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Abstract
In this paper, we consider the following new nonlocal problem:

{
–(a – b

∫
Ω |∇u|2 dx)�u = λf (x)|u|p–2u, x ∈ Ω ,

u = 0, x ∈ ∂Ω ,

where Ω is a smooth bounded domain inR
3, a,b > 0 are constants, 3 < p < 6, and

the parameter λ > 0. Under some assumptions on the sign-changing function f , we
obtain the existence of positive solutions via variational methods.
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1 Introduction and main resluts
In this paper, we are concerned with the existence of positive solutions for the following
new nonlocal problem:

{
–(a – b

∫
Ω

|∇u|2 dx)�u = λf (x)|u|p–2u, x ∈ Ω ,
u = 0, x ∈ ∂Ω ,

(1.1)

where Ω is a smooth bounded domain in R
3, a, b > 0 are constants, 3 < p < 6, and the

parameter λ > 0. f (x) is sign changing in Ω , which is the reason why we call it indefinite
nonlinearity in the title.

In recent years, the Kirchhoff type problems in a bounded domain

{
–(a + b

∫
Ω

|∇u|2 dx)�u = f (x, u), x ∈ Ω ,
u = 0, x ∈ ∂Ω ,

(1.2)

have been investigated by a lot of scholars under different assumptions on f (x, u), see e.g.
[1–9]. There are also many studies for problem (1.2) on the whole space R

N (N ≥ 3). For
this case, we refer the interested readers to [10–17]. In particular, Chen [10] obtained the
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existence and multiplicity of positive solutions to the Kirchhoff problem with indefinite
nonlinearity by using mountain pass theorem and minimization argument.

In problem (1.2), if we replace a + b
∫
Ω

|∇u|2 dx by a – b
∫
Ω

|∇u|2 dx, it turns to be the
following new nonlocal problem:

{
–(a – b

∫
Ω

|∇u|2 dx)�u = f (x, u), x ∈ Ω ,
u = 0, x ∈ ∂Ω .

(1.3)

So far, there are only a few works about such a nonlocal problem. Yin and Liu [18] first
studied this kind of nonlocal one and obtained two nontrivial solutions for problem (1.3)
when f (x, u) = |u|p–2u with 2 < p < 2∗ (2∗ = 2N

N–2 when N ≥ 3 and 2∗ = +∞ when N = 1, 2).
Lei et al. [19] proved that problem (1.3) has at least two positive solutions in the case of
f (x, u) = fλ(x)|u|q–2u, where 1 < q < 2 and fλ(x) ∈ L∞(Ω) changes sign. Generalization of
the result of [18] and [19] was done by Duan et al. [20]. In [20], the authors proved the ex-
istence and multiplicity results for problem (1.3) in the case of f (x, u) = f (x)|u|p–2u, where

1 ≤ p < 2∗ and f (x) ∈ L
2∗

2∗–p (Ω) \ {0} is nonnegative. Subsequently, Lei et al. [21] also ob-
tained the multiplicity of nontrivial solutions for problem (1.3) with singularity. On the
whole space R

4, Wang et al. [22] researched problem (1.3) when f (x, u) = |u|2u + μf (x).
Under the assumption f (x) ∈ L4/3(R4), they showed the existence of multiple positive so-
lutions for the considered problem.

From the works described above, we do not see any existence result of positive solution
to problem (1.1) in the case that 3 < p < 6, the nonlocal term a – b

∫
Ω

|∇u|2 dx, and indef-
inite nonlinearity. Thus, it is natural to ask what the case would be. Our purpose of this
paper is to show some existence of positive solutions for problem (1.1).

In order to state our main results, we first make the following hypotheses on f :
(f1) f (x) ∈ L∞(Ω);
(f2) |Σ0| = 0 and the set Σ+ has an interior point, where Σ0 = {x ∈ Ω : f (x) = 0}, Σ+ =

{x ∈ Ω : f (x) > 0}, and Σ– = {x ∈ Ω : f (x) < 0};
(f ′

1) f (x) ∈ Lp∗ (Ω), where p∗ = 6
6–p ;

(f ′
2) there is d0 > 0 such that the set Σd0 = {x ∈ Ω : f (x) ≥ d0} has an interior point.

Our main results can be stated as follows.

Theorem 1.1 Assume that hypotheses (f1), (f2) hold and 4 ≤ p < 6. Then, for any λ > 0,
problem (1.1) has at least a positive solution.

Theorem 1.2 Assume that hypotheses (f ′
1), (f ′

2) hold and 3 < p < 4. Then there exists λ∗ > 0
such that, for any λ ∈ (0,λ∗), problem (1.1) has at least a positive solution.

Problem (1.1) is variational in nature. Note that, for any u ∈ H1
0 (Ω), the functional

I(u) =
a
2
‖u‖2 –

b
4
‖u‖4 –

λ

p

∫
Ω

f (x)|u|p dx

is well defined, where ‖u‖2 =
∫
Ω

|∇u|2 dx. Furthermore, it belongs to C1(H1
0 (Ω),R) and its

critical points are precisely the weak solutions of problem (1.1). Here, we say u ∈ H1
0 (Ω)

is a weak solution to problem (1.1) if, for any v ∈ H1
0 (Ω), it holds

(
a – b

∫
Ω

|∇u|2 dx
)∫

Ω

∇u∇v dx – λ

∫
Ω

f (x)|u|p–2uv dx = 0.
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In the proof of Theorem 1.1, the main difficulty is to prove the boundedness of the
Palais–Smale ((PS) for short) sequence, which cannot be proved directly in the case of
4 ≤ p < 6 and indefinite nonlinearity. We will prove the boundedness of (PS) sequence
indirectly, which is inspired by [10]. In the proof of Theorem 1.2, since (f ′

2) without as-
suming |Σ0| = 0, we cannot get the compactness property for the corresponding energy
functional as in the proof of Theorem 1.1. We overcome this difficulty by pulling the energy
level down below some critical level. However, we now face the situation with superlinear
and indefinite nonlinearity, it is difficult to achieve the critical energy level. To this end,
we choose a suitable test function presented in [23] (see also [12]). At this point, we need
to require the restrictive condition p > 3. Without this condition, we do not know if the
result is still right.

Throughout this paper, we make use of the following notations. H1
0 (Ω) and Lq(Ω) are

standard Sobolev spaces with the usual norm ‖u‖2 =
∫
Ω

|∇u|2 dx, |u|qq =
∫
Ω

|u|q dx. f+ =
max{f , 0} and f– = min{f , 0}. Br(x) denotes an open ball centered at x with radius r > 0.
→ and ⇀ denote strong and weak convergence, respectively. C and Ci denote various
positive constants whose values may vary from line to line. o(1) denotes a quantity such
that o(1) → 0 as n → +∞. All limitations hold as n → ∞ unless otherwise stated. Let S
be the best Sobolev constant for the embedding of H1

0 (Ω) into L6(Ω), that is,

S = inf
u∈H1

0 (Ω)\{0}

∫
Ω

|∇u|2 dx
(
∫
Ω

|u|6 dx)1/3 . (1.4)

The paper contains two more sections, one is devoted to the proof of Theorem 1.1, the
other is dedicated to the proof of Theorem 1.2.

2 Proof of Theorem 1.1
Lemma 2.1 Under the assumptions of Theorem 1.1, for any λ > 0, there exists a sequence
{un} ⊂ H1

0 (Ω) such that I(un) → c∗ < a2

4b and I ′(un) → 0.

Proof By (f1), (1.4), and Hölder’s inequality, one has

I(u) =
a
2
‖u‖2 –

b
4
‖u‖4 –

λ

p

∫
Ω

f (x)|u|p dx

≥ a
2
‖u‖2 –

b
4
‖u‖4 –

λ

p
|f |∞

(∫
Ω

1 dx
) 6–p

6
(∫

Ω

|u|p· 6
p dx

) p
6

≥ a
2
‖u‖2 –

b
4
‖u‖4 –

λ

p
|f |∞|Ω| 6–p

6 S–p/2‖u‖p.

Thanks to 4 ≤ p < 6, the above inequality implies that, for any λ > 0, there are α, δ > 0 such
that I(u) ≥ α for all ‖u‖ = δ.

Moreover, by (f2), we know that there is u ∈ H1
0 (Ω) satisfying

∫
Ω

f (x)|u|p dx > 0. Then
we have that

lim
t→+∞ I(tu) = lim

t→+∞

[
a
2

t2‖u‖2 –
b
4

t4‖u‖4 –
λ

p
tp

∫
f (x)|u|p dx

]
= –∞,

which means that there is t0 large enough such that ‖e‖ > ρ and I(e) < 0, where e = t0u.
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Thus, we can use the mountain pass theorem without (PS) condition [24] to obtain a
sequence {un} ⊂ H1

0 (Ω) satisfying I(un) → c∗ and I ′(un) → 0 for

c∗ := inf
γ∈Γ

max
t∈[0,1]

I
(
γ (t)

) ≥ α > 0,

where

Γ :=
{
γ ∈ C

(
[0, 1], H1

0 (Ω)
)

: γ (0) = 0 and γ (1) = e
}

.

To complete the proof of the lemma, it suffices to prove that c∗ < a2

4b . By easy calculations,
one has

max
t≥0

I(te) = max
t≥0

{
a
2

t2‖e‖2 –
b
4

t4‖e‖4 –
λ

p
tp

∫
Ω

f (x)|e|p dx
}

< max
t≥0

{
a
2

t2‖e‖2 –
b
4

t4‖e‖4
}

≤ a2

4b
.

This together with the definition of c∗ implies c∗ < a2

4b . �

Lemma 2.2 Under the assumptions of Theorem 1.1, the functional I satisfies the (PS)c

condition with c < a2

4b .

Proof Let {un} ⊂ H1
0 (Ω) be a (PS)c sequence for I with c < a2

4b , that is,

I(un) → c and I ′(un) → 0. (2.1)

By (2.1), we have that

c + o(1) = I(un) =
a
2

∫
Ω

|∇un|2 dx –
b
4

(∫
Ω

|∇un|2 dx
)2

–
λ

p

∫
Ω

f (x)|un|p dx, (2.2)

and for any ψ ∈ H1
0 (Ω),

o(1)‖ψ‖ =
〈
I ′(un),ψ

〉

= a
∫

Ω

∇un∇ψ dx – b
(∫

Ω

|∇un|2 dx
)∫

Ω

∇un∇ψ dx

– λ

∫
Ω

f (x)|un|p–2unψ dx. (2.3)

First, we show that {un} is bounded in H1
0 (Ω). Inspired by [10], arguing by contradiction,

we define tn = ‖un‖ and assume that tn → +∞. Set vn = un/tn. Then we have

‖vn‖ =
‖un‖

tn
= 1 for each n ∈N. (2.4)
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Taking ψ = un in (2.3), then dividing (2.2) and (2.3) by ‖un‖2, we obtain

o(1) =
c + o(1)
‖un‖2 =

a
2

–
b
4

∫
Ω

|∇un|2 dx
∫

Ω

|∇vn|2 dx –
λ

p

∫
Ω

f (x)|un|p–2v2
n dx (2.5)

and

o(1) =
o(1)‖un‖
‖un‖2 = a – b

∫
Ω

|∇un|2 dx
∫

Ω

|∇vn|2 dx – λ

∫
Ω

f (x)|un|p–2v2
n dx. (2.6)

We distinguish two cases. In case p = 4, multiplying (2.5) by 4 and combining with (2.6),
we obtain

lim
n→∞ a = 0,

which is impossible, since a > 0 is constant. In case 4 < p < 6, we also obtain

lim
n→∞

∫
Ω

f (x)|un|p–2v2
n dx =

ap
λ(4 – p)

.

Combining this with (2.6) and ‖un‖ → ∞, we must have

lim
n→∞

∫
Ω

|∇vn|2 dx = 0,

which is a contradiction to (2.4).
In conclusion, either of the two cases above will lead to a contradiction. Thus, we obtain

that {un} is bounded in H1
0 (Ω). Then, up to a subsequence (still denoted by {un}), we may

assume that
⎧⎪⎪⎨
⎪⎪⎩

un ⇀ u, in H1
0 (Ω),

un → u, in Lr(Ω), 1 ≤ r < 6,

un → u, a.e. in Ω .

(2.7)

By using Hölder’s inequality, we obtain from (2.7) that

∣∣∣∣
∫

Ω

f (x)|un|p–2un(un – u) dx
∣∣∣∣ ≤ |f |∞|un|p–1

p |un – u|p → 0.

It then follows from (2.1) that

o(1) =
〈
I ′(un), (un – u)

〉
=

(
a – b‖un‖2)∫

Ω

∇un∇(un – u) + o(1), (2.8)

that is,

a – b‖un‖2 → 0 or
∫

Ω

∇un∇(un – u) → 0.

Next, we show that the former alternative above does not occur. If, to the contrary, namely,

‖un‖2 → a
b

. (2.9)
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Let us define a functional by

φ(w) =
1
p

∫
Ω

f (x)|w|p dx, w ∈ H1
0 (Ω).

Consequently,

〈
φ′(w), v

〉
=

∫
Ω

f (x)|w|p–2wv dx, ∀v ∈ H1
0 (Ω).

By using Hölder’s inequality again, we obtain

∣∣∣∣
∫

Ω

f (x)
(|un|p–2un – |u|p–2u

)
v dx

∣∣∣∣
≤ |f |∞

∫
Ω

∣∣|un|p–2un – |u|p–2u
∣∣|v|dx

≤ |f |∞
(∫

Ω

∣∣|un|p–2un – |u|p–2u
∣∣ p

p–1 dx
) p–1

p
(∫

Ω

|v|p dx
) 1

p

≤ |f |∞
∣∣|un|p–2un – |u|p–2u

∣∣ p
p–1

|Ω| 6–p
6 S–p/2‖v‖p.

Hence, by using (2.7), we obtain

∥∥φ′(un) – φ′(u)
∥∥ ≤ |f |∞

∣∣|un|p–2un – |u|p–2u
∣∣ p

p–1
|Ω| 6–p

6 S–p/2 → 0. (2.10)

Moreover, we also have

o(1) =
〈
I ′(un), v

〉
=

(
a – b‖un‖2)∫

Ω

∇un∇v dx – λ
〈
φ′(un), v

〉
, ∀v ∈ H1

0 (Ω).

This with (2.9) implies that φ′(un) → 0. Thus, we deduce from (2.10) that

〈
φ′(u), v

〉
=

∫
Ω

f (x)|u|p–2uv dx = 0, ∀v ∈ H1
0 (Ω).

Then we can apply the variational method fundamental lemma [25] to obtain

f (x)
∣∣u(x)

∣∣p–2u(x) = 0, a.e. x ∈ Ω .

Combining this with assumption (f2) that |Σ0| = 0, we obtain u = 0.
By (f1) and (2.7), we have

lim
n→∞

∫
Ω

f (x)|un|p dx =
∫

Ω

f (x)|u|p dx,

and hence,

φ(un) =
1
p

∫
Ω

f (x)|un|p dx → 1
p

∫
Ω

f (x)|u|p dx = 0.
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This together with (2.9) yields

I(un) =
a
2
‖un‖2 –

b
4
‖un‖4 –

λ

p

∫
Ω

f (x)|un|p dx → a2

4b
,

which is a contradiction to I(un) → c < a2

4b . Therefore, we obtain
∫
Ω

∇un∇(un – u) dx → 0,
which gives ‖un‖ → ‖u‖. This and the weak convergence of {un} in H1

0 (Ω) imply that
un → u in H1

0 (Ω). The proof of Lemma 2.2 is complete. �

Now, we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1 In view of Lemma 2.1, there is a sequence {un} ⊂ H1
0 (Ω) such that

I(un) → c∗ < a2

4b and I ′(un) → 0 for any λ > 0. It follows from Lemma 2.2 that, along a
subsequence, un → u in H1

0 (Ω), and u is a weak solution of problem (1.1). Furthermore,
if we replace the functional I with the following one:

Ĩ(u) =
a
2
‖u‖2 –

b
4
‖u‖4 –

λ

p

∫
Ω

f (x)(u+)p dx.

It is clear that all the above calculations can be repeated word by word. Thus, there is a
nontrivial critical point u ∈ H1

0 (Ω) of Ĩ . Then we have 〈Ĩ ′(u), u–〉 = 0, and hence

(
a – b‖u‖2)‖u–‖2 = 0.

Due to un → u and the fact ‖un‖2 → a
b is false, we deduce ‖u–‖2 = 0. In turn, we deduce

u ≥ 0. By the standard elliptic regularity argument and the strong maximum principle, we
get u > 0, namely, u is a positive solution of problem (1.1). This finishes the proof. �

3 Proof of Theorem 1.2
In order to prove Theorem 1.2, we need the following four lemmas.

Lemma 3.1 Suppose that (f ′
1) holds, then the functional defined by

χ : u ∈ H1
0 (Ω) →

∫
Ω

f (x)|u|p dx

is weakly continuous.

Proof It is easy to verify that the functional χ is well defined. Assume that un ⇀ u in
H1

0 (Ω), then we have un → u in Lr(Ω), 2 ≤ r < 6. Hence, un → u a.e. in Ω . Since {un} is
bounded in H1

0 (Ω), we have {un} is bounded in L6(Ω), and so {|un|p} is bounded in L6/p(Ω).
Furthermore, we obtain that

|un|p ⇀ |u|p in L6/p(Ω),

and consequently, we can apply (f ′
1) to deduce that

lim
n→+∞

∫
Ω

f (x)|un|p dx =
∫

Ω

f (x)|u|p dx.

Thus, the proof is complete. �
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Lemma 3.2 Under the assumptions of Theorem 1.2, the functional I satisfies the mountain-
pass geometry:

(i) there exist ρ,β > 0 such that I(u) ≥ β > 0 for all ‖u‖ = ρ ;
(ii) there exists e ∈ H1

0 (Ω) with ‖e‖ > ρ such that I(e) < 0.

Proof (i) By (f ′
2), Hölder’s inequality, and (1.4), we have that

I(u) =
a
2
‖u‖2 –

b
4
‖u‖4 –

λ

p

∫
Ω

f (x)|u|p dx

≥ a
2
‖u‖2 –

b
4
‖u‖4 –

λ

p

∫
Ω

f+(x)|u|p dx

≥ a
2
‖u‖2 –

b
4
‖u‖4 –

λ

p
|f+|p∗ |u|p6

≥ a
2
‖u‖2 –

b
4
‖u‖4 –

λ

p
|f+|p∗S–p/2‖u‖p.

As 3 < p < 4, there exist ρ,β > 0 such that I(u) ≥ β > 0 for all ‖u‖ = ρ .
(ii) The proof is similar to Lemma 2.1. �

Lemma 3.3 Suppose that the assumptions of Theorem 1.2 hold. Let {un} ⊂ H1
0 (Ω) be a

(PS)c sequence for the functional I , then
(i) there exists m > 0 such that ‖un‖ ≤ m for each n ∈ N;

(ii) {un} has a convergent subsequence if c < a2

4b – D0λ, where D0 = ( 1
p – 1

4 )|f+|p∗S–p/2mp.

Proof (i) Let {un} ⊂ H1
0 (Ω) be a (PS)c sequence for I , i.e.,

lim
n→+∞ I(un) = c and lim

n→+∞ I ′(un) = 0. (3.1)

By (3.1), we have that, for 3 < p < 4,

c + 1 + o(1)‖un‖ ≥ I(un) –
1
p
〈
I ′(un), un

〉

= a
(

1
2

–
1
p

)
‖un‖2 – b

(
1
4

–
1
p

)
‖un‖4

≥ a
(

1
2

–
1
p

)
‖un‖2,

which implies that {un} is bounded in H1
0 (Ω), that is, there exists m > 0 such that ‖un‖ ≤ m

for each n ∈ N.
(ii) After passing to a subsequence, we may assume that

⎧⎪⎪⎨
⎪⎪⎩

un ⇀ u∗, in H1
0 (Ω),

un → u∗, in Lr(Ω), 1 ≤ r < 6,

un → u∗, a.e. in Ω .

(3.2)

First, we show that

lim
n→∞

∫
Ω

f (x)|un|p–2unv =
∫

Ω

f (x)|u∗|p–2u∗v, ∀v ∈ H1
0 (Ω). (3.3)
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To prove (3.3), let us consider ϕ ∈ C∞
0 (Ω). Recalling that p∗ = 6

6–p , we can choose r0 < 6
and near 6 satisfying

6
6 – p

>
r0

(r0 + 1) – p
.

As a consequence, there is r∗ > 1 such that

1
p∗

+
1

r0/(p – 1)
+

1
r∗

= 1.

The strong convergence un → u∗ in Lr0 (Ω) gives φr0 ∈ Lr0 (Ω) satisfying |un(x)| ≤ φr0 (x)
a.e. in Ω . Therefore, using Young’s inequality, we obtain

∣∣f (x)
∣∣un(x)

∣∣p–2un(x)ϕ(x)
∣∣ ≤ C

(∣∣f (x)
∣∣p∗ +

∣∣un(x)
∣∣r0 +

∣∣ϕ(x)
∣∣r∗)

≤ C
(∣∣f (x)

∣∣p∗ +
∣∣φr0 (x)

∣∣r0 +
∣∣ϕ(x)

∣∣r∗),

a.e. in Ω . Since ϕ(x) is smooth, the right-hand side above belongs to L1(Ω). Then we can
infer from the Lebesgue theorem that

lim
n→∞

∫
Ω

f (x)|un|p–2unϕ =
∫

Ω

f (x)|u∗|p–2u∗ϕ.

By density, we further obtain (3.3) holds.
Set vn = un – u∗ and we claim that ‖vn‖ → 0. If not, we may suppose ‖vn‖ → l with l > 0.

From (3.1), it follows that 〈I ′(un), u∗〉 = o(1). Combining this with (3.2) and (3.3), we obtain

0 = a‖u∗‖2 – b
(
l2 + ‖u∗‖2)‖u∗‖2 – λ

∫
Ω

f (x)|u∗|p dx. (3.4)

Moreover, by 〈I ′(un), un〉 = o(1), we can use (3.2) and Lemma 3.1 to obtain

0 = a
(‖vn‖2 + ‖u∗‖2) – b

(‖vn‖4 + 2‖vn‖2‖u∗‖2 + ‖u∗‖4)

– λ

∫
Ω

f (x)|u∗|p dx + o(1). (3.5)

Combining (3.4) and (3.5), we have

o(1) = a‖vn‖2 – b‖vn‖4 – b‖vn‖2‖u∗‖2. (3.6)

Passing the limit as n → ∞, we get that

l2(a – bl2 – b‖u∗‖2) = 0,

that is,

l2 =
a
b

– ‖u∗‖2. (3.7)
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By (3.4) and Hölder’s inequality, we obtain for 3 < p < 4

I(u∗) =
a
2
‖u∗‖2 –

b
4
‖u∗‖4 –

λ

p

∫
Ω

f (x)|u∗|p dx

=
a
4
‖u∗‖2 +

b
4

l2‖u∗‖2 – λ

(
1
p

–
1
4

)∫
Ω

f (x)|u∗|p dx

≥ a
4
‖u∗‖2 +

b
4

l2‖u∗‖2 – λ

(
1
p

–
1
4

)∫
Ω

f+(x)|u∗|p dx

≥ a
4
‖u∗‖2 +

b
4

l2‖u∗‖2 – λ

(
1
p

–
1
4

)
|f+|p∗S–p/2‖u∗‖p

≥ a
4
‖u∗‖2 +

b
4

l2‖u∗‖2 – λ

(
1
p

–
1
4

)
|f+|p∗S–p/2mp. (3.8)

Furthermore, we can use (3.6)–(3.8) and Lemma 3.1 to obtain

c + o(1) = I(un)

=
a
2
‖un‖2 –

b
4
‖un‖4 –

λ

p

∫
f (x)|un|p dx

=
a
2
‖u∗‖2 –

b
4
‖u∗‖4 –

λ

p

∫
f (x)|u∗|p dx

+
a
2
‖vn‖2 –

b
4
‖vn‖4 –

b
2
‖vn‖2‖u∗‖2 + o(1)

= I(u∗) +
a
2
‖vn‖2 –

b
4
‖vn‖4 –

b
2
‖vn‖2‖u∗‖2 + o(1)

= I(u∗) +
a
2
‖vn‖2 –

1
4
(
a‖vn‖2 – b‖vn‖2‖u∗‖2) –

b
2
‖vn‖2‖u∗‖2 + o(1)

= I(u∗) +
a
4
‖vn‖2 –

b
4
‖vn‖2‖u∗‖2 + o(1)

= I(u∗) +
a
4

l2 –
b
4

l2‖u∗‖2 + o(1)

= I(u∗) +
a
4

(
a
b

– ‖u∗‖2
)

–
b
4

l2‖u∗‖2 + o(1)

= I(u∗) +
a2

4b
–

a
4
‖u∗‖2 –

b
4

l2‖u∗‖2 + o(1)

≥ a2

4b
– λ

(
1
p

–
1
4

)
|f+|p∗S–p/2mp,

which is a contradiction with our assumption c < a2

4b – D0λ. Thus, the claim follows, that
is, un → u∗ in H1

0 (Ω). We complete the proof of Lemma 3.3. �

By condition (f ′
2), we can choose x0 ∈ int(Σd0 ) and η > 0 small enough such that B2η(x0) ⊂

Σd0 . Define a cutoff function ϕ(x) satisfying ϕ(x) ≡ 1 in Bη(x0), ϕ(x) ≡ 0 outside B2η(x0)
and 0 ≤ ϕ ≤ 1. Inspired by [23] (see also [12]), we consider the following test function:

uε(x) = ϕ(x)
1

(ε2 + |x – x0|2)1/2 .

Without loss of generality, we may assume x0 = 0.
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Lemma 3.4 Under the assumptions of Theorem 1.2, there exists λ∗ > 0 such that, for any
λ ∈ (0,λ∗),

sup
t>0

I(tuε) <
a2

4b
– D0λ,

where D0 is defined as in Lemma 3.3.

Proof Let λ∗ = a2

4bD0
and note that, for any λ ∈ (0,λ∗), there holds

a2

4b
– D0λ > 0.

It is clear that limt→0+ I(tuε) = 0, and so there is t1 > 0 such that, for any λ ∈ (0,λ∗),

sup
0<t≤t1

I(tuε) <
a2

4b
– D0λ. (3.9)

In the following, we discuss the case t > t1. Noting that uε = 0 in Ω \ Σd0 and f–(x) = 0 in
Σd0 , we have

∫
Ω

f–(x)|uε|p dx = 0.

Set

R0 = min

{
η, 2

2–p
2(p–3) t

p
p–3
1

(
πd0

3pD0

) 1
p–3

}

and let ε < R0, then by (f ′
2) we obtain

∫
Ω

f (x)|uε|p dx =
∫

Σd0

f+(x)|uε|p dx

≥
∫

BR0 (0)
f+(x)

1
(ε2 + |x|2)p/2 dx

≥ 1
(2R2

0)p/2

∫
BR0 (0)

f+(x) dx

≥ 1
2p/2

4πd0

3Rp–3
0

. (3.10)

By (3.10), we have that, for any λ ∈ (0,λ∗) and t > t1,

I(tuε) =
a
2

t2‖uε‖2 –
b
4

t4‖uε‖4 – λ
tp

p

∫
Ω

f (x)up
ε dx

≤ sup
t>0

{
a2
t

2
‖uε‖2 –

b
4

t4‖uε‖4
}

– λ
tp
1
p

∫
Ω

f (x)up
ε dx

≤ a2

4b
–

tp
1
p

1
2p/2

4πd0

3Rp–3
0

λ



Qian and Chao Boundary Value Problems         (2020) 2020:40 Page 12 of 13

≤ a2

4b
– 2D0λ

<
a2

4b
– D0λ. (3.11)

Combining (3.9) and (3.11), we have that, for any λ ∈ (0,λ∗),

sup
t>0

I(tuε) <
a2

4b
– D0λ.

This completes the proof of Lemma 3.4. �

Now, we are ready to prove Theorem 1.2.

Proof of Theorem 1.2 Define the minimax level of the mountain pass theorem as in
Lemma 2.1. By the definition of c∗ and Lemma 3.4, we know there is λ∗ > 0 such that
c∗ < a2

4b – D0λ for any λ ∈ (0,λ∗). According to Lemma 3.3, we further obtain the com-
pactness property on the level c∗. Then we can argue as in the proof of Theorem 1.1 to
conclude that there exists u∗ ∈ H1

0 (Ω) such that u∗ is a positive solution of problem (1.1).
This completes the proof. �
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