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A degenerate parabolic equation of the form
(V1) = div(blx, 0] VVIP*I2Vv) + VG - VY (V)

is considered, where g = {g'(x,1)}, ¥ (v) = {y()}. If the diffusion coefficient b(x,t) > 0 is
degenerate on the boundary, by adding some restrictions on b(x, t) and g, the
existence and uniqueness of weak solutions are proved. Based on the uniqueness, the
stability of weak solutions can be proved without any boundary condition.
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1 Introduction and the main results
Consider the degenerate parabolic problem with exponent variable growth order

(WPv), = div(b(x, )| VVPEO2VY) + Vg - VYY), (%8) €Qr=2x(0,T), (1.1)

where b(x, t) and p(x, t) are C(Qr) nonnegative functions, g = {g’(x, )}, 7 (v) = {y:(v)}, B > 0.
We denote that p~ = min, ;g p(x,t) > 1 and p* = max, ;g; p(x, ) in this paper. The
initial value matching up to equation (1.1) is

vI#u(x,0) = |v0(x)|ﬁ_lvo(x), xef. (1.2)
While the Dirichlet boundary value condition
vix,t)=0, (x,t)cdf2x(0,T) (1.3)

is dispensable.

If ¢ = 0, equation (1.1) arises from the branches of flows of electro-rheological or
thermo-rheological fluids (see [1-3]), and the processing of digital images [4—15]. If the
variable exponent p(x,t) is replaced by a constant p, equation (1.1) becomes the well-
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known non-Newtonian polytropic filtration equation with orientated convection [16],
as well as the convection-diffusion-reaction equation in which the variable can be inter-
preted as temperature for heat transfer problems, concentration for dispersion problems,
etc. [17]. Now, let us give some details in part of the above references. Ye and Yin studied
the propagation profile for the equation

us = div(|Vum |p_2Vum) —Bx) - Vul,

in which the orientation of the convection was specified to be either the convection with
counteracting diffusion or the convection with promoting diffusion, that is, /§ *x)-(=x)=0
or E (%) - x > 0, respectively [16]. Guo, Li, and Gao considered the following evolutionary
p(x)-Laplacian equation:

V= div(|Vv|p(")_2VV) + "2, (xt) € Qr,

subject to homogeneous Dirichlet boundary condition, where r > 1 is a constant. By using
the energy estimate method, the regularity of weak solutions and blow-up in finite time
were revealed in [7]. Antontsev and Shmarev have published a series of papers [8—13] on
the homogeneous Dirichlet problem for the doubly nonlinear parabolic equation

ve = div(b(x, £, ) [v[*®D | VyPEO2Vy) 4 f(x,8),  (x,t) € Qr,

provided that a(x,¢,v) > a > 0. They established conditions on the data that guarantee
the comparison principle and uniqueness of bounded weak solutions in suitable Orlicz—
Sobolev spaces subject to some additional restrictions [12]. Gao, Chu, and Gao in [14]

studied the nonlinear diffusion equation
V= div(|Vv|p("’t)_2VV +b(x,)Vv) +f(v), (%¢) € Qr,

with the homogeneous Dirichlet boundary condition (1.3), where f is a continuous func-
tion satisfying

[f )] < aolv*™,

with 4y > 0 and « > 1. They constructed suitable function spaces and used Galerkin’s
method to obtain the existence of weak solutions. It is worth pointing out that the re-
quirement on p;(x, t) is only negative and integrable, which is a weaker condition than the
corresponding conditions appearing in other papers. Recently, Liu and Dong [15] gener-

alized [14]’s result to a more general equation
vy = div(’Vv’”|p(x't)72Vv”‘ + b(x, t)VV”’) +11%0 (x,1) € Qr

and gave a classification of the weak solutions. In addition, the equation arising from the
double phase obstacle problems of the type

Ve = diV(a(x)IVle‘ZVv + b(x)leIq_ZVv) +f(x,t,v,Vv), (x,£) € Qr

has gained a wide attention [18, 19] etc., where a(x) + b(x) > 0.
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In recent years, we have been interested in the well-posedness of weak solutions to the

nonlinear equation
V= div(b(x)|Vv|p(x)’2VV) +f(x,t,v,Vv), (x,8) € Qr, (1.4)

with some restrictions in f(x, ¢, v, Vv). Different from other researchers’ works [7—15], in

which b(x) =1 or b(x) > b~ > 0, where b~ = min__g b(x), we only assumed that
bx)>0, xe€$, bx)=0, x€ds2,

and proved that the stability of weak solutions may be independent of the Dirichlet bound-
ary value condition (1.3). One might refer to [20—24] for the details.
In this paper, for any ¢ € [0, T], we assume

b(x,t) >0, xe€$2, b(x,t)=0, x€df2. (1.5)

Comparing with equation (1.4), equation (1.1) is with the nonlinearity of |v|#~1v, with the
diffusion coefficient b(x, ) and the variable exponent p(x, £) depending on time variable ¢,
and with a more complicate convection term Vg - Vi (v). These nonlinearities not only
bring some essential changes to the proof of the existence, but also add difficulties to
proving the stability of weak solutions. The readers will see that, in order to overcome
these difficulties, a new technique based on the mean value theorem is posed to prove the
uniqueness of weak solution, another new technique based on the proof by contradiction
is introduced. Both of them supply a new method to prove uniqueness of weak solution
for the nonlinear degenerate parabolic equations.

Definition 1.1 A function v(x, t) is said to be a weak solution of equation (1.1) with initial
value (1.2), provided that v(x, t) satisfies

VeI (0T WIEI@),  ve WEA(0,T),IX(2)),

loc

(1.6)
b(x, £)| V™) e L1(Qr),
and for Vo (x, ) € C}(Qr),
// (—|v|’3’1V¢t) dxdt + // b(x, t)|Vv[P¥2Vy . Ve dx dt
Qr Qr
N
3 [ ¢wonme, drar
i=1 Y 7Qr
N .
= Z//Q ving'(x, t)o(x,t) dx dt. (1.7)
i=1 T

Initial value (1.2) is true in the sense

lim/ |V|ﬁ_1v(x,t)g0(x)dx:/ V1P Lo (%)@ (x) dx, Yo(x) € C°(£2). (1.8)
t—0 o o
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The main results are the following theorems.

Theorem 1.2 If p~ > 2, b(x,t) satisfying (1.5), vo(x) € L>°(82) is nonnegative for i €
{1,2,...,N}, yi(s) is a C* function satisfying |y/(s)*|s|*# < cfori=1,2,...,N, g'(x,t) sat-
isfies

Pt

Pt -2 (< L, \ e
LW D& (6 bl 1) 70 dx < c(T), (1.9)
’ i=1

then there is a nonnegative weak solution of equation (1.1) with initial value (1.2) in the
sense of Definition 1.1.

Theorem 1.3 Let u(x, t) and v(x, t) be two weak solutions of equation (1.1) with the differ-
ent initial values uo(x) and vo(x) respectively, 0 < m < ||u||r0(or) <M, 0 <m < ||Vl <
M. Ifp~ > 1, yi(s) is a Lipschitz function, b(x, t) satisfies (1.5), and

N .
og'(x, 1
>

l

< ch(x, t) 7 (1.10)

i=1
then there exists a constant ay > 2p* such that
o1
/ b(x, t)peed) ||u|’3_1u(x, t) — [vIPu(x, t)|2dx
2

< / b, 0)75 |l P~ () — v 1P vo()| dx, Ve € [0, ), (1.11)
2

Theorem 1.4 Let u(x,t) and v(x,t) be two weak solutions of equation (1.1) with the dif-
ferent initial values u(x) and vy(x) respectively, y;(s) be a Lipschitz function. Suppose that
g'(x, t) satisfies (1.10) and

1

< cb(x,t)P&D (1.12)

N
Y &)

i=1

and one of the following conditions is true:
() p=1L
(i) For1<i<N, yi(s) satisfies
lvi(t) = vi(t2)| < c||a]P 't = |62 8. (1.13)
Then
/ ||u|’3’1u(x,t)—|v|ﬂ’1v(x,t)|dx
2

5/ |1401P~ 1o (x) — [vol”'vo(x)| dx, V€ [0, T). (1.14)
2

Conditions (1.9), (1.10), and (1.12) all reflect the internal mutually dependent relation-
ships between the diffusion coefficient b(x, t) and the convective coefficients g(x, t). Such



Zhan Boundary Value Problems (2020) 2020:69 Page 5 of 20

an internal mutually dependent relationship that can affect the finite propagation has been
studied in [16], while the internal mutually dependent relationships between the diffusion
coeflicient and the convection term arise in mathematics finance model for studying the
agent’s decision under the risk [25].

At the end of introduction, it might be advisable to summarize briefly. First, as a classical
work on the well-posed results of the solution of a nonlinear parabolic equation, there are
many papers devoted to this problem (one can refer to [26—28] and the references therein).
Secondly, the model studied in this paper is a parabolic equation with variable exponential
term; we would like to point out that more details on the structural characteristics and the
physical background of the variable exponential term have been described in [29-33], etc.
Thirdly, one can see that the new method to prove uniqueness of weak solution can be

generalized to study the double phase obstacle problems.

2 The existence of weak solutions

Let us consider the approximate initial-boundary value problem

(WP, = div((b(x, 0) + €) [VVPEI2Vy) + Vg - Vi (v), (2.1)
WP u(x,0) = [volPTvo(x), x € £2, (2.2)
v(ix,£) =0, (x,t)c€02 x(0,T). (2.3)

Definition 2.1 If u(x, t) satisfies

veLZ (0, T; W, "™ (2)),  ve W0, T;1%(%)), (2.4)

loc

and for any ¢(x, £) € C}(Qr), there holds
- / / WIP v, dx dt + / / (b(x,t) + ) [VVIP®D2Vy . Vo dx dt
Qr Qr
N
£y / / Vi) s, dx dt
=1 Y7Qr

N
= vi(v)g' (%, t)p(x, t) dx dt. (2.5)
Q
i=1 T

Then we say that v(x, t) is said to be the weak solution of problem (2.1)—(2.3).

For any k > 0, let

3_
ap=k¥5, bkzkl”sT'B, k=1,2,....

@r(v) is an even function and is defined as

pvPL, v>kl,

e(v) = Blagv® + byv), 0<v<k.
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Then @i (v) € CH(R), pr(v) — BvP~! as k — oo. Instead of (2.1)—(2.3), we now consider the
following problem:

plxt)-2
orW)v; = diV((b(x, ) +e) (IVV|2 + %) Vv> +Vg - Vy(), (2.6)
velx, £) =0, (x,t) €082 x (0,T), (2.7)
Vi, 0) = v (%), x€ 82, (2.8)

where [[vor(x) — vo(x)llp+©) = 0 as k — 0, and p*(0) = max, g p(x,0). From [8-14], there
is a unique solution v, of initial-boundary value problem (2.6)—(2.8). Let k — oo. If
vo(x) € L>(2) is nonnegative, similar to the process subject to the existence of weak so-
lutions in [12](also[34]), one can prove that there is a nonnegative weak solution v, €
LY(0, T; W ®0(2)) to initial-boundary value problem (2.1)—(2.3) in the sense of Defi-
nition 2.1. Moreover,

IVke llzo (@) < € IVellzoe(@p) < c. (2.9)

Proof of Theorem 1.2 Let us choose v, as a test function. Then

A v dx + / / (b(x,2) + €) | Vv, [P dx dt
ﬂ +1 o Qr
- // veVg - Vy(v)dxdt
Qr
i P 2.10
= m 5 V()(x) X. ( . )
Since

—// veVg - Vy(ve) dxdt
Qr

Z// veg (x 37/, VE) dxdt

l

S 8(Vi(vs)gi(x, t)) 8gi(x, t)
Z[//Qdedt— //Q ) =5 dxdt}

3 [ a3 [ o
:_Z/ Bx/ yi(ve)dsdx — Z// V(“yl(v(o) x’t)d dt

N ,
00 (x, t
:—Z/f veyi(ve) g )dxdt, (2.11)
i=1 Y 7Qr 0%;
we have
P VB dx + // (b(x,0) + &) | Vv, [P*) dxdt < c, (2.12)
B+1Jg Qr

Page 6 of 20
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which implies
/ b(x, )| Ve [P*! dxdt < c. (2.13)
Qr
Moreover, let us multiply (2.1) with v,,, and obtain

p [ s
2
=/ div((,o(x,t)+8)|Vvs|p(x’[)_2Vv£)vg[dx+/ Vg - VY (Ve)ves du. (2.14)
2 Q
Since

/ div((b(x,£) + )| Vve I”(”’t)_ZVvs)Vgt dx
2

1
== /Q (b(x,t) + €) Vv [PXD2| Vv, |2 dx

1 d VP -
:_E/ (b(x,t)+8)%‘/. Sp( 7 2dsdac
o) 0
1 [Vvel? )
+ 5/ (b(x, )+ 8)/ %sp( 7 dsdx, (2.15)
fo) 0

and by |y/(s)|?|s|'# < ¢, p~ > 2 and by (1.9), using the Young inequality, we have

g, t)ve dx

/ i 3yi(ve)
Qs o

N
< [ 3 v vl
20

21ve"F dx

B 2 [y
< —/Qvf’l(v“)zdx+ E/Q;{y/(va)gi(x,t)vaxi

P / VI ) dx
2

p.t)

N (e0)-2

Lx’ £)=2 ' i 2 (x,2)

+c > g (x, £)b(x, £) 7D + b, )| Vv, PP | dx.
/‘?[ plx1) <i1 ¢ ) p,t) Vv

(2.16)
From (2.14)—(2.16), we extrapolate that

2
£ [ s | g [ o
5 Qv (4er) dac+2 Q(b(x,t)+8)dt ; s 2 dsdx

2
plx,t)

plx,t)-2 . _2 | pn
Sc| | = (g )b(x,t) &0 )pn=2 4
/.q[ px,t) (¢ )

b(x,1)|Vve |P<x’t>] dx

Page 7 of 20
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1 IVvel® g oo
5 / (b, 1) +¢) / %SL 7 dsdx
2

+
0
<ec
Then
pa1 B+1, b1
| (ve? )t||L2(QT) T Ty [ve? V8t||L2(QT) =6 (2.17)
and

T T
— - 1- —
// |v£t|2dxdt§/ /vf Nvee v} ﬂdxdtgnvsnpf(QT)/ /vf Hved* dxdt
Qr 0 J@ 0o Je
<c

(2.18)

From (2.12), (2.18), we are able to extrapolate that v. — v a.e. in Q7. Accordingly,
vi(ve) = yi(v) a.e. in Qr.

Let ¢ — 0 in (2.10). Similar to that in [35], which is subject to the evolutionary p-
Laplacian equation, it is not difficult to deduce that

)

Pt
(x.0)-1

(b(x,t) + &) [V PSD2V v, — b(x, )| VP02 Vy,  in L1 (0, T;L7x0 (£2)).

Also, we can show that initial value (1.2) is true in the sense of (1.8) as in [12]. Theorem 1.2
is proved. d

3 Proof of Theorem 1.3
Lemma 3.1 ([36, 37])
(i) The space (LP®/(£2), 1| - | s ) (WPP(R2), | - lyyioe) and Wy ($2) are
reflexive Banach spaces.
(i) Let p(x) and q(x) be two functions with ﬁ + ﬁ = 1. The conjugate space of
LPW() is L1W(2). For any u € [PY(Q) and v € L1¥(82),

[ e

< 2”””1}7(%)(9) ||V||Lq(x)(_q)'
(iif)
Pl =1, then [ updy =1
2
A r*
If”u”LP(x)(_Q) >1, then |U|U,(x)(9) = /.; |u|p(x) dx < |M|Lp(x)(9)'
] 1, th o< P dx < ul?
If 1l ooy 2 < 1, en |14|Lp(x)(9) =/, || X = |M|Lp(x)(m~

Proof of Theorem 1.3 For any given ¢ € (0, T) and small enough A > 0, we denote §2;; =
{x € £ :b(x,t) > A} and define

a1

£.(x, 1) = [blx, 1) — 1] P00,

where o > 2p*.
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We choose (s (&) [u(x, t) — v(x, t)]1€.(x, t) as a test function, where x[; 4 is the character-

istic function on [1,s] C (0,¢). Then

B-1,, _ |y,1h-1
// (M—V)S)L(x,t)a(|u| L;t vl V)dxdt

=- f / (b, DIVl D2V 0 — |[VPSI299) V[ (1~ v)Es (5, 8) | dc it

N .
- / / g6 )[vi(w) - viW)][u - V)& 1), dxdt
i=1 s

N i
_ Z // [vi(w) = v ][(u = )& (%, 1) ] 9 (x. ) dxdt, (3.1)
i=1 s

396,'

where Qs = £2 X [t,s] as usual.

In the first place,

/ b(x, t) (I VP2V — | VP20 V] (4 - v)E; | drdt
Q'[S
= // b(x, )&, (|VulP ™2V u — [VyPSD2V0) V(4 — v) dx dt

+ // b(x, ) (| VulP®2Vu — [VyPeD2Vy) (u — v) VE, dx dt, (3.2)
we have
/ / b(x, )&, (| VulP ™2y — [VyPe2Vy) V(4 - v) dx dt > 0 (3.3)

and

‘ / (= v)b(x, ) (| VulP™) 2V — | VP2 V) VE; dx dt‘
Qrs

1

. 1

< c(/ / b(x, ) (VU™ + [VyPeD) dxdt) "
T S

1
( / / blix, ] V&, P50 | — y}P5) dxdt)m
T J2)

1
< c( / / b(x, £) (| Vul™) + |VoPe0) dxdt) "
T IR
1

§ I iz
: ( f f bix, 0)[blx, £) — 1]V | Wb PE0 |y - P dt) '
T .Q)\[

1

< c(/ / b(x, t)[b(x, t) - k]p(x’t)(m_l)w — P& dxdt) " . (3.4)
T S

Page 9 of 20
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px.t)
plx,t)-1

Here, g(x, ) = , from (iii) of Lemma 3.1, ¢; = g* or g~ according to

S
/ / b(x, ) (| Vil ™ + |Vv|1’("'t)) dxdt <1,
2

or
S
/ / b(x, ) (|VulP® + |VvP=D) dxdt > 1,
i

p1 has a similar meaning, and we have used the fact that |Vb| < cin (3.4).
Then

hm‘/ (e~ )b, t) (| VP2V y — |Vyped 2VV)VSAdxdt’
Q'L'S

1

§limc( / b(x, ) (b, £) — 1)'™ e Dy V|p(x’t)dxdt)m
T J 2

A—0

1
§ o1 1
< c(f / bx, ) PG Y|y — et dxdt) . (3.5)
T JR2

If we denote that
.Qlt:{xe.Q:p(x,t)ZZ}, 92t={x691p(9€,t)<2};

by u,v € L*, we have

1
* o 7
T IRy
1
I ) P1
<c([[ bl vPaxar)”, 6
QTS

and using the Holder inequality, we get

(/ f £t N5ten~ Dy — pped dxdt) "
$29¢
11
s Leple) (2L —1)- %L P2
< [b(x, 1) D T2 ] D) 0 dxdt
T Q29
§ g 2
. (/ / b(x, £)P@0 |y — v)|? dxdt)
T Q9

1
o 2
§c(/ b(x,t)wiwm—wzdxdt) , (3.7)
QTS

-

where p1a(x, £) = , from (iii) of Lemma 3.1, p15 = p7, or p7, according to

_2
2-p(x,t)

/f [b(x, 1) 7 P ‘a*] &0 dxdt < 1,
29t
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or

/ (b, ) 7560 -3 7560 e > 1.
29t

In the second place,

N
yi(w) = v [(u - )& ], dxdt
> [ oo,
N
-3 [, - v asa
N
+ 21: / /Q ) [vi@) = v:()]( = V)& dxdt. (3.8)

Since |Vb| < ¢, a1 > 2p*, there hold

N
fim3° I/ [0 =)= s
N s o
<clin3 [ [0 )= ot ) <317

1
o 2
§c</ b(x,t)Mm—wzdx) (3.9)
QTS

and

N
fim 3 [ [0 v v

_11mZ f / [vi() = i) | (u = V), [ (x, £) = 2] P00 P gl dit

r—0

1

N 1 / q
Z(// b(x, t)plxt) )|yi(u) - vi(v) |p &0 dxdt)

1
. (// b(x, £)(|Vulr®? + |Vy[P=) dxdt) "
1
ST ey a
=< CZ(/ o b(x, £)P&0T | y(u) — y;(v)| dxdt) . (3.10)

ap-1

When 1 < p(x,t) < 2, we know ¢(x,£) > 2. Since o; > p*, if b(x,t) < 1, then b(x, £) P01 <
o
b(x, )P0 1f 1 < b(x,t) < D = max, ;50,11 b t), then

-1 —p(xt) o1 —p(xt)
(x t)px[ -1 p(xt) :b(x,t)pxt x,8)—1) <Dp(x[(p(xt §C7

Page 11 of 20



Zhan Boundary Value Problems (2020) 2020:69 Page 12 of 20

a1 o
which implies that b(x, £)P®=0-1 < cb(x,t)?™0 is always true. Thus, we extrapolate that

N s -1 o
Z( / / b, 87T | () — ys(v)| 7" dxdt) "
i=1 T S0y
1
o1 9 a1
< c(// o(x, t)P&D |y — v dxdt) . (3.11)

When p(x,t) > 2, we know g(x,t) < 2. By &1 > 2, using the Holder inequality, we have

N s ap-1 , a
Z(/ / b(x, t)’”<"l'“‘1 lyi(w) — () [” &0 dxdt) “
i=1 T Sy
11
-1 o 2 422 41
< c( / / [b(x, ) P17 260D | 22400 x dt)
. (/ b(x, t)r&d 76 lu —v| dxdt)
QTX
3
50(// b(x,t)P(xlvﬁlu—wzdxdt) , (3.12)

Z—q(xyt)

where go5(x, £) =

N _
» 422 = 4, OT 5.

In the third place, since | YN, dg: 20| < cb(x, t)P“

hmZ // (i) - )] [0t~ V)8 (1] % ( 2y ‘
N .

_ () — N D)

—‘ D // [ =)= s

coff, oS

sc/ b(x,t)z%m—wzdxdt. (3.13)
QTS

8g (x, t) deds

From (3.4)—(3.13), letting > — 0 in (3.1), we deduce that

A(|ul”tu—vIP1y)
ot

/ blx, £)759 (4 — v) dxdt
QTS

<C(//m (8

where [ < 1.

1
u(x, £) - vix, )| dx dt) : (3.14)
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Last but not least, by the mean value theorem,

(3 ,B—l _ ﬂ—l
// b(x,t)mTl,t)(u_V)B(lul u—\v| V)ddt

at

A(|ul’ru—vIP1y)
ot

14

o u-—
- / blx,t)ped — 27V
Qus lu|P~1u — |v|P-1y

v|P= (

(xt ﬂl B-1,)2

/f b(x, t)P a(|ul — W) dxdt, (3.15)
. BlglF at

dxdt

[l — [v]P1y)

where ¢ € (v, u).
One of the possibilities of (3.15) is that, for any s > 1,

%”b(x, t)% (Julf~u —v|P~1y) ||L2(_Q) <0, telr,s], (3.16)

is true, then

o
/ b(x, t)ptd ‘|u|ﬁ_1u(x,s) - |V|ﬂ_1v(x,s)‘2dx
2

a1
5/ b(x, t)Pn ||u|’3_1u(x,r)— |v|ﬁ_1v(x,t)|2dx
2

is clear.

Another possibility of (3.15) is that there is so > t such that

d o
T ||b(x, t) 200 (Iulﬂ‘lu - Ivlﬂ_lv) >0, telr,s], (3.17)

||L2(Q)

then

a 0 -1, _ B-1
// b(x, t)P("l'” (u—v) (ael™ s = V17 v) dxdt
Qe ot
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o BIC] ot
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where ¢ € (v, u), M = max{||u 107, IVl L)}
Combining (3.14)—(3.15) with (3.18), we can extrapolate that

o]
/ (o, 50) P [P 1, 50) = VP (e, 50)|
2
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< / b(x, )re0
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2eMPL [ [0 o !
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Here m = min{||u||1>(q), IVllL0(@p)}- From (3.19), we have

|ualP 1l 50) — V1P v, 50) | dx

9
/ b, 50) 7%
2

o _ _ 2
5/ b(x,t)ﬂ<xvf>‘|u|ﬁ Yu(x, ) — [v|? 1v(x,r)‘ dx,
2

which contradicts assumption (3.17). In other words, (3.17) is impossible. This fact implies

that, for any s, v € [0, T'), inequality (3.16) is always true. By the arbitrariness of t, we have

/ b(x,s)I% ‘ lulPulx, s) — |v|ﬁ_1v(x,s)’2dx
2

< / b, 005 [ gl 1t x) — Ivol v @)| i,
2
Theorem 1.3 follows. O

4 The stability of weak solutions
Let /1,,(1) be an odd function defined as

1, u>1t

h = n
() 2yt 0<uy< 2
Then
lim &, (u) = sign(u), u € (-00,+00), (4.1)
n— o0
, c 1 .y
0<h,(u)<-, O<u<—, lim /), (u)u = 0. (4.2)
u n n—00

Proof of Theorem 1.4 Since g(x, t) satisfies (1.10), then from Theorem 1.3 we know that
the weak solution of equation (1.1) with initial value (1.2) is unique. Let u(x, t) and v(x, t) be
two solutions of equation (1.1) with the different initial values u((x) and vo(x) respectively.
Since the weak solution of equation (1.1) with initial value (1.2) is unique, there are two

asymptotic solutions of asymptotic problem (2.1)—(2.3), &, and v,, satisfying
lim u, = u, limv,=v, a.e. (xt)€Qr, (4.3)
e—0 e—0

and

1 1
b(x, t)P&0 Vu, — b(x,t)r®) Vuy,

1 1
b(x,t)7#0 Vv, — b(x,t)/*0 Vv, in L'(0, T; LF*(£2)).
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We now choose x5 (£)/, (1 (%, £) — ve(x,t)) as a test function, and so

3(1ulF-Ly — 11B-1
/ Ty (1te — ve) W™= M1""Y) e
Qes ot
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= _Z// J/z l hn( Ug — Vs)% dxdt. (45)

In the first place, (4.4) yields

plxt)-1
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e—0

b, )T [ty — v) — V(e — )] dxdit

-0. (4.6)

In the second place, by (4.6) and the second mean value theorem, we have

e—0

lim ff b, 1) B (VP02 V0 — T2y )

- b(x, t)m [V(ua —ve)— V(- V)]h;,(u —v)dxdt
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=0, (4.7)
and since (#; — v;) = (4 —v), a.e. in 2,
|, (e = ve) = (= W) ]| < c(n),
by (4.6),
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By (4.7)—(4.8), we have

hm/ b(x, 1) e (IVulP®0=2Vy — | Vyr*0-2vy)
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In the third place,
hm// b(x, ) (| VUl u — [V PCI20) V (u, — v )l (1 — ve) dx dt

= f / b(x, ) (| VU2V u — [VyPSD2V0) V (i — v, (u — v) dx dt

> 0.
In the fourth place, since

/ B0, 275 (11, — ) ) 0t — )|V
2

P gy < cn),

< c(n) fg b, 7 (1, — v,

as ¢ — 0, we have

(4.9)

(4.10)

b0, €70 I, (1t — o)1t — ey — b, )70 (s —v) H(u— ), in LY(0, T3 L70(82)).

) 1
By (1.12), | Zﬁl g'(x,8)| < cb(x,t)P™D , we extrapolate that
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Moreover, since
|[i(w) = yiW) [l (1 = v) | < | (u = v, (u —v)| <,

if we denote 21, ={x € 2:|lu-v|< %},we have

N
‘//Q > & @ t)[yiw) = vi(w) ], (u = v) (= v),, dxdt

s =1

s N
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2 41
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S
=
T J21, i=1
* e pxt) n
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T 21n

<c (4.11)

dxdt

If £2;,, has 0 measure, from (4.11), letting n — 00, we have

1
lim [ 670 V(u—v)[" dx = 0.

n—00 Ql
n

While £2;, is with a positive measure, from (4.11), using the dominated convergence the-
orem, we directly have

N .
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n—00 -
=1

Therefore, we have

N
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Once more,
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and by assumption (i) 8 < 1, or (ii)
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we easily deduce that

N g (x, 1)
lim |- () — Vi) (s — v) == dxdt
jim |3 [, D= vt 72 a
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Last but not least,
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T

Then, by (4.5), (4.6), (4.7), (4.9), (4.10), (4.12), (4.14), we have

/i|||u|ﬁ_1u—|V|ﬂ_1v||L1(Q)dt§c// ||u|ﬂ_1u—|v|ﬁ_1v|dxdt.
T dt Qrs

By the Gronwall inequality,
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2
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By the arbitrariness of 7, we extrapolate that
/ [lt1? " ux, 5) = V1P v, 5) | de < / [luto|* " utg = [vol "~ vo| dx, Vs € [0, 7).
2 2
The proof is complete. d
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