t) =

(
1
2

–
1
p

)∣∣L(t)
∣∣p +

V0

2

(
L(t)
l(t)

– t
)

t.

Due to

lim
t→+∞

(
L(t)
l(t)

– t
)

= lim
t→+∞

(
–

t2

2
+

t ln(
√

2t +
√

1 + 2t2)√
1 + 2t2

)
= –∞,

this implies that, for some M � 1, there exist T1, T2 (1 < T1 < T2) such that

t
(

L(t)
l(t)

– t
)

< –M, t ∈ [T1, T2].

Since L(t) is continuous on [T1, T2], there exists K > 0 such that

(
1
2

–
1
p

)∣
∣L(t)

∣
∣p ≤ K , t ∈ [T1, T2].

Thus, for V0 ≥ 4K
M , we have

F̃(t) < –K , t ∈ [T1, T2].
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Therefore, unlike what the authors declared at the beginning of [19], this new nonlinearity
f̃ (t) does not satisfy their condition (f3) any more. For this reason, their result may be valid
for the case when the potential V is positive.

To the best of our knowledge, up to now in the literature there is only one research
paper devoted to the situation that the quasilinear Schrödinger problems with “strongly”
sign-changing potential. Recently, S. Liu et al. [11] proved the multiplicity of solutions of

–�u + V (x)u – �
(
u2)u = f (u), x ∈R

N ,

where V is a sign-changing potential.
Our results extend and modify those obtained by S. Liu et al. [11] and H. Shi et al. [19].

Inspired by [11], we now present our hypotheses on the potential V and the nonlinearity f :
(V1) V ∈ C(RN ,R) and infx∈RN V (x) > –∞;
(V2) μ(V –1(–∞, M]) < ∞ for all M > 0, where μ is the Lebesgue measure;
(f1) f ∈ C(R,R) and there exist C1, C2 > 0 such that for all t ∈R, p ∈ (2, 2∗),

∣∣f (t)
∣∣ ≤ C1l(t)

∣∣L(t)
∣∣ + C2l(t)

∣∣L(t)
∣∣p–1;

(f2) there exists μ > 2 such that for t 
= 0,

0 < μl(t)F(t) ≤ L(t)f (t);

(f3) f (t) = o(t) as t → 0;
(f4) f (t) = –f (–t).

We now summarize our main results:

Theorem 1.1 Assume (l), (V1), (V2), (f1), (f2), and (f4) hold. Then problem (1.1) has in-
finitely many solutions {un} in X with I(un) → ∞ (X and I(·) will be defined in Sect. 2).

Remark 1.1 From (V1), the potential V (x) is allowed to be sign-changing.

Remark 1.2 Since l satisfies l(t) = l(–t), l′(t) ≥ 0 for all t ≥ 0, and tl′(t) ≤ l(t) for all t ∈ R,
we can easily obtain

∣∣l(t)
∣∣ ≤ C3|t| + C4 and l′(t) ≤ C5

for some constants C3, C4, C5 > 0.

Theorem 1.2 Assume (l), (V1), (V2), and (f1)–(f3) hold. If 0 is not an eigenvalue of (2.2),
then problem (1.1) possesses at least one nontrivial solution.

This paper is organized as follows. In Sect. 2, we describe the main preliminaries which
we will use in this paper. Theorems 1.1 and 1.2 are proved in Sect. 3 and Sect. 4, respec-
tively.

Notation. In this paper we use the following notations:
• |u|s = (

∫
RN |u|s dx)1/s denotes the usual norm in Ls-space.

• C, C1, C2, . . . denote different positive constants.
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• We denote the weak and strong convergence in X , as n → ∞, by un ⇀ u and un → u,
respectively.

2 Preliminaries
Since V (x) is bounded from below, there exists V0 > 0 satisfying

Ṽ (x) = V (x) + V0 > 1 for all x ∈ R
N . (2.1)

We now introduce the working space. Set

X =
{

u ∈ H1(
R

N)
:
∫

RN
V (x)u2 dx < +∞

}
,

which is a Hilbert space with the inner product

〈u, v〉 =
∫

RN

(∇u∇v + Ṽ (x)uv
)

dx

and the corresponding norm

‖u‖ = 〈u, u〉1/2.

From condition (V2), we have a compact embedding X ↪→↪→ Ls(RN ) for s ∈ [2, 2∗) (see
Bartsch–Wang [1]).

Applying the spectral theory of self-adjoint compact operators, let

–∞ < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · ·

be the sequence of eigenvalues of

–�u + V (x)u = λu, u ∈ X, (2.2)

where each eigenvalue is repeated according to its multiplicity, and let e1, e2, . . . be the
corresponding orthonormal eigenfunctions in L2(RN ).

Problem (1.1) is the Euler–Lagrange equation of the following energy functional:

I(u) =
1
2

∫

RN
l2(u)|∇u|2 dx +

1
2

∫

RN
V (x)u2 dx –

∫

RN
F(u) dx.

But I(u) may be ill-behaved in X. To overcome this difficulty, we make a change of variables
introduced in Shen and Wang [16], as

v = L(u) =
∫ u

0
l(t) dt.

Firstly, we give some properties for L and L–1 which are defined in Sect. 1.

Lemma 2.1 ([19]) The functions L(t) and L–1(s) satisfy the following properties:
(1) L is odd, from class C2 and invertible;
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(2) lim|s|→0
L–1(s)

s = 1;
(3)

lim
s→+∞

L–1(s)
s

=

{
1

l(∞) , if l is bounded,
o(1), if l is unbounded;

(4) L(t) ≤ l(t)t, for all t ≥ 0;
(5) L–1(s) ≤ s, for all s ≥ 0;
(6) L–1(s)

s is nonincreasing, for all s ≥ 0;
(7) if l is unbounded, then lims→+∞ |L–1(s)|2

s = 2
l′(∞) ;

(8) 0 ≤ t
l(t) l′(t) ≤ 1, for all t ∈ R;

(9) there exists a positive constant C6 such that

∣
∣L–1(s)

∣
∣ ≥

{
C6|s|, if |s| ≤ 1,
C6|s|1/2, if |s| ≥ 1;

(10) |L–1(αs)|2 ≤ C(α)|L–1(s)|2, for all α > 0 and C(α) > 0 depends on α.

Thus, after the change of variables, we obtain the functional J(v) in the following form:

J(v) = I
(
L–1(v)

)
=

1
2

∫

RN
|∇v|2 dx +

1
2

∫

RN
V (x)

∣
∣L–1(v)

∣
∣2 dx –

∫

RN
F
(
L–1(v)

)
dx

which is well defined in X. By Lemma 2.1, we know that J ∈ C1, and the critical points of
J are the weak solutions of our problem (1.1) (see [16]). Hence, to prove our main results,
we should find critical points of the functional J .

Secondly, we set

f̃ (t) = f (t) + V0t, F̃(t) =
∫ t

0
f̃ (s) ds = F(t) +

V0

2
t2

and rewrite J in the following form:

J(v) =
1
2

∫

RN
|∇v|2 dx +

1
2

∫

RN
Ṽ (x)

∣
∣L–1(v)

∣
∣2 dx –

∫

RN
F̃
(
L–1(v)

)
dx,

where Ṽ (x) = V (x) + V0. Note that by (f2), the new nonlinearity f̃ satisfies

l(t)̃F(t) –
1
μ

L(t)̃f (t) ≤ V0

2
t2l(t) –

V0

μ
tL(t). (2.3)

It is easy to see that the nonlinearity f̃ (t) does not satisfy Ambrosetti–Rabinowitz condi-
tion any more, hence the boundedness of Palais–Smale sequences seems hard to verify.
For this reason, we will show the functional J satisfies the Cerami condition.

Thirdly, recall that a (C)c-sequence {vn} in X at the level c is such that

J(vn) → c and
(
1 + ‖vn‖

)
J ′(vn) → 0.

Then J is said to satisfy the Cerami condition if any (C)c-sequence has a convergent sub-
sequence in X.
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Lemma 2.2 Under assumptions (V1), (V2), (l), (f1), and (f2), J satisfies the Cerami condi-
tion.

Proof Let {vn} be a Cerami sequence of J , i.e.,

J(vn) → c and
(
1 + ‖vn‖

)
J ′(vn) → 0 (2.4)

for some c ∈R.
Step 1. We prove that

ρn :=
(∫

RN

(|∇vn|2 + Ṽ (x)
∣∣L–1(vn)

∣∣2)dx
)1/2

< +∞.

If this conclusion is not true, we can suppose ρn → +∞. Consider the sequence {hn},
defined by

hn =
L–1(vn)

ρn
.

Since l(t) ≥ 1, we obtain

‖hn‖2 =
1
ρ2

n

∫

RN

(
1

l2(L–1(vn))
|∇vn|2 + Ṽ (x)

∣
∣L–1(vn)

∣
∣2

)
dx

≤ 1
ρ2

n

∫

RN

(|∇vn|2 + Ṽ (x)
∣
∣L–1(vn)

∣
∣2)dx = 1. (2.5)

Passing to a subsequence, we may assume that

hn ⇀ h in X;

hn → h in L2(
R

N)
;

hn → h a.e. on R
N .

Subsequently, by (2.3) and Lemma 2.1(4), we get

c + on(1) = J(vn) –
1
μ

〈
J ′(vn), vn

〉

=
(

1
2

–
1
μ

)∫

RN
|∇vn|2 dx +

1
2

∫

RN
Ṽ (x)

∣∣L–1(vn)
∣∣2 dx

–
1
μ

∫

RN
Ṽ (x)

L–1(vn)
l(L–1(vn))

vndx +
∫

RN

f̃ (L–1(vn))
μl(L–1(vn))

vn – F̃
(
L–1(vn)

)
dx

≥
(

1
2

–
1
μ

)∫

RN

(|∇vn|2 + Ṽ (x)
∣∣L–1(vn)

∣∣2)dx

+
1
μ

∫

RN
Ṽ (x)

(∣∣L–1(vn)
∣∣2 –

L–1(vn)
l(L–1(vn))

vn

)
dx

+
∫

RN

(
V0

μ

L–1(vn)
l(L–1(vn))

vn –
V0

2
∣∣L–1(vn)

∣∣2
)

dx

≥
(

1
2

–
1
μ

)
ρ2

n –
V0

2

∫

RN

∣
∣L–1(vn)

∣
∣2 dx.



Huang Boundary Value Problems         (2020) 2020:73 Page 8 of 17

After multiplying both sides of the above equation by ρ–2
n , for large n, we have

V0

2

∫
RN |L–1(vn)|2 dx

ρ2
n

=
V0

2

∫

RN
|hn|2 dx ≥ 1

2

(
1
2

–
1
μ

)
.

Since hn → h in L2(RN ) and μ > 2, it implies that h 
= 0. Thus the set Θ = {x ∈R
N : h(x) 
= 0}

has a positive Lebesgue measure.
Due to our assumption (f2), it implies that

F̃(t)
t2 =

1
t2

(
F(t) +

1
2

V0t2
)

≥ 1
2

V0 +
|L(t)|μ

t2

≥ 1
2

V0 + |t|μ–2 → +∞, as |t| → ∞.

Noticing that F̃(t) ≥ 0 and by Fatou’s lemma, we obtain

∫

RN

F̃(L–1(vn))
ρ2

n
dx ≥

∫

Θ

F̃(L–1(vn))
|L–1(vn)|2 h2

n dx → +∞, as n → ∞.

Hence, we get

c + on(1) = J(vn)

=
1
2

∫

RN
|∇vn|2 dx +

1
2

∫

RN
Ṽ (x)

∣∣L–1(vn)
∣∣2 dx –

∫

RN
F̃
(
L–1(vn)

)
dx

= ρ2
n

(
1
2

–
∫
RN F̃(L–1(vn)) dx

ρ2
n

)
→ –∞,

which is a contradiction. Thus, we obtain

∫

RN

(|∇vn|2 + Ṽ (x)
∣∣L–1(vn)

∣∣2)dx < +∞.

Step 2. We prove that there exists a constant C7 > 0 such that

ρ2
n =

∫

RN

(|∇vn|2 + Ṽ (x)
∣∣L–1(vn)

∣∣2)dx ≥ C7‖vn‖2. (2.6)

Indeed, we may assume vn 
≡ 0 (otherwise, the conclusion is trivial). If (2.6) is incorrect,
passing to a subsequence, we suppose

ρ2
n

‖vn‖2 → 0, as n → ∞. (2.7)

Setting

wn =
vn

‖vn‖ and gn =
|L–1(vn)|2

‖vn‖2 ,
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one has

ρ2
n

‖vn‖2 =
1

‖vn‖2

∫

RN
|∇vn|2 dx +

1
‖vn‖2

∫

RN
Ṽ (x)

∣∣L–1(vn)
∣∣2 dx

=
∫

RN
|∇wn|2 dx +

∫

RN
Ṽ (x)gn dx → 0.

From (2.7), as n → ∞, we have
∫

RN
|∇wn|2 dx → 0,

∫

RN
Ṽ (x)gn dx → 0,

and
∫

RN
Ṽ (x)w2

n dx → 1. (2.8)

We claim that for each ε > 0, there exists a constant C8 > 0 independent of n, such that
meas(Ωn) < ε, where Ωn := {x ∈ R

N : |vn(x)| ≥ C8}. If this claim is not true, there is an
ε0 > 0 and a subsequence {vnk } of {vn} such that for each positive integer k, meas({x ∈R

N :
|vnk (x)| ≥ k}) ≥ ε0 > 0. Set Ωnk := {x ∈R

N : |vnk (x)| ≥ k}. By Lemma 2.1(9), we obtain

ρ2
nk

≥
∫

RN
Ṽ (x)

∣∣L–1(vnk )
∣∣2 dx

≥
∫

Ωnk

Ṽ (x)
∣
∣L–1(vnk )

∣
∣2 dx

≥ Ckε0 → +∞, as k → +∞.

On the other hand, if |vn(x)| < C8, by Lemma 2.1(9)–(10), one has

C2
6

(
vn(x)

C8

)2

≤
∣
∣∣
∣L

–1
(

vn(x)
C8

)∣
∣∣
∣

2

≤ C9
∣∣L–1(vn(x)

)∣∣2.

Therefore, there exists a constant C10 > 0 such that
∫

RN \Ωn

Ṽ (x)w2
n dx ≤ C10

∫

RN
Ṽ (x)gndx → 0, as n → +∞. (2.9)

By the absolutely continuity of the Lebesgue integral, there exist ε > 0 and n0 > 0 for n > n0

we have meas(Ωn) < ε and
∫
Ωn

Ṽ (x)w2
n dx < 1

2 . For this ε, taking n → +∞, we get

∫

RN
Ṽ (x)w2

n dx =
∫

Ωn

Ṽ (x)w2
n dx +

∫

RN \Ωn

Ṽ (x)w2
n dx

≤ 1
2

+
∫

RN \Ωn

Ṽ (x)w2
n dx. (2.10)

From (2.8), (2.9), and (2.10), we get a contradictory inequality 1 ≤ 1
2 . Thus, summing up

the above arguments, we prove that the Cerami sequence {vn} in (2.4) is bounded in X.
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Step 3. We prove that vn → v in X.
From the boundedness of the sequence {vn} and the compactness of the embedding

X ↪→↪→ Ls(RN ), up to subsequence, we may assume

vn ⇀ v in X and vn → v in Ls(
R

N)
for s ∈ [2, 2∗).

By the growth condition (f1), the properties of L–1 described in Lemma 2.1 and Hölder
inequality, we have

∫

RN

(
f̃ (L–1(vn))
l(L–1(vn))

–
f̃ (L–1(v))
l(L–1(v))

)
(vn – v) dx

≤ C11

∫

RN

(|vn| + |vn|p–1 + |v| + |v|p–1)(vn – v) dx

≤ C11
(|vn|2 + |v|2

)|vn – v|2 + C11
(|vn|p–1

p + |v|p–1
p

)|vn – v|p → 0, as n → ∞.

On the other hand, we claim that there exists C12 > 0 such that

∫

RN

(∣∣∇(vn – v)
∣∣2 + Ṽ (x)

(
L–1(vn)

l(L–1(vn))
–

L–1(v)
l(L–1(v))

)
(vn – v)

)
dx ≥ C12‖vn – v‖. (2.11)

There is no harm in supposing vn 
≡ v (otherwise, the conclusion is trivial). Denote

bn =
vn – v

‖vn – v‖ and dn =
1

vn – v

(
L–1(vn)

l(L–1(vn))
–

L–1(v)
l(L–1(v))

)
.

If (2.11) is not true, we can assume that

∫

RN

(|∇bn|2 + Ṽ (x)dn(x)b2
n
)

dx → 0.

By Lemma 2.1(8), this implies

d
ds

(
L–1(s)

l(L–1(s))

)
=

l(L–1(s)) – L–1(s)l′(L–1(s))
l3(L–1(s))

> 0

and d
ds ( L–1(s)

l(L–1(s)) ) |s=0= 1. Moreover, for each δ > 0 there exists Cδ > 0 such that

d
ds

(
L–1(s)

l(L–1(s))

)
> Cδ , when |s| < δ.

Therefore, we deduce that dn(x) is positive and

∫

RN
|∇bn|2 dx → 0,

∫

RN
Ṽ (x)dn(x)b2

n dx → 0 and
∫

RN
Ṽ (x)b2

n dx → 1.

By the argument of proving Lemma 3.11 in [8], we can obtain a contradiction.
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Consequently,

on(1) =
〈
J ′(vn) – J ′(v), vn – v

〉

=
∫

RN

∣
∣∇(vn – v)

∣
∣2 dx +

∫

RN
Ṽ (x)

(
L–1(vn)

l(L–1(vn))
–

L–1(v)
l(L–1(v))

)
(vn – v) dx

–
∫

RN

(
f̃ (L–1(vn))
l(L–1(vn))

–
f̃ (L–1(v))
l(L–1(v))

)
(vn – v) dx

≥ C12‖vn – v‖2 + on(1).

We deduce that vn → v in X. �

3 Proof of Theorem 1.1
Since 0 is not an eigenvalue of

–�u + V (x)u = λu,

we can assume that there exists an integer d ≥ 0 such that 0 ∈ (λd,λd+1). For d ≥ 1, we
denote

X– = span{e1, . . . , ed} and X+ =
(
X–)⊥.

Specially, if d = 0, we set X– = {0} and X+ = X. Then X– and X+ are the negative and
positive spaces of the quadratic form

B(v) =
1
2

∫

RN

(|∇v|2 + V (x)v2)dx,

respectively. Furthermore, for some η > 0 we get

±B(v) ≥ η‖v‖2, v ∈ X±. (3.1)

Since the principle part Q(v) = 1
2
∫
RN (|∇v|2 + V (x)|L–1(v)|2) dx of J(v) is a C2-functional on

X with derivatives given by

〈
Q′(v),φ

〉
=

∫

RN

(
∇v · ∇φ + V (x)

L–1(v)
l(L–1(v))

φ

)
dx,

〈
Q′′(v)φ,ψ

〉
=

∫

RN

(
∇φ · ∇ψ + V (x)

l(L–1(v)) – L–1(v)l′(L–1(v))
l3(L–1(v))

φψ

)
dx

for all v,φ,ψ ∈ X, in particular, since L–1(0) = 0, l(0) = 1 and |l′(t)| ≤ C5, we have

〈
Q′(0),φ

〉
= 0

and

〈
Q′′(0)φ,ψ

〉
=

∫

RN

(∇φ · ∇ψ + V (x)φψ
)

dx.
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Applying Taylor’s formula, we have

Q(v) = Q(0) +
〈
Q′(0), v

〉
+

1
2!

〈
Q′′(0)v, v

〉
+ o

(‖v‖2)

=
1
2

∫

RN

(|∇v|2 + V (x)v2)dx + o
(‖v‖2) for ‖v‖ small. (3.2)

To prove Theorem 1.1, we will apply the following Symmetric Mountain Pass Theorem
due to Ambrosetti–Rabinowitz [14].

Proposition 3.1 Let X be an infinite-dimensional Banach space, X = Y
⊕

Z with dim Y <
+∞. If J ∈ C1(X,R) satisfies Cerami condition and

(1) J(0) = 0, J(–u) = J(u) for all u ∈ X ;
(2) there are constants ρ,α > 0 such that J|∂Bρ∩Z ≥ α;
(3) for any finite-dimensional subspace W ⊂ X , there is an R = R(W ) such that J ≤ 0 on

W \ BR(W ),
then J has a sequence of critical values cj → +∞.

Lemma 3.1 Assume that (V1), (V2), (l), (f1), (f2) hold, and W is a finite-dimensional sub-
space of X. If v ∈ W , then

J(v) → –∞, as ‖v‖ → ∞.

Proof For any {vn} ⊂ W with ‖vn‖ → +∞, consider

an =
vn

‖vn‖ .

Then {an} is a bounded sequence in W . Since dim W < ∞, there exists a ∈ W \ {0} such
that

an → a in W ,

an → a a.e. on R
N .

For x ∈ {a 
= 0}, we have

∣
∣vn(x)

∣
∣ → ∞,

and, using Lemma 2.1(9), obtain

∣∣L–1(vn(x)
)∣∣ → ∞.

Thus, from (f2), for x ∈ {a 
= 0},

F̃(L–1(vn))
‖vn‖2 =

F̃(L–1(vn))
|vn|2 a2

n ≥ |vn|μ
|vn|2 a2

n → +∞.

By Fatou’s Lemma, we get

∫

RN

F̃(L–1(vn))
‖vn‖2 dx ≥

∫

{a
=0}
F̃(L–1(vn))

‖vn‖2 dx → +∞, as n → ∞.
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Furthermore,

J(vn) = ‖vn‖2
(

1
2‖vn‖2

∫

RN

(|∇vn|2 + Ṽ (x)
∣∣L–1(vn)

∣∣2)dx –
∫

RN

F̃(L–1(vn))
‖vn‖2 dx

)

≤
(

1
2

–
∫

RN

F̃(L–1(vn))
‖vn‖2 dx

)
‖vn‖2 → –∞, as n → ∞. �

Lemma 3.2 Under assumptions (V1), (V2), (l), and (f1), one has

J|∂Bρ∩Zk ≥ α,

where Zk := span{ek , ek+1, . . . }, ρ , k, α are positive constants, and k > d.

Proof By condition (f1), there exist positive constants C1 and C2 such that

∫

RN
F
(
L–1(t)

)
dx ≤

∫

RN

(
C1

2
|t|2 +

C2

p
|t|p

)
dx.

For i ≥ d, denote Zi = span{ei, ei+1, . . . }. Then, similar to Lemma 3.8 in [21], we have the
following fact:

βi = sup
v∈Zi ,‖v‖=1

|v|2 → 0, as i → ∞.

Let Y = span{e1, . . . , ek–1} and Zk = span{ek , ek+1, . . . }, where k > d and k will be determined,
then Zk ⊂ X+. For v ∈ Zk and ‖v‖ small enough, using (3.1) and Taylor’s expansion, we have

J(v) =
1
2

∫

RN

(|∇v|2 + V (x)
∣
∣L–1(v)

∣
∣2)dx –

∫

RN
F
(
L–1(v)

)
dx

=
1
2

∫

RN

(|∇v|2 + V (x)v2)dx –
∫

RN
F
(
L–1(v)

)
dx + o

(‖v‖2)

≥ η‖v‖2 – C1|v|22 – C2|v|pp + o
(‖v‖2)

≥ (
η – C1β

2
k
)‖v‖2 + o

(‖v‖2),

where we used p > 2. Noticing that βk → 0 as k → ∞, we then take k large enough such
that η – C1β

2
k > 0. �

Proof of Theorem 1.1 Obviously, using Lemmas 2.2, 3.1, 3.2 and (f4), all conditions of
Proposition 3.1 are satisfied. Therefore, J possesses a sequence of critical points {vn} with
J(vn) → +∞. Letting un = L–1(vn), we obtain that {un} is a sequence of weak solutions for
problem (1.1) with I(un) → +∞. �

4 Proof of Theorem 1.2
In this section, by employing Morse theory, we prove the existence of one nontrivial solu-
tion for problem (1.1).

Let X be a real Banach space. For a given J ∈ C1(X), we use the following notation:

Jc :=
{

u ∈ X : J(u) ≤ c
}

, K =
{

u ∈ X : J ′(u) = 0
}

,
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U is a neighborhood of u ∈K, where u is an isolated critical point of J with J(u) = c. Then
the qth critical group of J at an isolated critical point u is defined by

Cq(J , u) := Hq
(
Jc ∩ U , Jc ∩ U \ {u}), q ∈N,

where Hq(·, ·) is a qth singular relative homology group with integer coefficients. If J sat-
isfies the Cerami condition and a < infu∈K J(u), then the critical groups of J at infinity are
defined by

Cq(J ,∞) := Hq
(
X, Ja).

In Morse theory, the functional J is always required to satisfy the so-called deformation
condition.

Definition 4.1 The functional J satisfies deformation condition if for every ε > 0 small
enough, c ∈ R and any neighborhood N of Kc, there is a continuous deformation η :
[0, 1] × X → X such that

(i) η(t, v) = v for either t = 0 or v /∈ J–1[c – ε, c + ε];
(ii) J(η(t, v)) is nonincreasing in t for any v ∈ X ;

(iii) η(Jc+ε \N ) ⊂ Jc–ε .

We note that if the functional J satisfies the (PS)-condition or the Cerami condition,
then J satisfies the deformation condition.

Morse theory tells us that if J satisfies the Cerami condition, v = 0 is a critical point of
J and K = {0}, then Cq(J ,∞) ∼= Cq(J , 0) for all q ∈ N. It follows that if Cq(J ,∞) � Cq(J , 0)
for some q ∈ N then J must have a nontrivial critical point. So one has to compute these
groups to get the nontrivial critical point.

4.1 Critical groups at zero
In this section, we will use the following proposition to compute the critical groups of J at
zero.

Proposition 4.1 Suppose J ∈ C1(X,R) has a local linking at zero with respect to the de-
composition X = Y ⊕ Z, i.e., for some ε > 0.

J(u) ≤ 0 for u ∈ Y ∩ Bε ,

J(u) > 0 for u ∈ (
Z \ {0}) ∩ Bε ,

(4.1)

where Bε = {u ∈ X : ‖u‖ < ε}. If d = dim Y < ∞, then Cd(J , 0) 
= 0.

Lemma 4.1 Under assumptions (V1), (V2), (l), (f1), and (f3), functional J has a local linking
at zero with respect to decomposition X = X– ⊕ X+, where X–, X+ are defined in Sect. 3 and
d = dim X–.

Proof From (f1) and (f3), for all ε > 0, there exists Cε > 0, such that

∣∣F
(
L–1(t)

)∣∣ ≤ εt2 + Cε|t|p. (4.2)
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Hence, we get
∫

RN
F
(
L–1(v)

)
dx ≤ o

(‖v‖2) as ‖v‖ → 0.

Using this and (3.2), we obtain

J(v) = Q(v) –
∫

RN
F
(
L–1(v)

)
dx

=
1
2

∫

RN

(|∇v|2 + V (x)v2)dx + o
(‖v‖2). (4.3)

From this and (3.1), one obtains that J has a local linking property at zero. Then it follows
from Proposition 4.1 that Cd(J , 0) � 0. �

4.2 Critical groups at infinity
Lemma 4.2 Suppose that (f1)–(f3), (V1), (V2), and (l) hold. For any q ∈N, Cq(J ,∞) ∼= 0.

Proof Let S∞ be the unit sphere in X. Firstly, we will establish the following fact:

J(sw) → –∞ as s → +∞ for any w ∈ S∞. (4.4)

Due to |L–1(sw)| ≤ |sw| and (f2), we deduce

J(sw) ≤ 1
2

∫

RN

(∣∣∇(sw)
∣∣2 + Ṽ (x)(sw)2)dx –

∫

RN
F
(
L–1(sw)

)
dx

≤ s2
(

1
2

– sμ–2
∫

RN
|w|μ dx

)
→ –∞.

Secondly, we will show that the following claim is true.

Claim There exists A > 0 such that if J(v) ≤ –A then

d
dt

∣
∣∣∣
t=1

J(tv) < 0.

If this claim is false, there exists a sequence {vn} ⊂ X such that

J(vn) ≤ –n and
〈
J ′(vn), vn

〉
=

d
dt

∣∣
∣∣
t=1

J(tvn) ≥ 0.

By the same argument as in Lemma 2.2, we deduce

0 ≥ J(vn) –
1
μ

〈
J ′(vn), vn

〉

≥
(

1
2

–
1
μ

)∫

RN

(|∇vn|2 + Ṽ (x)
∣∣L–1(vn)

∣∣2)dx –
V0

2

∫

RN

∣∣L–1(vn)
∣∣2 dx. (4.5)

Set

ρ2
n =

∫

RN

(|∇vn|2 + Ṽ (x)
∣∣L–1(vn)

∣∣2)dx and hn =
L–1(vn)

ρn
.
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By the similar arguments of Lemma 2.2, we obtain

ρn → +∞ and {hn} is a bounded sequence in X.

Then

hn ⇀ h in X;

hn → h in L2(
R

N)
;

hn → h a.e. on R
N .

Multiplying both sides of (4.5) by ρ–2
n , we obtain h 
= 0. By the assumption 〈J ′(vn), vn〉 ≥ 0,

we have

0 ≤ 〈
J ′(vn), vn

〉

≤
∫

RN

(|∇vn|2 + Ṽ (x)
∣∣L–1(vn)

∣∣2)dx –
∫

RN

f̃ (L–1(vn))vn

l(L–1(vn))
dx

≤
∫

RN

(|∇vn|2 + Ṽ (x)
∣
∣L–1(vn)

∣
∣2)dx – μ

∫

RN

l(L–1(vn))F(L–1(vn))
l(L–1(vn))

dx

= ρ2
n

(
1 –

μ
∫
RN F(L–1(vn))

ρ2
n

)

≤ ρ2
n

(
1 – μ

∫

RN

F(L–1(vn))
|L–1(vn)|2 h2

n dx
)

→ –∞, as n → ∞. (4.6)

This is impossible, thus the conclusion of the claim must be true.
Hence, by this claim and (4.4), for any fixed a > A and v ∈ S∞, there exists a unique

T := T(v) > 0 such that

J
(
T(v)v

)
= –a.

By the implicit function theorem, this implies

T is a continuous function from S∞ to R.

Therefore the deformation retract η : [0, 1] × (X \ B∞) → X defined by

η(s, v) = (1 – s)v + sT(v)v

satisfies η(0, v) = v, η(1, v) ∈ J–a for a large enough, where B∞ = {v ∈ X : ‖v‖ ≤ 1}. It follows
that

Cq(J ,∞) = Hq(X, J–a) ∼= Hq(X, X \ B∞) ∼= 0 for all q ∈N.

Proof of Theorem 1.2 We have verified that J satisfies the Cerami condition. By Lemma 4.1,
J has a local linking at zero with respect to the decomposition X = X– ⊕ X+, hence, by
Proposition 4.1, for d = dim X–, we have

Cd(J , 0) 
= 0.
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On the other hand, Lemma 4.2 says that for all q ∈ N, Cq(J ,∞) = 0. Hence, J has a nontrivial
critical point v. Now u = L–1(v) is a nontrivial solution of problem (1.1). �
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