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Abstract
In this paper, we consider the solvability, regularity and vanishing viscosity limit of the
3D viscous Boussinesq equations with a Navier-slip boundary condition. We also
obtain the rate of convergence of the solution of viscous Boussinesq equations to the
corresponding ideal Boussinesq equations.
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1 Introduction
Let Ω ⊂ R3 be a class of bounded smooth domains. We investigate the 3D Boussinesq
equations, which are governed by the following equations:

∂tu – ν�u + u · ∇u + ∇p = θe3, in Ω , (1.1)

∂tθ – κ�θ + u · ∇θ = 0, in Ω , (1.2)

∇ · u = 0, in Ω , (1.3)

u(0, x) = u0(x), θ (0, x) = θ0(x), in Ω , (1.4)

with the Navier-slip boundary condition

u · n = 0, n × (∇ × u) = [βu]τ , ∂nθ = 0 on ∂Ω , (1.5)

where ∇· and ∇× denote the div and curl operators, n is the unit outward normal vector.
β is a given smooth symmetric tensor on the boundary, τ is the unit tangential vector
of Ω . [·]τ represents the tangential component. p = p(x, t) the pressure, e3 = (0, 0, 1) the
unit vector in the vertical direction, ν ≥ 0 and k ≥ 0 are parameters representing the fluid
viscosity and the thermal diffusivity, respectively.

The corresponding ideal Boussinesq system is the following:

∂tu0 + u0 · ∇u0 + ∇p = θ0e3, in Ω ,

∂tθ
0 + u0 · ∇θ0 = 0, in Ω ,
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∇ · u0 = 0, in Ω .

With slip boundary condition,

u0 · n = 0, on ∂Ω .

In physics, the Boussinesq system (1.1)–(1.4) is commonly used to model large scale
atmospheric and oceanic flows, for example, tornadoes, cyclones, and hurricanes. It de-
scribes the dynamics of fluid influenced by gravitational force, which plays a very impor-
tant role in the study of Raleigh–Bernard convection; see [1, 2]. If we set θ = 0, then the
Boussinesq system (1.1)–(1.4) reduces to the incompressible Navier–Stokes equations.
The vanishing viscosity limit problem for the Navier–Stokes equations has been a well
studied domain [3–8]. The well-posedness of the Boussinesq system has been studied ex-
tensively in recent years. The global well-posedness of weak solutions, or strong solutions
in the case of small data for the Boussinesq equations has been considered by many au-
thors. See, e.g. [9–12]. While, the research about inviscid limit of viscous Boussinesq equa-
tions is less than the Navier–Stokes equations. Concerning the mathematical analysis early
and more recent results for the Boussinesq system are those in [13–17]. More interesting
results are in [18–25].

In this paper, we follow the approach of [6, 7] and formulate the boundary value prob-
lem in a suitable functional setting so that the Stokes operator is well behaved. In the
functional setting, the nonlinear terms naturally fall into desired functional spaces. These
facts allow us to establish the existence and regularity of solutions through the Galerkin
approximation and appropriate a priori bounds. Thus, to obtain a unform convergence
about the solution of the Boussinesq system (1.1)–(1.5), one needs to obtain some uni-
form estimates on vorticity. Our approach here is motivated by the idea introduced in [6,
7] to study the same problem for the Boussinesq equations.

The rest of the paper is organized as follows: in Sect. 2, we introduce some notations of
function spaces and some basic results. In Sect. 3 we present the basic a priori estimates
for the existence theory to the strong solutions. The last section is devoted to providing
the detailed proof for the rate of convergence on system (1.1)–(1.5) converge to the idea
Boussinesq equations.

2 Preliminaries
Throughout the rest of this paper, Ω ⊂ R3 denotes a simply connected smooth domain.
We will use the classical Lebesgue spaces (L2(Ω),‖ · ‖L2 = ‖ · ‖) and the Sobolev spaces
(Hs(Ω), ‖ · ‖Hm = ‖ · ‖m), for s ≥ 0, and H–s(Ω) with s ≥ 0 denotes the dual of Hs

0(Ω) (the
closure of C∞

0 (Ω) in Hs(Ω)). For convenience, Ω may be omitted when we write the spaces
without confusion. Let

X =
{

u ∈ L2(Ω);∇ · u = 0, u · n = 0
}

,

be the Hilbert space with the L2 inner product, and let

V =
{

H1 ∩ X ⊂ X
}

, V ∗ is the dual of V ,

W =
{

u ∈ V ∩ H2; n × (∇ × u) = [βu]τ , on ∂Ω
}

.
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The following lemma (see [6, 7]) allows us to control the Hs-norm of a vector-valued
function u ∈ V by its Hs–1-norms of ∇ × u and ∇ · u, together with the Hs– 1

2 (∂Ω)-norm
of u · n.

Lemma 2.1 Let s ≥ 0 be an integer, u ∈ Hs be a vector-valued function. Then

‖u‖s ≤ C
(‖∇ × u‖s–1 + ‖∇ · u‖s–1 + |n · u|s– 1

2
+ ‖u‖s–1

)
. (2.1)

As a special consequence of (2.1), for any u ∈ V ,

‖u‖1 ≤ C
(‖∇ × u‖).

It is easy to check that, for any u ∈ W and v ∈ V ,

(–�u, v) = (∇ × u,∇ × v).

Therefore, –� can be extended to the closure of W in V . The extended operator is denoted
by A and its domain by D(A). Obviously,

W ⊆ D(A) ⊂ V .

The following lemma states that A is well-behaved in these functional settings.

Lemma 2.2 The Stokes operator A = –� with D(A) = W ⊂ V is the self-adjoint extension
of the positive closed bilinear form

(Au, v) = a(u, v) =
∫

Ω

(∇ × u) · (∇ × v) dx +
∫

∂Ω

βu · v dx (2.2)

with its inverse being compact, and there is a countable eigenvalues λj such that

0 < λ1 ≤ λ2 ≤ · · · → ∞,

the corresponding eigenvector {ej} ⊂ W ∩C∞(Ω) makes an orthogonal complete basis of X .

For notational convenience, we still write –� for A. Now, we consider the nonlinear
terms in these functional settings. We define

B1(u, θ ) = u · ∇u – θe3, B2(u, θ ) = u · ∇θ ,

where p satisfies

�p = ∇ · (θe3 – u · ∇u), ∇p · n = (θe3 – u · ∇u) · n;

thus, we can obtain B1(u, θ ) ∈ X.
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3 The weak solutions
This section establishes the global existence of weak solutions to the Boussinesq system
(1.1)–(1.5). The approach is the Galerkin approximation following the argument of Con-
stantin and Foias [26]. Here as in the next section, we consider a general smooth bounded
simply connected domain in R3.

Definition 3.1 The pair (u, θ ) is called a weak solution of (1.1)–(1.5) with the initial data
(u0, θ0) ∈ X on the time interval [0, T) if (u, θ ) ∈ L2(0, T ; V )∩Cw([0, T); X) satisfies (u′, θ ′) ∈
L1(0, T ; V ∗) and

(
u′,φ

)
+ ν(ω,∇ × φ) + ν

∫

∂Ω

βu · φ ds + (u · ∇u – θe3,φ) = 0,

(
θ ′,ϕ

)
+ k(∇θ ,∇ϕ) + (u · ∇θ ,ϕ) = 0,

for all φ ∈ V ,ϕ ∈ H1
0 and for a.e. t ∈ [0, T), and u(0) = u0, θ (0) = θ0, where ω = ∇ × u.

The major result of this section is the global existence of a weak solution.

Theorem 3.1 Let (u0, θ0) ∈ X. Let T > 0. Then there exists at least one weak solution (u, θ )
of (1.1)–(1.5) on [0, T) which satisfies the energy inequality

d
dt

(‖u‖2 + ‖θ‖2) + 2
(
ν‖∇ × u‖2 + k‖∇θ‖2) + 2νβ‖u‖L2

∂Ω
≤ ‖θ‖2 + ‖u‖2, (3.1)

in the sense of distribution.

Proof We start with a sequence of approximate functions (u(m), θ (m)),

u(m)(t) =
m∑

j=1

uj(t)ej, θ (m)(t) =
m∑

j=1

θj(t)ej,

where vj, θj for j = 1, . . . , m, solve the following ordinary differential equations:

u′
j(t) + νλjuj(t) + h1

j (U) = 0, (3.2)

θ ′
j (t) + kλjθj(t) + h2

j (U) = 0, (3.3)

uj(0) = (u0, ej), θj(0) = (θ0, ej),

where U = (u1, u2, . . . , um, θ1, θ2, . . . , θm), and

h1
j (U) =

(
B1

(
u(m), θ (m)), ej

)
,

h2
j (U) =

(
B2

(
u(m), θ (m)), ej

)
.

Since (hk
j (u)) are Lipshitz in U , (3.2)–(3.3) is locally well posed, say on [0, T). Consequently,

for any t ∈ [0, T), (u(m), θ (m)) solves the following system of equations:

(
u(m))′ – ν�u(m) + PmB1

(
u(m), θ (m)) = 0, (3.4)
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(
θ (m))′ – k�θ (m) + PmB2

(
u(m), θ (m)) = 0, (3.5)

u(m)(0) = Pmu0, θ (m)(0) = Pmθ0,

where Pm denotes the projection of X onto the space spanned by {ej}m
1 .

Taking the inner products ((3.4), u(m)(t)), ((3.5), θ (m)(t)), adding them up, and noting that

(
PmB1

(
u(m), θ (m)), u(m)) =

(
u(m) · ∇u(m) – θ (m)e3, u(m)),

(
PmB2

(
u(m), θ (m)), θ (m)) =

(
u(m) · ∇θ (m), θ (m)),

we obtain by simple algebraic identities

∥∥u(m)(t)
∥∥2 +

∥∥θ (m)(t)
∥∥2 + 2

∫ t

0

(
ν
∥∥∇ × u(m)(t)

∥∥2 + k
∥∥∇θ (m)(t)

∥∥2)dτ

+ 2ν

∫

∂Ω

∥∥u(m)(t)
∥∥2 dτ

≤ ‖u0‖2 + ‖θ0‖2 +
∫ t

0

(∥∥θ (m)(t)
∥∥2 +

∥∥u(m)(t)
∥∥2)dt. (3.6)

Therefore,

(
u(m), θ (m)) is bounded in L∞(0, T ; X) uniformly for m,

(∇ × u(m),∇θ (m)) is bounded in L2(0, T ; V ) uniformly for m.

Note that, for φ ∈ V , we have

∣∣(–�u(m),φ
)∣∣ =

∣∣∣∣
(∇ × u(m),∇φ

)
+

∫

∂Ω

βu(m) · φ
∣∣∣∣.

Therefore,

{
–�u(m)} is bounded in L2(0, T ; V ∗).

Similarly,

{
–�θ (m)} is bounded in L2(0, T ; V ∗).

For the nonlinear terms, we have, for any φ ∈ V ,

∣∣(PmB1
(
u(m), θ (m)),φ

)∣∣

=
∣∣(B1

(
u(m), θ (m)), Pmφ

)∣∣ =
∣∣(B1

(
u(m), θ (m)),φ(m))∣∣

≤ ∥∥u(m)∥∥
L3

∥∥∇u(m)∥∥∥∥φ(m)∥∥
L6 +

∥∥θ (m)∥∥
L3

∥∥∇θ (m)∥∥∥∥φ(m)∥∥
L6

≤ C
(∥∥u(m)∥∥

1
2
∥∥u(m)∥∥

3
2
1 +

∥∥θ (m)∥∥
1
2
∥∥u(m)∥∥

3
2
1

)∥∥θ (m)∥∥
1, (3.7)
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where Pmφ(m) = φ(m). Because of the uniform bound for ‖u(m)‖ and the bound for ‖u(m)‖1,
we obtain

{
B1

(
u(m), θ (m))} is bounded in L

4
3
(
0, T ; V ∗).

Similarly,

{
B2

(
u(m), θ (m))} is bounded in L

4
3
(
0, T ; V ∗).

Therefore,

{(
u(m))′,

(
θ (m))′} is bounded in L

4
3
(
0, T ; V ∗).

The rest of the proof of is similar to the arguments in Constantin and Foias [26] and thus
further details are omitted. This completes the proof Theorem 3.1. �

4 The strong solutions
This section studies the local well-posedness of the strong solution of (1.1)–(1.5) corre-
sponding to an initial data (u0, θ0) ∈ V , and its higher regularities. Let (u0, θ0 ∈ V and let
(u(m), θ (m)) be the Galerkin approximation constructed in the previous section. To obtain
regularity estimates for (u(m), θ (m)), we set ωm = ∇ × u(m).

Theorem 4.1 Let (u0, θ0) ∈ V , then we have T∗ > 0, depending on ν, k, and the H1-norm
of (u0, θ0) only such that (1.1)–(1.5) has a unique strong solution (u, θ ) on [0, T∗) satisfying

(u, θ ) ∈ L2(0, T ; W ) ∩ C
(
0, T∗; V

)

(
u′, θ ′) ∈ L2(0, T ; V ),

for any T ∈ (0, T∗). In addition, the energy equation

d
dt

(‖ω‖2 + ‖∇θ‖2) +
∫

∂Ω

βu · u ds + 2
(
ν‖�u‖2 + k

∥∥∇2θ
∥∥2)

+ 2
((∇ × B1(u, θ ),ω

)
+

(∇B2(u, θ ),∇θ
))

= 0

holds where ω = ∇ × u.

Proof Taking the curl of (3.4), taking the grad of (3.5), we can obtain the following system:

(
ω(m))′ – νω(m) + Σg1

j ∇ × ej = 0, (4.1)
(∇θ (m))′ – k�∇θ (m) + Σg2

j ∇ej = 0, (4.2)

ω(m)(0) = ∇ × u(m)
0 ,

where we recall that g1
j satisfies

∑m
j=1 g1

j ej = PmB1(u(m), θ (m)). Taking the inner product
((4.1),ω(m)) + ((4.2),∇θ (m)) and noting that

(∇ × ei,∇ × ej) = λj(ei, ej),
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we obtain

d
dt

(∥∥ω(m)∥∥2 +
∥∥∇θ (m)∥∥2) +

∫

∂Ω

βu(m) · u(m) ds

+ 2
(
ν
∥∥∇ × ω(m)∥∥2 + k

∥∥∇2θ (m)∥∥2)

+ 2
((∇ × B1

(
u(m), θ (m)),ω(m)) +

(∇B2
(
u(m), θ (m)),∇θ (m))) = 0. (4.3)

Applying the Agmon inequality

‖φ‖L∞ ≤ ‖φ‖ 1
2
1 ‖φ‖ 1

2
2 , ∀φ ∈ H2,

we find

(∇ × B1
(
u(m), θ (m)),ω(m)) ≤ C

∥∥ω(m)∥∥
3
2
∥∥ω(m)∥∥

3
2
1 +

∥∥∇θ (m)∥∥∥∥ω(m)∥∥,
(∇B2

(
u(m), θ (m)),∇θ (m)) ≤ C

∥∥ω(m)∥∥∥∥∇θ (m)∥∥
1
2
∥∥∇2θ (m)∥∥

3
2
1 ,

and

d
dt

(∥∥ω(m)∥∥2 +
∥∥∇θ (m)∥∥2 +

∫

∂Ω

βu(m) · u(m) ds
)

+ 2
(
ν
∥∥�u(m)∥∥2 + k

∥∥∇2θ (m)∥∥2)

≤ C
(∥∥ω(m)∥∥ +

∥∥∇θ (m)∥∥)6 +
∥∥ω(m)∥∥2 +

∥∥∇θ (m)∥∥2,

where C depends on ν, k. Comparing with the ordinary equation

d
dt

y = Cy3, (4.4)

we find that there exists a time T0 > 0, such that, for any fixed T ∈ (0, T0),

(
u(m), θ (m)) is bounded in L∞(

0, T ; H1),
(
u(m), θ (m)) is bounded in L2(0, T ; H2).

Note that

∥∥Pm(u × v)
∥∥ ≤ C‖u‖L∞‖v‖,

it follows that

{(
u(m))′},

{(
θ (m))′} is bounded in L2(0, T ; L2).

The standard compactness results allow us to find a subsequence of (u(m), θ (m)) and (u, θ )
such that

(
u(m), θ (m)) → (u, θ ) ∈ L∞(

0, T ; H1) weak-star,
(
u(m), θ (m)) → (u, θ ) ∈ L2(0, T ; H2) weakly,
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(
u(m), θ (m)) → (u, θ ) ∈ L2(0, T ; H1) strongly.

Passing to the limit, we find the weak solution obtained in the previous section may be
chosen such that (u, θ ) ∈ L∞(0, T ; H1)∩L2(0, T ; H2). We find (u′, θ ′) ∈ L2(0, T ; L2) and thus
(u, θ ) ∈ C([0, T]; H1). We call such a solution a strong solution.

To show that strong solutions are unique, we consider two strong solutions (u1, θ1) and
(u2, θ2). Then their difference ũ = u1 – u2, θ̃ = θ1 – θ2 satisfies

∂t ũ – ν�ũ + B1(u1, θ1) – B1(u2, θ2) = 0, (4.5)

∂t θ̃ – k�θ̃ + B2(u1, θ1) – B2(u2, θ2) = 0. (4.6)

Taking the inner products ((4.5), ũ) + ((4.6), θ̃ ), we find

d
dt

(‖̃u‖2 + ‖θ̃‖2) ≤ g(t)
(‖̃u‖2 + ‖θ̃‖2) (4.7)

on [0, T] for some positive integrable function g(t). Then, u1 = u2, θ1 = θ2 follows from
ũ(0) = 0, θ̃ (0) = 0 and the Gronwall inequality. From the standard extension method of
time evolution, we complete the proof of Theorem 4.1. �

5 The vanishing viscosity limit
This section focuses on the vanishing viscosity limit of the Boussinesq equations. We start
with the following uniform bound estimate.

Proposition 5.1 Let u0, θ0 ∈ H2(Ω). Then there is a T0 depending on ‖(u0, θ0)‖H2 such
that the strong solution u = u(ν, k), θ = θ (ν, k) of the system (1.1)–(1.5) with the initial data
u0, θ0 obeys the following bound:

∥∥u(·, t)
∥∥

1 +
∥∥θ (·, t)

∥∥
1 ≤ C, for t ∈ [0, T0],

where C is a constant independent of ν and k.

Proof Using the Hölder inequality and the Young inequality, we have

(∇ × B1(u, θ ),ω
)

+
(∇B2(u, θ ),∇θ

)

≤ ‖∇ × ω‖ 3
2 ‖ω‖ 3

2 + ‖ω‖2 + ‖∇θ‖2 + ‖∇u‖∥∥∇2θ
∥∥

3
2 ‖∇θ‖ 1

2

≤ ν

2
‖∇ × ω‖2 + C‖ω‖2 + C‖∇θ‖2 +

κ

2
∥∥∇2θ

∥∥2. (5.1)

According to Theorems 4.1, thus, we can obtain T(ν,κ) ≥ T0 for all ν,κ > 0. This com-
pletes the proof of Proposition 5.1. �

Theorem 5.2 Let (u0, θ0) ∈ W . Let there exist a positive T0 > 0 and u = u(ν, k), θ = θ (ν, k),
the corresponding strong solution of the Boussinesq equations (1.1)–(1.5). Then, as ν, k → 0,
(u, θ ) converges to the unique solution (u0, θ0) of the ideal Boussinesq equations with the
same initial data in the sense that

(
u(ν, k), θ (ν, k)

) → (
u0, θ0) in L2(0, T ; W ),
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(
u(ν, k), θ (ν, k)

) → (
u0, θ0) in C(0, T ; X).

Proof It follows from Proposition 5.1 that

u(ν, k), θ (ν, k) is uniformly bounded in L2(0, T0; W ) ∩ C
(
0, T∗; V

)
,

u′(ν, k), θ ′(ν, k) is uniformly bounded in L2(0, T ; X),

for all ν, k > 0. By the standard compactness result, there is a subsequence νn, kn of ν, k and
vector functions u0, θ0 such that

(
u(νn, kn), θ (νn, kn)

) → (
u0, θ0) in L2(0, T ; V ),

(
u(νn, kn), θ (νn, kn)

) → (
u0, θ0) in C(0, T ; X).

As νn, kn → 0, passing to the limit, we find the limit (u0, θ0) solves the following limit
equations:

∂tu0 + u0 · ∇u0 + ∇p = θ0e3, in Ω ,

∂tθ
0 + u0 · ∇θ0 = 0, in Ω ,

∇ · u0 = 0, in Ω ,

with the slip boundary condition,

∇ · u0 = 0, u0 · n = 0, on ∂Ω ,

and p satisfies

�p = ∇ · (θ0e3 – u0 · ∇u0), ∇p · n =
(
θ0e3 – u0 · ∇u0) · n.

As in the proof of the uniqueness of the strong solutions of the Boussinesq equations in
the previous section, we can show that (u0, θ0) is unique. Then we show the convergence
of whole sequence. �

Finally, we present the convergence rate.

Theorem 5.3 Let (u0, θ0) ∈ V satisfy the assumptions state in Theorems 4.1, and (u0, θ0)
be the solution of the ideal Boussinesq equations on (0, T0) with (u0(0) = u0, θ0(0) = θ0),
and (u, θ ) = (u(ν,κ), θ (ν,κ)) be the solution of the viscous Boussinesq equations (1.1)–(1.5).
Then

∣∣u(ν,κ) – u0∥∥2 +
∥∥θ (ν,κ) – θ0∥∥2 +

∫ T0

0
ν
∥∥u(ν,κ) – u0∥∥2

1 + κ
∥∥θ (ν,κ) – θ0∥∥2

1

≤ C(T0)
(
ν2–s + κ2–s),

where s ∈ (0, 1), t ∈ [0, T0].
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Proof Denote ũ = u(ν,κ) – u0, θ̃ = θ (ν,κ) – θ0. We find that

∂t ũ – ν�ũ + B1(u, θ ) – B1
(
u0, θ0) = ν�u0, (5.2)

∂t θ̃ – κ�θ̃ + B2(u, θ ) – B2
(
u0, θ0) = κ�θ0, (5.3)

∇ · ũ = 0, ũ · n = 0.

Taking the L2 inner product of (5.2) with ũ, and (5.3) with θ̃ , integrating by parts, one can
obtain

d
dt

(‖̃u‖2 + ‖θ̃‖2) + 2
(
ν‖∇ × ũ‖2 + κ‖∇ θ̃‖2)

+ 2
(
B1(u, θ ) – B1

(
u0, θ0) – ν�u0, ũ

)
+ 2

(
B2(u, θ ) – B2

(
u0, θ0) – κθ0, θ̃

)

+ 2ν

∫

∂Ω

n × (∇ × ũ)̃u ds + 2κ

∫

∂Ω

n · (∇ θ̃ )θ̃ ds

≤ ν2 + ‖̃u‖2 + κ2 + ‖θ̃‖2. (5.4)

By using the trace theorem

ν

∫

∂Ω

n × (∇ũ)̃u ds = ν

∫

∂Ω

n × ∇ × (
u – u0)ũ ds

= ν

∫

∂Ω

(
βũ + βu0 – n × ∇ × u0)ũ ds ≤ ν

∫

∂Ω

|̃u|2 + |̃u|2 ds

≤ ν‖∇u‖‖u‖ + ν
(‖∇ × ũ‖2 + ‖̃u‖2) + ν2–s. (5.5)

Similarly,

∣∣∣∣κ
∫

∂Ω

n · (∇ θ̃ )θ̃ ds
∣∣∣∣ =

∣∣∣∣κ
∫

∂Ω

n · ∇(
θ – θ0)θ̃ ds

∣∣∣∣

=
∣∣∣∣κ

∫

∂Ω

n · (∇θ0)θ̃ ds
∣∣∣∣

≤ κ

∫

∂Ω

|θ̃ |ds ≤ κ
(‖∇ θ̃‖2 + ‖θ̃‖) + κ2–s, (5.6)

for any s ∈ (0, 1). Also note that

∣∣(ν�u0, ũ
)∣∣ ≤ cν2 + ‖̃u‖2,

∣∣(κ�θ0, θ̃
)∣∣ ≤ cκ2 + ‖θ̃‖2. (5.7)

Because H1 ↪→ L6 and ‖u‖L3 ≤ ‖u‖ 1
2 ‖u‖ 1

2
2 , by calculation we have

∣∣∣∣

∫ T0

0

(
B1(u, θ ) – B1

(
u0, θ0), ũ

)
dt

∣∣∣∣ ≤ C
(

‖θ̃‖2 +
∥∥̃u|2∥∥ +

∫ T0

0
‖̃u‖2 + ‖θ̃‖2 dt

)
, (5.8)

∣∣∣∣

∫ T0

0

(
B2(u, θ ) – B2

(
u0, θ0), θ̃

)
dt

∣∣∣∣ ≤ C
(

‖θ̃‖2 +
∥∥̃u|2∥∥ +

∫ T0

0
‖̃u‖2 + ‖θ̃‖2 dt

)
. (5.9)

Collecting these estimates (5.4)–(5.9), by the Gronwall inequality, we can complete the
proof. �
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