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Abstract
We study a coupled Schrödinger system with general nonlinearities. By using
variational methods, we prove the existence and asymptotic behaviour of ground
state solution for the system with periodic couplings. Moreover, we prove the
existence and nonexistence of ground state solution for the system with non-periodic
couplings via Nehari manifold method. Especially, the ground state solution with
both nontrivial components is obtained, and the sign of nontrivial components is
considered.
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1 Introduction and main results
We study the existence, nonexistence and asymptotic behaviour of ground state solution
of the coupled Schrödinger system

⎧
⎪⎪⎨

⎪⎪⎩

(–�)su + a1u = f1(u) + b(x)|u|q–2u|v|q + λv in R
N ,

(–�)sv + a2v = f2(v) + b(x)|u|q|v|q–2v + λu in R
N ,

u, v ∈ Hs(RN ),

(1.1)

where ai > 0, i = 1, 2, λ ∈ (–√a1a2, 0) ∪ (0,√a1a2), 0 < s < 1, N > 2s, 2∗ = 2N
N–2s and

2 < 2q < p < 2∗. (–�)s stands for fractional Laplacian, see [1, 2]. The coupled Schrödinger
system arises from Hartree–Fock theory in Bose–Einstein condensates and nonlinear op-
tics, among other physical problems [3, 4].

Solutions with both nontrivial components (u, v), u, v �= 0 are called nontrivial solu-
tions. Solutions with both positive components are called positive solutions (u, v), u, v > 0.
A nontrivial solution is called a ground state solution if its energy is minimum among all
nontrivial solutions.

As is well known, there are nonlinear and linear forms of coupling terms for coupled
Schrödinger systems. When λ = 0, Eqs. (1.1) reduce to a Schrödinger system with nonlin-
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ear couplings. In [5], the authors studied a Schrödinger system with nonlinear couplings

⎧
⎪⎪⎨

⎪⎪⎩

(–�)su + u = (|u|2p + b|u|p–1|v|p+1)u in R
N ,

(–�)sv + a2sv = (|v|2p + b|v|p–1|u|p+1)v in R
N ,

u, v ∈ Hs(RN ),

(1.2)

where a > 0 and 2 < 2p + 2 < 2∗. In the autonomous case, they proved that if b > 0 is
large enough, Eqs. (1.2) have a positive ground state solution with both nontrivial com-
ponents. Similar systems were also studied in [6–9]. When b(x) = 0, Eqs. (1.1) reduce to a
Schrödinger system with linear couplings. In [10], the authors studied a Schrödinger sys-
tem with linear couplings. Applying the classical Nehari manifold approach, they proved
the existence of ground state solution and multiplicity results. For the other works about
linearly coupled system, we refer the readers to [11, 12] and the references therein. When
λb(x) �= 0, Eqs. (1.1) are a Schrödinger system with linear and nonlinear couplings. There
are few papers concerning this class of system. The authors in [13–15] proved the exis-
tence results of (1.1) with f1(u) = f2(u) = u3, q = 2 and b(x) = b. To the best of our knowl-
edge, there is almost no research concerning the system with general nonlinearities.

When λ = 0 and b(x) = 0, Eqs. (1.1) reduce to two scalar equations. The Schrödinger
equation with different potentials and nonlinearities is actively studied, see for instance
[16–21]. We just mention some results about asymptotic behaviour of ground state solu-
tion. Guo and Mederski in [16] studied a Schrödinger equation with sum of periodic and
inverse-square potentials as follows:

–�u +
(

V (x) –
μ

|x|2
)

u = f (x, u),

where V (x) is periodic. The superlinear and subcritical term f satisfies a weak mono-
tonicity condition. They proved the existence of ground state solution and the asymp-
totic behaviour of ground state solution in the limit μ → 0. Later in [17, Theorem 1.3],
Bieganowski studied the Schrödinger equation

(–�)su + V (x)u = f (x, u) – K(x)|u|q–2u,

where 2 < q < p < 2∗ and the potential functions V (x) and K(x) are Z
N -periodic. The au-

thor studied the asymptotic behaviour of ground state solution as K(x) → 0 in L∞(RN ) by
using variational methods.

In the presence of general nonlinearities, periodic potentials and nonlinear couplings,
we study the asymptotic behaviour of ground state solutions of (1.1) in the limit b(x) → 0
in L∞(RN ). We assume that

(B) 0 ≤ b(x) ∈ L∞(RN ) is ZN -periodic.
The nonlinearities fi, i = 1, 2, satisfy:
(F1) fi ∈ C1(R) and there exist c1, c2 > 0 such that

∣
∣f ′

i (u)
∣
∣ ≤ c1

(
1 + |u|p–2) and

∣
∣fi(u)

∣
∣ ≤ c2

(
1 + |u|p–1) for all u ∈R.

(F2) lim|u|→0+
fi(u)
|u| = 0, fi(–u) = –fi(u) for all u ∈R.
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(F3) lim|u|→+∞ Fi(u)
|u|2 → +∞, where Fi(u) =

∫ u
0 fi(s) ds.

(F4) u �→ fi(u)
|u|2q–1 is nondecreasing on (–∞, 0) ∪ (0, +∞).

To study asymptotic behaviour of ground state solution of (1.1), we introduce the fol-
lowing condition from [17]:

(F5) There exist d > 0 and 2 < t ≤ p such that

fi(u)u – 2Fi(u) ≥ d|u|t .

We state our main results in what follows.

Theorem 1.1 Suppose that (F1)–(F4) and (B) are satisfied.
(i) Then Eqs. (1.1) have a ground state solution ω, where

ω = (u, v)

⎧
⎨

⎩

u > 0 and v < 0 as –√a1a2 < λ < 0,

u > 0 and v > 0 as 0 < λ < √a1a2.

(ii) Moreover, (F5) holds, every function in the sequence (bn) satisfies (B) and bn → 0 in
L∞(RN ) as n → +∞. If (un, vn) is a ground state solution of (1.1) with b(x) = bn(x),
then there is a sequence (zn) ⊂ Z

N such that

(
un(· + zn), vn(· + zn)

) → (u, v) strongly in E,

where (u, v) is a ground state solution of (1.1) with b(x) = 0.

In Theorem 1.1, since we are concerned with (1.1) involving general nonlinearities and
nonlinear couplings, moreover f1 and f2 are independent with each other, the problem be-
comes complicated in applying variational methods. To prove the existence of ground state
solution of (1.1), we find a Palais–Smale sequence on Nehari manifold and use concentra-
tion compactness argument to deal with the lack of compactness of the sequence in R

N .
The proof of (ii) is mainly based on the Nehari manifold method and takes inspiration from
[17]. By concentration compactness argument and periodicity of energy functional, we
find that there exists a sequence (zn) ⊂ Z

N such that the weak limit of (un(· + zn), vn(· + zn))
is nontrivial and is a ground state solution of (1.1) with b(x) = 0. Then, a further evaluation
of the least energy functional allows us to get the convergence in (ii).

We also study the existence and nonexistence of ground state solution of (1.1) in the
presence of non-periodic couplings. In what follows b(x) satisfies:

(B1) 0 ≤ b(x) ∈ L∞(RN ) and b(x) = bper(x) + bloc(x), where 0 ≤ bper(x) ∈ L∞(RN ) is ZN -
periodic and bloc(x) ∈ L∞(RN ) ∩ L

p
p–2q (RN ) satisfies lim|x|→∞ bloc(x) = 0.

Theorem 1.2 Suppose that (F1)–(F4) and (B1) are satisfied.
(i) If bloc(x) ≥ 0 for a.e. x ∈R

N and bloc(x) > 0 on a positive measure set, then (1.1) has a
ground state solution ω, where

ω = (u, v)

⎧
⎨

⎩

u > 0 and v < 0 as –√a1a2 < λ < 0,

u > 0 and v > 0 as 0 < λ < √a1a2.
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(ii) If bloc(x) ≤ 0 for a.e. x ∈R
N and bloc(x) < 0 on a positive measure set, then (1.1) has

no ground state solution.

In Theorem 1.2, b(x) is non-periodic, which brings some difficulties to prove that the
weak limit of the obtained PS sequence is nontrivial since the translation of energy func-
tional is not invariant. By comparing its least energy with that in the periodic case, we
can deduce that the weak limit is nontrivial. Finally, with concentration compactness ar-
gument and direct energy estimation, the existence and nonexistence results are proved
under suitable assumptions on the sign of bloc(x).

The paper is organized in the following way. In Sect. 2 we present several technical re-
sults which will be used throughout this paper. In Sect. 3 we study PS sequences on Nehari
manifold. We prove Theorem 1.1 in Sect. 4 and Theorem 1.2 in Sect. 5.

2 Preliminaries
We denote the Hilbert space E := Hs(RN ) × Hs(RN ) endowed with the norm (see [1])
‖ω‖2 := ‖(u, v)‖2 = ‖u‖2 + ‖v‖2, where

‖u‖2 := [u]2
s + ai|u|22 =

∫

RN

∫

RN

|u(x) – u(y)|2
|x – y|N+2s dx dy +

∫

RN
ai|u|2 dx,

| · |p stands for the norm of Lp(RN ) and |(·, ·)|p = (| · |pp + | · |pp)
1
p stands for the norm of

Lp(RN ) × Lp(RN ). It is well known that weak solutions of (1.1) are critical points of func-
tional J (ω) = J (u, v) : E →R

J (ω) := J (u, v)

=
1
2
‖ω‖2 – λ

∫

RN
uv dx –

∫

RN
F1(u) dx –

∫

RN
F2(v) dx

–
1
q

∫

RN
b(x)|u|q|v|q dx. (2.1)

Denote

I(ω) :=
∫

RN
F1(u) dx +

∫

RN
F2(v) dx +

1
q

∫

RN
b(x)|u|q|v|q dx,

and Nehari manifold

N :=
{
ω ∈ E \ {0, 0} : J ′(ω)ω = 0

}
,

c := inf
{
J (ω) : ω ∈ E \ {0, 0},J ′(ω)ω = 0

}
.

Assumptions (F2) and (F4) imply that

fi(u)u = 2q
∫ u

0

fi(u)
u2q–1 s2q–1 ds ≥ 2q

∫ u

0

fi(s)
s2q–1 s2q–1 ds = 2qFi(u). (2.2)

The following lemma is standard and follows from (F1)–(F2).
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Lemma 2.1 For ε > 0, there exists Cε > 0 such that

∣
∣fi(u)u

∣
∣ +

∣
∣Fi(u)

∣
∣ ≤ ε|u|2 + Cε|u|p.

We need several lemmas for our proof.

Lemma 2.2 For λ ∈ (–√a1a2,√a1a2) \ {0}, there holds

(

1 –
|λ|√a1a2

)

‖ω‖2 ≤ ‖ω‖2 – 2λ

∫

RN
uv dx ≤

(

1 +
|λ|√a1a2

)

‖ω‖2. (2.3)

Proof Since λ ∈ (–√a1a2,√a1a2) \ {0}, then 0 < |λ|√a1a2
< 1 and

–2λ

∫

RN
uv dx ≥ –2|λ|

∫

RN
|u||v|dx = –2

|λ|√a1a2

∫

RN

√
a1a2|u||v|dx

≥ –
|λ|√a1a2

∫

RN
a1u2 + a2v2 dx ≥ –

|λ|√a1a2
‖ω‖2. (2.4)

It follows that ‖ω‖2 – 2λ
∫

RN uv dx ≥ (1 – |λ|√a1a2
)‖ω‖2. The proof of ‖ω‖2 – 2λ

∫

RN uv dx ≤
(1 + |λ|√a1a2

)‖ω‖2 is analogous. �

Lemma 2.3 Suppose that (F1)–(F4) are satisfied and a potential function b(x) satisfies (B)
or (B1), one has β := infω∈N ‖ω‖ > 0.

Proof Let ωn ∈N be such that ‖ωn‖ → 0, then

(

1 –
|λ|√a1a2

)

‖ωn‖2 ≤ ‖ωn‖2 – 2λ

∫

RN
unvn dx

=
∫

RN
f1(un)un dx +

∫

RN
f2(vn)vn dx + 2

∫

RN
b(x)|un|q|vn|q dx,

which implies that

‖ωn‖2 ≤ C
(
ε‖un‖2 + ε‖vn‖2 + Cε‖un‖p + Cε‖vn‖p + ‖un‖2q + ‖vn‖2q)

for a constant C > 0. Let ε > 0 be such that 1 – εC > 0, then

1 – εC ≤ C
Cε(‖un‖p + ‖vn‖p) + ‖un‖2q + ‖vn‖2q

‖ωn‖2

≤ C
[
Cε

(‖un‖p–2 + ‖vn‖p–2) + ‖un‖2q–2 + ‖vn‖2q–2] → 0.

It is a contradiction. Hence infω∈N ‖ω‖ > 0. �

Lemma 2.4 Suppose that (F1)–(F4) are satisfied, and a potential function b(x) satisfies (B)
or (B1), then:

(A1) There exists r > 0 such that a := inf‖ω‖=r J (ω) > J (0) = 0;
(A2) For any ω ∈ E \ {(0, 0)}, there exists t > 0 such that J (tω) < 0;
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(A3) For t ∈ (0,∞) \ {1} and ω ∈N , there holds

ϕ(t) :=
t2 – 1

2
I ′(ω)ω – I(tω) + I(ω) < 0;

(A4) For any ω ∈ E \ {(0, 0)}, there exists a unique number t > 0 such that tω ∈ N and
J (tω) = maxr≥0 J (rω).

Proof (A1) Applying the fractional Sobolev embedding theorem [1] and Lemma 2.1, there
exists C > 0 such that

∫

RN
Fi(u) dx ≤ C

(
ε‖u‖2 + Cε‖u‖p).

Hölder’s inequality implies that

∫

RN
b(x)|u|q|v|q dx ≤ |b|∞|u|q2q|v|q2q ≤ C

(‖u‖2q + ‖v‖2q).

Let r, C1 > 0 for ‖ω‖ ≤ r and r be sufficiently small, we have

∫

RN
F1(u) dx +

∫

RN
F2(v) dx +

1
q

∫

RN
b(x)|u|q|v|q dx

≤ C(ε1 + ε2)‖ω‖2 + C(Cε1 + Cε2 )‖ω‖p + 2C‖ω‖2q

≤ 1
4

(

1 –
|λ|√a1a2

)

‖ω‖2 ≤ 1
4

(

1 –
|λ|√a1a2

)

r2.

For ‖ω‖ = r, it suffices to show that

J (ω) ≥ 1
4

(

1 –
|λ|√a1a2

)

r2 > 0.

(A2) For any ω ∈ E \ {(0, 0)} and t > 0, by using Fatou’s lemma and (F3), we have

lim
t→+∞

∫

R3

F1(tu)
t2u2 u2 +

F2(tv)
t2v2 v2 dx ≥

∫

R3
lim

t→+∞

(
F1(tu)
t2u2 u2 +

F2(tv)
t2v2 v2

)

dx → +∞,

which implies that

J (tω)/t2 =
1
2

(

‖ω‖2 – 2λ

∫

RN
uv dx

)

–
∫

RN

F1(tu) + F2(tv)
t2 dx

–
t2q–2

q

∫

RN
b(x)|u|q|v|q dx → –∞ as t → +∞.

Hence J (tω) → –∞ as t → +∞.
(A3) For ω ∈N and t > 0, let

ϕ(t) =
t2 – 1

2
I ′(ω)ω – I(tω) + I(ω),
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obviously, ϕ′(t) = tI ′(ω)ω – I ′(tω)ω. It follows from Lemma 2.3 that

I ′(ω)ω = ‖ω‖2 – 2λ

∫

RN
uv dx ≥

(

1 –
|λ|√a1a2

)

‖ω‖2 > 0.

We have

tI ′(ω)ω – I ′(tω)ω = t
(∫

RN
f1(u)u dx +

∫

RN
f2(v)v dx + 2

∫

RN
b(x)|u|q|v|q dx

)

–
(∫

RN
f1(tu)u dx +

∫

RN
f2(tv)v dx + 2t2q–1

∫

RN
b(x)|u|q|v|q dx

)

.

In view of (F4), if t < 1, then

ϕ′(t) = tI ′(ω)ω – I ′(tω)ω

> t2q–1
(∫

RN
f1(u)u dx +

∫

RN
f2(v)v dx –

∫

RN

f1(tu)u
t2q–1 dx –

∫

RN

f2(tv)v
t2q–1

)

dx ≥ 0.

While for t > 1, we have ϕ′(t) = tI ′(ω)ω – I ′(tω)ω < 0. Hence ϕ(t) < ϕ(1) = 0 for t ∈
(0, +∞) \ {1}.

(A4) In view of (A1) and (A2), for any ω ∈ E \ {(0, 0)}, there exists a maximum point tmax

of t �→ J (tω) such that J ′(tmaxω)ω = 0 and tmaxω ∈N .
For any ω ∈N and t ∈ (0, +∞) \ {1}, we have

J (tω) = J (ω) +
(

J (tω) – J (ω) –
t2 – 1

2
J ′(ω)ω

)

= J (ω) + ϕ(t) < J (ω). �

Lemma 2.5 J is coercive on N , i.e. there is a sequence (ωn) ⊂N such that J (ωn) → +∞
as ‖ωn‖ → +∞.

Proof Let (ωn) ⊂N be a sequence such that ‖ωn‖ → +∞ as n → +∞. From (2.2), we find

J (ωn) = J (ωn) –
1

2q
J ′(ωn)ωn ≥

(
1
2

–
1

2q

)(

‖ωn‖2 – 2λ

∫

RN
unvn dx

)

≥
(

1
2

–
1

2q

)(

1 –
|λ|√a1a2

)

‖ωn‖2 → +∞. �

The Nehari manifold N has the following properties.

Proposition 2.6
(i) N ⊂ E is a C1-manifold;

(ii) ω is a nonzero free critical point of J if and only if ω is a critical point of J
constrained on N ;

(iii) If (ωn) is a (PS) sequence for J |N , then ωn is a (PS) sequence for J .

Proof (i) For ω ∈N , we denote

ξ (u, v) := J ′(u, v)(u, v)

=
∥
∥(u, v)

∥
∥2 – 2λ

∫

uv dx –
∫

f1(u)u dx

–
∫

f2(v)v dx – 2
∫

b(x)|u|q|v|q dx.
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Let ϕi(s) := fi(s)
s2q–1 for s > 0. In view of (F4), we have dϕi(s)

ds ≥ 0, i.e. f ′
i (s)s2q–1 –(2q–1)fi(s)s2q–2 ≥

0 for s > 0, which implies

fi(s)s – f ′
i (s)s2 ≤ –(2q – 2)fi(s)s for s > 0.

Assume s < 0, then –s > 0 and –fi(–s)s – f ′
i (–s)s2 ≤ (2q – 2)fi(–s)s for s < 0, in view of (F2),

we find

fi(s)s – f ′
i (s)s2 ≤ –(2q – 2)fi(s)s for s < 0.

It is clear that

ξ ′(u, v)(u, v) = 2
∥
∥(u, v)

∥
∥2 – 4λ

∫

uv dx –
∫

f1(u)u + f ′
1(u)u2 dx

–
∫

f2(v)v + f ′
2(v)v2 dx – 4q

∫

b(x)|u|q|v|q dx

=
∫

f1(u)u – f ′
1(u)u2 dx +

∫

f2(v)v – f ′
2(v)v2 dx

– (2q – 2)2
∫

b(x)|u|q|v|q dx

≤ –(2q – 2)
(∫

f1(u)u + f2(v)v dx + 2
∫

b(x)|u|q|v|q dx
)

= –(2q – 2)
(

∥
∥(u, v)

∥
∥2 – 2λ

∫

uv dx
)

.

It follows from Lemma 2.3 that

∥
∥(u, v)

∥
∥2 – 2λ

∫

uv dx ≥
(

1 –
|λ|√a1a2

)

‖ω‖2 > 0,

then

ξ ′(u, v)(u, v) ≤ –(2q – 2)
(

∥
∥(u, v)

∥
∥2 – 2λ

∫

uv dx
)

< 0. (2.5)

Hence N ⊂ E is a C1-manifold.
(ii) If ω �= (0, 0) is a critical point of J , then J ′(ω) = 0 and ω ∈ N . If ω ∈ N is a critical

point of J on N , by applying the Lagrange multiplier theorem, one has J ′(ω) = δξ ′(ω)
and J ′(ω)ω = δξ ′(ω)ω for δ ∈R. From (2.5) we deduce that δ = 0 and J ′(ω) = 0.

(iii) Let (ωn) ⊂N be a (PS) sequence of J |N , then

J (ωn) ≥
(

1
2

–
1

2q

)(

‖ωn‖2 – 2λ

∫

unvn dx
)

≥
(

1
2

–
1

2q

)(

1 –
|λ|√a1a2

)

‖ωn‖2,

which implies (ωn) is bounded in E. For some δn ∈R, we have

◦(1) = J ′|N (ωn) = J ′(ωn) – δnξ
′(ωn), (2.6)

thus δnξ
′(ωn)ωn + ◦(1) = J ′(ωn)ωn = 0. From (2.5) we deduce that δn → 0. In view of (2.6),

we get J ′(ωn) → 0. �
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3 Palais–Smale sequences on Nehari manifold
In this section, fi satisfies (F1)–(F4), a potential function b(x) satisfies (B) or (B1).

Lemma 3.1 There exists a bounded sequence (un, vn) ⊂ N such that J (un, vn) → c and
J ′(un, vn) → 0 as n → +∞.

Proof It follows from Lemma 2.3 and Lemma 2.5 that J is bounded from below on N . By
using Ekeland’s variational principle [22], there exists a sequence (un, vn) ⊂N such that

J (un, vn) ≤ inf
N

J (u, v) +
1
n

,

J (u, v) ≥ J (un, vn) –
1
n

∥
∥(un – u, vn – v)

∥
∥ for any (u, v) ∈N .

(3.1)

Hence J (un, vn) → infN J (u, v) = c as n → +∞. It follows that

c +
1
n

≥ J (un, vn) ≥
(

1
2

–
1

2q

)(

‖ωn‖2 – 2λ

∫

unvn dx
)

≥
(

1
2

–
1

2q

)(

1 –
|λ|√a1a2

)

‖ωn‖2, (3.2)

and

‖ωn‖2 ≤ C. (3.3)

For a fixed (y, z) ∈ E and ‖(y, z)‖ ≤ 1, we denote

Gn(s, t) = J ′(un + sy + tun, vn + sz + tvn)(un + sy + tun, vn + sz + tvn). (3.4)

Obviously, Gn(0, 0) = J ′(un, vn)(un, vn) = 0. In view of (2.5), we have

∂Gn

∂t
(0, 0) = ξ ′(un, vn)(un, vn) < 0.

By implicit function theorem, there exist C1 functions tn(s) : (–δn, δn) →R such that tn(0) =
0 and

Gn
(
s, tn(s)

)
= 0 for s ∈ (–δn, δn). (3.5)

Differentiating Gn(s, tn(s)) in s at s = 0, we have

∂Gn

∂s
(0, 0) +

∂Gn

∂t
(0, 0)t′

n(0) = 0. (3.6)
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Combining Lemma 2.3 and (2.5), we get

∣
∣
∣
∣
∂Gn

∂t
(0, 0)

∣
∣
∣
∣ =

∣
∣ξ ′(un, vn)(un, vn)

∣
∣

≥ (2q – 2)
(

∥
∥(un, vn)

∥
∥2 – 2λ

∫

unvn dx
)

≥ (2q – 2)
(

1 –
|λ|√a1a2

)

‖ωn‖2 ≥ (2q – 2)
(

1 –
|λ|√a1a2

)

β2. (3.7)

It is clear that
∣
∣
∣
∣
∂Gn

∂s
(0, 0)

∣
∣
∣
∣ =

∣
∣ξ ′(un, vn)(y, z)

∣
∣

≤ 2
∣
∣
〈
(un, vn), (y, z)

〉∣
∣ + 2

∣
∣
∣
∣λ

∫

unz dx
∣
∣
∣
∣ + 2

∣
∣
∣
∣λ

∫

vny dx
∣
∣
∣
∣

+
∣
∣
∣
∣

∫

f1(un)y dx
∣
∣
∣
∣ +

∣
∣
∣
∣

∫

f ′
1(un)uny dx

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

f2(vn)z dx
∣
∣
∣
∣ +

∣
∣
∣
∣

∫

f ′
2(vn)vnz dx

∣
∣
∣
∣

+ 2q
∫

b(x)|un|q–1|vn|q|y|dx + 2q
∫

b(x)|un|q|vn|q–1|z|dx. (3.8)

By using Hölder’s inequality, embedding theorem and (3.3), we find

2
∣
∣
〈
(un, vn), (y, z)

〉∣
∣ + 2

∣
∣
∣
∣λ

∫

unz dx
∣
∣
∣
∣ + 2

∣
∣
∣
∣λ

∫

vny dx
∣
∣
∣
∣ ≤ C1. (3.9)

In view of (F1), Lemma 2.1 and (3.3), we have

∣
∣
∣
∣

∫

f1(un)y dx
∣
∣
∣
∣ +

∣
∣
∣
∣

∫

f ′
1(un)uny dx

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

f2(vn)z dx
∣
∣
∣
∣ +

∣
∣
∣
∣

∫

f ′
2(vn)vnz dx

∣
∣
∣
∣ ≤ C2. (3.10)

Moreover, we deduce that

2q
∫

b(x)|un|q–1|vn|q|y|dx + 2q
∫

b(x)|un|q|vn|q–1|z|dx

≤ 2q|b|∞|un|q–1
2q |vn|q2q|y|2q + 2q|b|∞|un|q2q|vn|q–1

2q |z|2q ≤ C3. (3.11)

It follows from (3.8)–(3.11) that

∣
∣
∣
∣
∂Gn

∂s
(0, 0)

∣
∣
∣
∣ ≤ C4. (3.12)

Combining (3.6), (3.7) and (3.12), we get

∣
∣t′

n(0)
∣
∣ ≤ C5. (3.13)
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Denote

(ȳ, z̄)n,s = s(y, z) + tn(s)(un, vn),

(y, z)n,s = (un, vn) + (ȳ, z̄)n,s.
(3.14)

From (3.4) and (3.5), we find (y, z)n,s ∈N for s ∈ (–δn, δn). It follows from (3.1) that

∣
∣J (y, z)n,s – J (un, vn)

∣
∣ ≤ 1

n
∥
∥(ȳ, z̄)n,s

∥
∥. (3.15)

Applying Taylor’s expansion on the left-hand side of (3.15), we get

J (y, z)n,s – J (un, vn) = J ′(un, vn)(ȳ, z̄)n,s + r(n, s)

= sJ ′(un, vn)(y, z) + r(n, s), (3.16)

where r(n, s) = o(‖(ȳ, z̄)n,s‖) as |s| → 0. Combining (3.3), (3.13), (3.14) and tn(0) = 0, we find

lim sup
|s|→0

‖(ȳ, z̄)n,s‖
|s| ≤ C6, (3.17)

where C6 is independent of n. It follows that r(n, s) = o(|s|) as |s| → 0. From (3.15), (3.16)
and (3.17), we get

∣
∣J ′(un, vn)(y, z)

∣
∣ ≤ C6

n
. (3.18)

Hence J ′(un, vn) → 0 as n → +∞. �

From (iii) of Proposition 2.6 and Lemma 3.1, we get that (ωn) is bounded in E and
J ′(ωn) → 0. Hence there exists a subsequence of (ωn) such that (un, vn) ⇀ (u0, v0) in E.
Then we have the following result.

Lemma 3.2 Suppose ωn ⇀ ω0 in E and J ′(ωn) → 0, then J ′(ω0) = 0.

Proof For any φ = (ϕ,ψ), ϕ, ψ ∈ C∞
0 (RN ), we have

J ′(ωn)φ =
〈
(un, vn), (ϕ,ψ)

〉
– λ

∫

RN
unψ dx – λ

∫

RN
vnϕ dx

–
∫

RN
f1(un)ϕ dx –

∫

RN
f2(vn)ψ dx –

∫

RN
b(x)|un|q–2un|vn|qϕ dx

–
∫

RN
b(x)|vn|q–2vn|un|qψ dx. (3.19)

Up to a subsequence, we have

(un, vn) → (u0, v0) in Lt
loc

(
R

N) × Lt
loc

(
R

N)
for 1 ≤ t < 2∗,

(un, vn) → (u0, v0) for a.e. x ∈R
N .
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The weak convergence ωn ⇀ ω0 implies that 〈(un, vn), (ϕ,ψ)〉 → 〈(u0, v0), (ϕ,ψ)〉,
∫

RN un ×
ψ dx → ∫

RN u0ψ dx and
∫

RN vnϕ dx → ∫

RN v0ϕ dx.
Let K ⊂ R

N be a compact set containing supports of ϕ, ψ , then (un, vn) → (u0, v0) in
Lt(K) × Lt(K) for 1 ≤ t < 2∗. By [23, Theorem 4.9], there exist lK (x) ∈ L2q(K) and mK (x) ∈
L2q(K) such that |un(x)| ≤ lK (x) and |vn(x)| ≤ mK (x) for a.e. x ∈ K . Let hK (x) := lK (x) +
mK (x) for x ∈ K , then hK (x) ∈ L2q(K) and

∣
∣un(x)

∣
∣,

∣
∣vn(x)

∣
∣ ≤ hK (x) for a.e. x ∈ K .

Hence b(x)|un|q–2un|vn|qϕ ≤ b(x)h2q–1
K |ϕ| for a.e. x ∈ K , and

∫

K
b(x)h2q–1

K |ϕ|dx ≤ |b|∞|hKχK |2q–1
2q |ϕ|2q.

Applying Lebesgue’s dominated convergence theorem, we deduce that

∫

K
b(x)|un|q–2un|vn|qϕ dx →

∫

K
b(x)|u0|q–2u0|v0|qϕ dx.

By similar arguments as above and Lemma 2.1, we deduce

∫

K
f1(un)ϕ dx →

∫

K
f1(u0)ϕ dx and

∫

K
f2(vn)ψ dx →

∫

K
f2(v0)ψ dx.

It follows from (3.19) that

J ′(un, vn)(ϕ,ψ) → J ′(u0, v0)(ϕ,ψ).

Hence J ′(u0, v0) = 0. �

We introduce the vanishing lemma from [24].

Lemma 3.3 ([24, Lemma 2.4]) Assume that {uk} is a bounded sequence in Hs(RN ), which
satisfies

sup
z∈RN

∫

B(z,1)
|uk|2 dx → 0. (3.20)

Then uk → 0 strongly in Lr(RN ) for every 2 < r < 2N
N–2s .

Lemma 3.4 Assume that {ωn} is a PS sequence constrained on N , which satisfies

sup
z∈RN

∫

B(z,1)
|ωn|2 dx → 0, (3.21)

then ‖ωn‖ → 0.
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Proof Combining Lemma 3.3 and (3.21), we get un, vn → 0 in Lr(RN ) for 2 < r < 2∗. For
ωn ⊂N , we have

(

1 –
|λ|√a1a2

)

‖ωn‖2 ≤ ‖ωn‖2 – 2λ

∫

RN
unvn dx

=
∫

RN
f1(un)un + f2(vn)vn dx + 2

∫

RN
b(x)|un|q|vn|q dx. (3.22)

It is clear that
∣
∣
∣
∣

∫

RN
f1(un)un dx

∣
∣
∣
∣ ≤ ε|un|22 + Cε|un|pp.

Let ε → 0, we have | ∫
RN f1(un)un dx| → 0. Moreover,

∫

RN
b(x)|un|q|vn|q dx ≤ |b|∞|un|q2q|vn|q2q → 0.

It follows from (3.22) that ‖ωn‖ → 0. �

4 Ground states of a Schrödinger system with periodic couplings
We prove (i) and (ii) of Theorem 1.1 in Sects. 4.1–4.2, respectively.

4.1 Existence
Step 1: We find (u0, v0) ∈ E such that J ′(u0, v0) = 0.

In view of Lemma 3.1, there exists a bounded (PS)c-sequence of J constrained on N ,
i.e. a sequence ωn ⊂ N such that J (ωn) → c and (J |N )′(ωn) → 0. It follows from (iii) of
Proposition 2.6 that J ′(ωn) → 0. In view of Lemma 3.2, up to a subsequence, then

(un, vn) ⇀ (u0, v0) in E,

(un, vn) → (u0, v0) in Lt
loc

(
R

N) × Lt
loc

(
R

N)
for 1 ≤ t < 2∗,

(un, vn) → (u0, v0) for a.e. x ∈ R
N ,

and J ′(u0, v0) = 0.
Step 2: We check whether (u0, v0) �= (0, 0).
Suppose

sup
z∈RN

∫

B(z,1)
|ωn|2 dx → 0.

It follows from Lemma 3.4 that ‖(un, vn)‖ → 0. We get a contradiction with respect to
Lemma 2.3. By Lions’ lemma [25] there exists (yn) ⊂R

N such that

lim inf
n→∞

∫

B(yn ,1)
|un|2 dx > δ or lim inf

n→∞

∫

B(yn ,1)
|vn|2 dx > δ.

We assume, without loss of generality, that

lim inf
n→∞

∫

B(yn ,1)
|un|2 dx > δ.
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For each yn ∈R
N , we will find zn ∈ Z

N such that B(yn, 1) ⊂ B(zn, 1 +
√

N), then

lim inf
n→∞

∫

B(zn ,1+
√

N)
|un|2 dx ≥ lim inf

n→∞

∫

B(yn ,1)
|un|2 dx > δ.

Since J and N are invariant under translations of the form ω �→ ω(· – k) with k ∈ Z
N ,

we may assume that (zn) is bounded in Z
N . It is clear that u0 �= 0 by un → u0 in L2

loc(RN ).
Hence ω0 = (u0, v0) �= (0, 0), (u0, v0) ∈N and J (u0, v0) ≥ c.

Step 3: We find (u′, v′) such that J ′(u′, v′) = 0 and J (u′, v′) = c, where u′ > 0 and v′ < 0 as
λ ∈ (–√a1a2, 0), u′ > 0 and v′ > 0 as λ ∈ (0,√a1a2).

Applying Fatou’s lemma, we get

c = lim inf
n→∞ J (un, vn)

= lim inf
n→∞

∫ 1
2

f1(un)un – F1(un)

+
1
2

f2(vn)vn – F2(vn) dx +
(

1 –
1
q

)∫

b(x)|un|q|vn|q dx

≥
∫ 1

2
f1(u0)u0 – F1(u0) +

1
2

f2(v0)v0 – F2(v0) dx

+
(

1 –
1
q

)∫

b(x)|u0|q|v0|q dx

= J (u0, v0).

From the above computations, we find that J (u0, v0) = c. Hence (u0, v0) �= (0, 0) is a ground
state solution of (1.1).

Case 1. λ ∈ (–√a1a2, 0).
It is clear that ‖(|u0|, –|v0|)‖ ≤ ‖(u0, v0)‖. By (A4) of Lemma 2.4, there exists t > 0 such

that (t|u0|, –t|v0|) ∈N and J (t|u0|, –t|v0|) ≥ c, then

c ≤ J
(
t|u0|, –t|v0|

) ≤ J (tu0, tv0) ≤ J (u0, v0) = c.

Let (u′, v′) := (t|u0|, –t|v0|), u′ ≥ 0 and v′ ≤ 0, we get that (u′, v′) is a ground state solution
of (1.1) by (ii) of Proposition 2.6. It follows from (1.1) that

(–�)su′ + a1u′ = f1
(
u′) + b(x)

∣
∣u′∣∣q–2u′∣∣v′∣∣q + λv′ ≥ 0

and

(–�)sv′ + a2v′ = f2
(
v′) + b(x)

∣
∣u′∣∣q∣∣v′∣∣q–2v′ + λu′ ≤ 0.

In view of (1.1), if u′ = 0, then v′ = 0. Hence u′, v′ �= 0 by (u′, v′) �= (0, 0). Applying the strong
maximum principle [26] to each equality of (1.1), we get that (u′, v′), u′ > 0 and v′ < 0 is a
ground state solution of (1.1).

Case 2. λ ∈ (0,√a1a2).
There exists t′ > 0 such that (t′|u0|, t′|v0|) ∈N and J (t′|u0|, t′|v0|) ≥ c. We deduce that

c ≤ J
(
t′|u0|, t′|v0|

) ≤ J
(
t′u0, t′v0

) ≤ J (u0, v0) = c.



Duan et al. Boundary Value Problems         (2020) 2020:22 Page 15 of 24

By similar arguments in Case 1, we get that (u′, v′), u′ > 0 and v′ > 0 is a ground state
solution of (1.1). This completes the proof of (i) of Theorem 1.1.

4.2 Asymptotic behaviour of ground states as bn → 0 in L∞(RN)
Denote

Gi(u) :=
1
2

fi(u)u – Fi(u), i = 1, 2.

From (2.2), it suffices to show that Gi(u) ≥ 0. The following version of Brezis–Lieb lemma
[16] is crucial to proving the asymptotic behaviour of ground states.

Lemma 4.1 (Brezis–Lieb lemma) Assume that (F1)–(F4) are satisfied, let {un} be a
bounded sequence such that un ⇀ u weakly in Hs(RN ). Then

lim
n→∞

∫

RN

[
Gi(un) – Gi(un – u)

]
dx =

∫

RN
Gi(u) dx, i = 1, 2. (4.1)

Proof It is clear that

∫

RN

[
Gi(un) – Gi(un – u)

]
dx =

∫

RN

∫ 1

0

d
dt

Gi(un – u + tu) dt dx

=
∫ 1

0

∫

RN
gi(un – u + tu)u dx dt, (4.2)

where gi(u) := d
du Gi(u), and gi(u) = 1

2 f ′
i (u)u – 1

2 fi(u). From (F1), we find

∣
∣f ′

i (un – u + tu)(un – u + tu)
∣
∣ ≤ c1

(|un – u + tu| + |un – u + tu|p–1).

Since (un – u + tu) is bounded in Hs(RN ), by using Hölder’s inequality, (F1) and Lemma 2.1,
we get

∫

RN gi(un – u + tu)u dx is bounded. For every ε > 0, there is σ > 0 such that

∫

Ω

∣
∣gi(un – u + tu)u

∣
∣dx < ε

for any n ∈ N and every measurable subset Ω ⊂ R
N such that |Ω| < σ . Thus (gi(un – u +

tu)u) is uniformly integrable. Moreover, for any ε > 0, there exists a measurable subset
Ω ⊂R

N of finite measure |Ω| < +∞ such that, for any n ≥ 1,

∫

RN \Ω

∣
∣gi(un – u + tu)u

∣
∣dx < ε.

Hence (gi(un – u + tu)u) is tight over R
N . Since gi(un – u + tu)u → gi(tu)u a.e. in R

N , in
view of the Vitali convergence theorem, gi(tu)u is integrable and

∫

RN
gi(un – u + tu)u dx →

∫

RN
gi(tu)u dx as n → +∞.
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From (4.2), we deduce

∫

RN

[
Gi(un) – Gi(un – u)

]
dx →

∫ 1

0

∫

RN
gi(tu)u dx dt

=
∫

RN
Gi(u) dx as n → +∞.

This completes the proof of Lemma 4.1. �

We denote that Jn is the corresponding functional of (1.1) with b(x) = bn(x), J0 is the
corresponding functional of (1.1) with b(x) = 0. Nn and N0 are well defined in a similar
way. Denote

cn := inf
Nn

Jn and c0 := inf
N0

J0.

From (i) of Theorem 1.1, there exist ωn ∈Nn such that Jn(ωn) = cn and ω0 ∈N0 such that
J0(ω0) = c0. We need several lemmas for the proof.

Lemma 4.2 Suppose that (F1)–(F4) and (B) are satisfied, then ωn is bounded in E. More-
over, one has

lim
n→∞ cn = lim

n→∞ inf
Nn

Jn = inf
N0

J0 = c0.

Proof Let tn > 0 be such that tnωn ∈N0, we have

cn = Jn(ωn) ≥ Jn(tnωn) = J0(tnωn) –
t2q
n

q

∫

RN
bn(x)|un|q|vn|q dx

≥ c0 –
t2q
n

q

∫

RN
bn(x)|un|q|vn|q dx. (4.3)

Let t′
n > 0 be such that t′

nω0 ∈Nn, then

c0 = J0(ω0) ≥ J0
(
t′
nω0

)
= Jn

(
t′
nω0

)
+

t′2q
n

q

∫

RN
bn(x)|u0|q|v0|q dx

≥ cn +
t′2q
n

q

∫

RN
bn(x)|u0|q|v0|q dx. (4.4)

Combining (4.3) and (4.4), we have

cn ≤ c0 –
t′2q
n

q

∫

RN
bn(x)|u0|q|v0|q dx

≤ c0 ≤ cn +
t2q
n

q

∫

RN
bn(x)|un|q|vn|q dx. (4.5)
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Since tnωn ∈N0, we have

‖tnωn‖2 – 2λ

∫

RN
t2
nunvn dx –

∫

RN
f1(tnun)tnun + f2(tnvn)tnvn dx

– 2
∫

RN
bn(x)|tnun|q|tnvn|q dx = 0.

Suppose tn → +∞, in view of (F3) and (2.2), we get that

0 = ‖ωn‖2 – 2λ

∫

RN
unvn dx –

∫

RN

f1(tnun)tnun + f2(tnvn)tnvn

t2
n

dx

– 2t2q–2
n

∫

RN
bn(x)|un|q|vn|q dx

≤
(

1 +
|λ|√a1a2

)

‖ωn‖2 –
∫

RN

2qF1(tnun) + 2qF2(tnvn)
t2
n

dx

– 2t2q–2
n

∫

RN
bn(x)|un|q|vn|q dx → –∞.

It is a contradiction. Hence (tn) is bounded. It follows from (2.2) and (4.4) that

c0 ≥ cn = Jn(ωn) = Jn(ωn) –
1

2q
J ′

n(ωn)ωn

≥
(

1
2

–
1

2q

)(

‖ωn‖2 – 2λ

∫

RN
unvn dx

)

≥
(

1
2

–
1

2q

)(

1 –
|λ|√a1a2

)

‖ωn‖2. (4.6)

Hence ωn is bounded in E, then

∫

RN
bn(x)|un|q|vn|q dx ≤ |bn|∞|un|q2q|vn|q2q → 0 as n → +∞.

In view of (4.5), we deduce that cn → c0 as n → +∞. This completes the proof of
Lemma 4.2. �

Lemma 4.3 For each ground state solution ωn of Jn, there exist ω �= (0, 0) and (zn) ⊂ Z
N

such that ωn(· + zn) ⇀ ω in E. Moreover, ω is a ground state solution of J0, i.e. J ′
0(ω) = 0

and J0(ω) = c0.

Proof In view of Lemma 4.2, ωn is bounded in E. Suppose

sup
z∈RN

∫

B(z,1)
|ωn|2 dx → 0.

Applying similar arguments in Lemma 3.4, we get ‖ωn‖ → 0. Since

‖ωn‖2 – 2λ

∫

RN
unvn dx ≤

(

1 +
|λ|√a1a2

)

‖ωn‖2 → 0,
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we have

lim sup
n→+∞

Jn(ωn) = lim sup
n→+∞

[
1
2

(

‖ωn‖2 – 2λ

∫

RN
unvn dx

)

–
∫

RN
F1(un) + F2(vn) dx –

1
q

∫

RN
bn(x)|un|q|vn|q dx

]

= lim sup
n→+∞

[

–
∫

RN
F1(un) + F2(vn) dx

]

≤ 0.

On the other hand, from (A1) and (A4) in Lemma 2.4, we have

Jn(ωn) ≥ Jn

(

r · ωn

‖ωn‖
)

≥ a > 0.

It is a contradiction. By Lions’ lemma [25] there exists (yn) ⊂R
N such that

lim inf
n→∞

∫

B(yn ,1)
|un|2 dx > δ or lim inf

n→∞

∫

B(yn ,1)
|vn|2 dx > δ.

We assume, without loss of generality, that

lim inf
n→∞

∫

B(yn ,1)
|un|2 dx > δ.

For each yn ∈R
N , we will find zn ∈ Z

N such that B(yn, 1) ⊂ B(zn, 1 +
√

N), then

lim inf
n→∞

∫

B(zn ,1+
√

N)
|un|2 dx ≥ lim inf

n→∞

∫

B(yn ,1)
|un|2 dx > δ.

Let ω̄n := ωn(· + zn), ūn := un(· + zn) and v̄n := vn(· + zn), up to a subsequence, there exists
ω ∈ E such that

ω̄n ⇀ ω in E,

ω̄n → ω in Lt
loc

(
R

N) × Lt
loc

(
R

N)
for t ∈ [

1, 2∗),

ω̄n → ω a.e. x ∈R
N .

We have

lim inf
n→∞

∫

B(0,1+
√

N)
|ūn|2 dx > δ.

Hence u �= 0 and ω �= (0, 0).
For any φ = (ϕ,ψ), ϕ,ψ ∈ C∞

0 (RN ), it is clear that

0 = J ′
n(ωn)φ(· – zn)

= J ′
0(ω̄n)φ –

∫

RN
bn(x + zn)|ūn|q–2ūn|v̄n|qϕ dx

–
∫

RN
bn(x + zn)|ūn|q|v̄n|q–2v̄nψ dx. (4.7)
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By using Hölder’s inequality, we deduce that

∫

RN
bn(x + zn)|ūn|q–2ūn|v̄n|qϕ dx ≤ |bn|∞|ūn|q–1

2q |v̄n|q2q|ϕ|2q → 0. (4.8)

Combining (4.7) and (4.8), we find that J ′
0(ω̄n)φ → 0. It follows from Lemma 3.2 that

J ′
0(ω̄n)φ → J ′

0(ω)φ and J ′
0(ω) = 0.

Since cn → c0, using Fatou’s lemma, we have

c0 = lim inf
n→+∞ Jn(ωn)

= lim inf
n→+∞

[∫

RN

1
2

f1(ūn)ūn – F1(ūn)

+
1
2

f2(v̄n)v̄n – F2(v̄n) dx +
(

1 –
1
q

)∫

RN
bn(x)|ūn|q|v̄n|q dx

]

≥ lim inf
n→+∞

[∫

RN

1
2

f1(ūn)ūn – F1(ūn) +
1
2

f2(v̄n)v̄n – F2(v̄n) dx
]

≥
∫

RN

1
2

f1(u)u – F1(u) +
1
2

f2(v)v – F2(v) dx

= J0(ω) ≥ c0. (4.9)

Thus ω is a ground state solution of J0. This completes the proof of Lemma 4.3. �

Proof of (ii) of Theorem 1.1 We find that

(

1 –
|λ|√a1a2

)

‖ω̄n – ω‖2

≤ ‖ω̄n – ω‖2 – 2λ

∫

RN
(ūn – u)(v̄n – v) dx

= J ′
n(ω̄n)(ω̄n – ω) – 〈ω, ω̄n – ω〉 + λ

∫

RN
u(v̄n – v) dx

+ λ

∫

RN
v(ūn – u) dx +

∫

RN
f1(ūn)(ūn – u) + f2(v̄n)(v̄n – v) dx

+
∫

RN
bn(x)|ūn|q–2ūn|v̄n|q(ūn – u) dx

+
∫

RN
bn(x)|v̄n|q–2v̄n|ūn|q(v̄n – v) dx. (4.10)

Since ω̄n ⇀ ω in E, we have 〈ω, ω̄n – ω〉 → 0, λ
∫

RN u(v̄n – v) dx → 0 and λ
∫

RN v(ūn –
u) dx → 0. It is suffices to show that

J ′
n(ω̄n)(ω̄n – ω) = J ′

n(ωn)ωn – J ′
n(ωn)ω(· – zn) = 0.

From Lemma 4.1, we get

lim
n→∞

∫

RN

[
G1(ūn) – G1(ūn – u) + G2(v̄n) – G2(v̄n – v)

]
dx =

∫

RN
G1(u) + G2(v) dx. (4.11)
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In view of (4.9), we have

c0 = lim
n→∞

∫

RN
G1(ūn) + G2(v̄n) dx =

∫

RN
G1(u) + G2(v) dx. (4.12)

It follows from (4.11) and (4.12) that

lim
n→∞

∫

RN
G1(ūn – u) + G2(v̄n – v) dx = 0.

Since Gi ≥ 0, i = 1, 2, then

lim
n→∞

∫

RN
G1(ūn – u) dx = 0 and lim

n→∞

∫

RN
G2(v̄n – v) dx = 0.

From (F5), we deduce that

|ūn – u|tt =
∫

RN
|ūn – u|t dx ≤ 2

d

∫

RN
G1(ūn – u) dx → 0, (4.13)

and |v̄n – v|tt → 0. By fractional embedding theorem [1], we get that ūn and v̄n are bounded
in Lr(RN ) for 2 ≤ r ≤ 2∗. Using (4.13) and the interpolation inequality, we get ūn → u and
v̄n → v in Lr(RN ) for 2 < r < 2∗. For any ε > 0, there exists Cε > 0 such that

∣
∣
∣
∣

∫

RN
f1(ūn)(ūn – u) dx

∣
∣
∣
∣ ≤ ε|ūn|2|ūn – u|2 + Cε|ūn|p–1

p |ūn – u|p.

Let ε → 0, we have

∣
∣
∣
∣

∫

RN
f1(ūn)(ūn – u) dx

∣
∣
∣
∣ → 0.

Moreover,

∣
∣
∣
∣

∫

RN
bn(x)|ūn|q–2ūn|v̄n|q(ūn – u) dx

∣
∣
∣
∣ ≤ |bn|∞|ūn|q–1

2q |v̄n|q2q|ūn – u|2q → 0.

It follows from (4.10) that ‖ω̄n – ω‖ → 0. This completes the proof of (ii) of Theorem 1.1.
�

5 Ground states of a Schrödinger system with non-periodic couplings
We prove (i) and (ii) of Theorem 1.2 in Sects. 5.1–5.2, respectively. We denote that Jper is
the corresponding functional of (1.1) with b(x) = bper(x). Nper and cper are well defined in
a similar way.

5.1 Existence
We need the following lemma.

Lemma 5.1 Assume that bloc(x) ≥ 0 for a.e. x ∈ R
N and bloc(x) > 0 on a positive measure

set, then c < cper.
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Proof From (i) of Theorem 1.1, we find a critical point ω′ of Jper, where

ω′ =
(
u′, v′)

⎧
⎨

⎩

u′ > 0 and v′ < 0 as –√a1a2 < λ < 0,

u′ > 0 and v′ > 0 as 0 < λ < √a1a2,

Jper(u′, v′) = cper and J ′
per(u′, v′) = 0. We get that

∫
bloc(x)|u′|q|v′|q dx > 0. Let t > 0 be such

that t(u′, v′) ∈N , then

c ≤ J
(
tu′, tv′) = Jper

(
tu′, tv′) –

t2q

q

∫

bloc(x)
∣
∣u′∣∣q∣∣v′∣∣q dx

< Jper
(
tu′, tv′) ≤ Jper

(
u′, v′) = cper. (5.1)

�

Proof of (i) of Theorem 1.2 We divide the proof into three steps. Step 1 and Step 3 are sim-
ilar with those in Sect. 4.1, we omit them here. By similar arguments as Step 1 in Sect. 4.1,
we find (un, vn) ⇀ (u0, v0) in E and J ′(u0, v0) = 0.

Step 2: We check whether (u0, v0) �= (0, 0).
Similarly, from Step 2 in Sect. 4.1, there exists zn ∈ Z

N such that B(yn, 1) ⊂ B(zn, 1 +
√

N)
and

lim inf
n→∞

∫

B(zn ,1+
√

N)
|un|2 dx ≥ lim inf

n→∞

∫

B(yn ,1)
|un|2 dx > δ. (5.2)

We claim that (zn) is bounded, and hence u0 �= 0, (u0, v0) ∈N and J (u0, v0) ≥ c.
We check the claim. Suppose that (zn) is unbounded, then we can choose a subsequence

of (zn) such that |zn| → ∞ as n → ∞. Let ūn := un(· + zn), v̄n := vn(· + zn), up to a subse-
quence, then

(ūn, v̄n) ⇀ (ū, v̄) in E,

(ūn, v̄n) → (ū, v̄) in Lt
loc

(
R

N) × Lt
loc

(
R

N)
for 1 ≤ t < 2∗,

(ūn, v̄n) → (ū, v̄) for a.e. x ∈R
N .

We deduce that

lim inf
n→∞

∫

B(0,1+
√

N)
|ūn|2 dx > δ

by (5.2). We find that ū �= 0 by ūn → ū in L2
loc(RN ), thus ω̄ = (ū, v̄) �= (0, 0). For any φ = (ϕ,ψ),

ϕ,ψ ∈ C∞
0 (RN ), we have

0 ← J ′(ωn)φ(· – zn)

= J ′
per(ω̄n)φ –

∫

RN
bloc(x + zn)|ūn|q–2ūn|v̄n|qϕ dx

–
∫

RN
bloc(x + zn)|ūn|q|v̄n|q–2v̄nψ dx. (5.3)
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Let K ⊂ R
N be a compact set containing supports of ϕ, ψ , then

∫

K
bloc(x + zn)|ūn|q–2ūn|v̄n|qϕ dx

≤ |ūn|q–1
p |v̄n|qp|ϕ|p

(∫

K

∣
∣bloc(x + zn)

∣
∣

p
p–2q dx

) p–2q
p

→ 0 (5.4)

as |zn| → ∞. Combining (5.3) and (5.4), we get J ′
per(ω̄n)φ → 0. It follows from Lemma 3.2

that J ′
per(ω̄n)φ → J ′

per(ω̄)φ and J ′
per(ω̄) = 0. Hence (ū, v̄) ∈ Nper and Jper(ū, v̄) ≥ cper. It is

clear that

a1ū2
n + a2v̄2

n – 2λūnv̄n ≥ a1ū2
n + a2v̄2

n – 2|λ||ūn||v̄n|

≥ a1ū2
n + a2v̄2

n –
|λ|√a1a2

(
a1ū2

n + a2v̄2
n
)

=
(

1 –
|λ|√a1a2

)
(
a1ū2

n + a2v̄2
n
) ≥ 0.

Applying Fatou’s lemma, we find

c = lim inf
n→∞ J (ωn)

= lim inf
n→∞

[(
1
2

–
1

2q

)(

[un]2
s + [vn]2

s +
∫

a1|un|2 + a2|vn|2 – 2λunvn dx
)

+
∫ 1

2q
f1(un)un – F1(un) +

1
2q

f2(vn)vn – F2(vn) dx
]

= lim inf
n→∞

[(
1
2

–
1

2q

)(

[ūn]2
s + [v̄n]2

s +
∫

a1|ūn|2 + a2|v̄n|2 – 2λūnv̄n dx
)

+
∫ 1

2q
f1(ūn)ūn – F1(ūn) +

1
2q

f2(v̄n)v̄n – F2(v̄n) dx
]

≥
(

1
2

–
1

2q

)(

[ū]2
s + [v̄]2

s +
∫

a1|ū|2 + a2|v̄|2 – 2λūv̄ dx
)

+
∫ 1

2q
f1(ū)ū – F1(ū) +

1
2q

f2(v̄)v̄ – F2(v̄) dx

= Jper(ū, v̄) ≥ cper. (5.5)

We get a contradiction with Lemma 5.1. Hence (zn) is bounded. �

5.2 Nonexistence
Suppose by contradiction that there exists a ground state solution of (1.1), i.e. ω0 =
(u0, v0) �= (0, 0) such that J (u0, v0) = c and J ′(u0, v0) = 0. By using similar arguments as
Step 3 in Sect. 4.1, we find a critical point of J , where

ω′ =
(
u′, v′)

⎧
⎨

⎩

u′ > 0 and v′ < 0 as –√a1a2 < λ < 0,

u′ > 0 and v′ > 0 as 0 < λ < √a1a2,

J (u′, v′) = c and J ′(u′, v′) = 0.
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Lemma 5.2 Assume that bloc(x) ≤ 0 for a.e. x ∈ R
N and bloc(x) < 0 on a positive measure

set, then c > cper.

Proof It is clear that
∫

bloc(x)|u′|q|v′|q dx < 0. Let t > 0 be such that t(u′, v′) ∈Nper, then

cper ≤ Jper
(
tu′, tv′) = J

(
tu′, tv′) +

t2q

q

∫

bloc(x)
∣
∣u′∣∣q∣∣v′∣∣q dx

< J
(
tu′, tv′) ≤ J

(
u′, v′) = c. (5.6)

�

Let ω ∈ Nper be a ground state solution of Jper, i.e. Jper(u, v) = cper and J ′
per(u, v) = 0.

Denote that ω̄ := ω(· – y) for y ∈ Z
N , we find that ω̄ ∈ Nper. There exists t > 0 such that

tω̄ ∈N . For any y ∈ Z
N , we have

cper = Jper(ω) = Jper(ω̄) ≥ Jper(tω̄) = J (tω̄) +
t2q

q

∫

RN
bloc(x)|ū|q|v̄|q dx

≥ c +
t2q

q

∫

RN
bloc(x)|ū|q|v̄|q dx. (5.7)

Obviously,
∫

RN bloc(x)t2q|ū|q|v̄|q dx =
∫

RN bloc(x + y)t2q|u|q|v|q dx. Since Jper is coercive on
Nper and Jper(tω) = Jper(tω̄) ≤ cper, we find that tω is bounded in E. Furthermore, u, v
are bounded in L2q(RN ) and Lp(RN ) by embedding theorem. For any 0 < ε < 1, we choose
R(ε) > 0 such that

∫

Bc
R
|u|2q dx < ε2, and choose y(ε) > 0 such that

∫

BR
|bloc(x + y)| p

p–2q dx <

ε
p

p–2q , then there exist C1, C2, C3 > 0 such that

∫

RN
bloc(x + y)t2q|u|q|v|q dx

≤
∣
∣
∣
∣

∫

BR

bloc(x + y)t2q|u|q|v|q dx
∣
∣
∣
∣ +

∣
∣
∣
∣

∫

Bc
R

bloc(x + y)t2q|u|q|v|q dx
∣
∣
∣
∣

≤ t2q|u|qp|v|qp
(∫

BR

∣
∣bloc(x + y)

∣
∣

p
p–2q dx

) p–2q
p

+ t2q|bloc|∞|v|q2q

(∫

Bc
R

|u|2q dx
) 1

2

≤ C1ε + C2ε ≤ C3ε, (5.8)

where ε is arbitrary. In view of (5.7), let |y| be sufficiently large, we get cper ≥ c. It is con-
tradictory to Lemma 5.2. This completes the proof of (ii) of Theorem 1.2.
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