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Abstract
The present paper deals with non-real eigenvalues of regular nonlocal indefinite
Sturm–Liouville problems. The existence of non-real eigenvalues of indefinite
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1 Introduction
Consider the regular nonlocal indefinite Sturm–Liouville differential equation

–y′′(x) + q(x)y(x) +
∫ 1

–1
K(x, t)y(t) dt = λw(x)y(x) in L2

|w|[–1, 1] (1.1)

associated to suitable boundary conditions, where λ is the spectral parameter, q ∈ L1[–1, 1]
is called the local potential, K(x, t) = K(t, x) is called the nonlocal potential, the weight
function w ∈ L1[–1, 1] changes its sign on [–1, 1] in the sense that mes{x ∈ [–1, 1] : w(x) >
0} and mes{x ∈ [–1, 1] : w(x) < 0} have a positive Lebesgue measure and L2

|w| := L2
|w|[–1, 1]

is the weighted Hilbert space of all Lebesgue measurable, complex-valued functions f on
[–1, 1] satisfying

∫ 1
–1 |w||f |2 < ∞ with the inner product (f , g)|w| =

∫ 1
–1 |w|f g and the norm

‖f ‖2
|w| =

∫ 1
–1 |w||f |2. Such a problem (1.1) is called indefinite.

If w(x) > 0 a.e. x ∈ [–1, 1], models similar to the nonlocal differential equation (1.1) ap-
pear in quantum mechanics, diffusion processes, point interactions, voltage-driven elec-
trical systems and have been studied in [2, 15, 27]. In the case where q ≡ 0, w ≡ 1 and
K(x, t) = v(x)u(t), v, u ∈ C([–1, 1],R) in (1.1), the authors in [12] investigate the reality of
eigenvalues with Dirichlet boundary conditions. For the case

K(x, t) = v(x)δ(t – c) + v(t)δ(x – c), c ∈ (–1, 1], (1.2)

where v ∈ L2([–1, 1],C), δ is Dirac’s distribution, the inverse spectral problems for various
nonlocal operators were studied in [1, 19, 20] and the references cited therein.
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The nonlocal indefinite Sturm–Liouville problems have attracted a lot of attention in re-
cent years since the diversity and complexity of biomathematics models, transport mod-
els, population dynamic systems and microwave propagation problems. Such nonlocal
problems also played an important role in reaction–diffusion problems and quantum-
mechanical theory. For the case K(x, t) in (1.2) with suitable boundary conditions, the
spectral problems which including the change rule of (non-)left-definiteness for the lo-
cal case under the nonlocal perturbations, the equivalence of non-left-definite and the
finiteness of non-real eigenvalues of nonlocal indefinite Sturm–Liouville equation (1.1)
have been studied in [26]. The (local) indefinite Sturm–Liouville problem, i.e., K(x, t) = 0
in (1.1) with self-adjoint boundary conditions, has discrete, real eigenvalues unbounded
from both below and above, and may also admit non-real eigenvalues (see [3, 16, 18,
29]). The indefinite nature was noticed by Haupt [13], Richardson [24] at the beginning of
the last century and has attracted a lot of attention in recent years. Determining a priori
bounds and determining the exact number of non-real eigenvalues are an interesting and
difficult problems in Sturm–Liouville theory. Recently, these open problems have been
solved by Qi et al., [4, 14, 21, 28] for the regular (local) indefinite problem and by Behrndt
et al., [5–9, 25] for the singular case, respectively.

In the present paper, we firstly obtain the existence of the nonlocal indefinite differential
equation (1.1) with self-adjoint boundary conditions by means of the operator theory in
Krein spaces and the symmetry conditions. In the case of the equation with a nonlocal
point interference potential function (Dirac distribution), we derive an equation without
Dirac’s distribution but with a nonlocal boundary condition. Then we study the estimates
on the upper bounds of non-real eigenvalues for this nonlocal indefinite Sturm–Liouville
problem.

The arrangement of this paper is as follows: Sect. 2 is devoted to the existence of non-
real eigenvalues for the nonlocal indefinite Sturm–Liouville equation (1.1) associated with
self-adjoint separated boundary conditions (see Theorem 2.2). In Sect. 3, we obtain the
nonlocal indefinite Sturm–Liouville problem through the Dirac distribution in (1.2), then
the upper bounds of non-real eigenvalues in terms of q, v, w are shown (see Theorems 4.1
and 4.2) in Sect. 4.

2 Existence of non-real eigenvalues
In this section we prove the existence of non-real eigenvalues for the nonlocal indefinite
eigenvalue problem

⎧⎨
⎩

τky := –y′′(x) + q(x)y(x) +
∫ 1

–1 K(x, t)y(t) dt = λw(x)y(x),

Bky = 0 : y(–1) = 0, y′(1) = 0,
(2.1)

where w changes sign on [–1, 1] satisfying

w(x) �= 0 a.e. x ∈ [–1, 1], q, w ∈ L1([–1, 1],R
)

and K ∈ L1([–1, 1]2,R
)
. (2.2)

To this end, we need the following lemma.

Lemma 2.1 If w ∈ L1([–1, 1],R) and |w(x)| > 0 a.e. on [–1, 1], then the eigenvalue problems
τky = λ|w|y, Bky = 0 and τky = λy, Bky = 0 have the same number of negative eigenvalues.
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Proof Let S̃k and S̃ be the operator associated to

τky = λ|w|y, Bky = 0 and τky = λy, Bky = 0,

where D(S̃k) = {y ∈ L2
|w| : y, y′ ∈ ACloc, τky/|w| ∈ L2

|w|,Bky = 0} and D(S̃) = {y ∈ L2 : y, y′ ∈
ACloc, τky ∈ L2,Bky = 0}, respectively. Note that D(S̃k) = D(S̃), one sees that for every
y ∈ D(S̃k), (S̃ky, y)|w| = (S̃y, y)L2 . It follows from the Min–Max principle for self-adjoint op-
erators [23, Theorem XIII.1, p. 76] that

μn = sup
g1,...,gn–1

inf
f ∈[g1,...,gn–1]⊥

{
(Sf , f )|w|
(f , f )|w|

: f �= 0, f ∈ D(S)
}

and that the negative eigenvalues are dependent only on the quadratic form of operator
(Sf , f )|w|. Hence S̃k and S̃ have the same number of negative eigenvalues, which completes
the proof of Lemma 2.1. �

In what follows, we impose the symmetry conditions on q, K and w, namely,

q(x) = q(–x), K(x, t) = K(–x, t), w(–x) = –w(x) (2.3)

to prove the existence of non-real eigenvalues of (2.1). It follows from the hypothesis on
q, K , w in (2.2) and the symmetry conditions (2.3) that if λ ∈ C is an eigenvalue of the
problem (2.1) and φ is the corresponding eigenfunction, then –λ is also an eigenvalue of
(2.1) with eigenfunction φ(–·). Let K̃ = (L2

|w|, [·, ·]w) be the Krein space equipped with the
indefinite inner product [f , g]w =

∫ 1
–1 wf g, f , g ∈ L2

|w| and T the self-adjoint operator in K̃
(cf. [10, 11]) defined as

Ty =
1
w

τky, y ∈ D(T) =
{

y ∈ L2
|w| : y, y′ ∈ ACloc[–1, 1], τky/|w| ∈ L2

|w|,Bky = 0
}

.

We say that the self-adjoint operator T has k negative squares, k ∈ N0, if there exists a
k-dimensional subspace X of K̃ in D(T) such that [Tf , f ] < 0, f ∈ X, f �= 0, but no (k + 1)-
dimensional subspace with this property.

Applying the above results and the spectral theory of operators in K̃ spaces, we will
prove the existence of non-real eigenvalues of (2.1) by the method given in [21].

Theorem 2.2 Let (2.2) and (2.3) hold. If the eigenvalue problem

–y′′(x) + q(x)y(x) +
∫ 1

–1
K(x, t)y(t) dt = λy(x), Bky = 0, (2.4)

has one negative eigenvalue and the remaining eigenvalues are all positive, then the nonlo-
cal indefinite Sturm–Liouville problem (2.1) has two non-real eigenvalues.

Proof Let Tk and Sk be the operators of the nonlocal indefinite Sturm–Liouville prob-
lem (2.1) and nonlocal right-definite Sturm–Liouville problem τky = λ|w|y, Bky = 0, re-
spectively. Then Tk and Sk are self-adjoint under the indefinite inner product [·, ·]w and
the definite inner product (·, ·)|w|, respectively. This together with Lemma 2.1 and the
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assumption in Theorem 2.2 shows that Sk has one negative eigenvalue and the rest are
all positive, therefore, Tk has exactly one negative square because of [Tkf , f ]w = (Skf , f )|w|
and 0 is a resolvent point of Tk . It follows from [11, Proposition 1.5] that there exists ex-
actly one eigenvalue λ of (2.1) in R or the upper half-plane C and if this eigenvalue λ ∈R

then there exists an eigenfunction φ with λ[φ,φ]w ≤ 0. Let λ ∈ R be such an eigenvalue
with eigenfunction φ, then –λ = –λ is also an eigenvalue with the eigenfunction φ(–·) and
–λ[φ(–·),φ(–·)]w = λ[φ,φ]w ≤ 0 through the symmetry in (2.3). Hence we get two eigen-
values, which is a contradiction. If λ ∈C

+, then –λ ∈C
+, which implies that λ = –λ, i.e., λ

is purely imaginary. The proof is finished. �

3 Nonlocal Sturm–Liouville problems with distribution coefficients
Let the kernel K(x, t) in (1.2) be given in the form

K(x, t) = v(x)δ(t – c) + v(t)δ(x – c), c ∈ (–1, 1], (3.1)

where v ∈ L1([–1, 1],R) and δ is Dirac’s distribution. For every continuous function f on
[–1, 1], the Dirac delta distribution at point c is defined by

∫ 1

–1
δ(x – c)f (x) dx =

⎧⎨
⎩

f (c), c ∈ [–1, 1],

0, c /∈ [–1, 1].
(3.2)

In this case, a solution of (1.1) is understood in the sense that a function y ∈ AC[–1, 1],
y′ ∈ AC([–1, c) ∪ (c, 1]) such that y′(c ± 0) exist and the equation holds almost everywhere.
For c = 1, we use y′(1) instead of y′(1 + 0). It follows from (3.1), (3.2) and the continuity of
the solution y that (1.1) takes the form

–y′′(x) + q(x)y(x) + v(x)y(c) + δ(x – c)
∫ 1

–1
v(t)y(t) dt = λw(x)y(x) (3.3)

for a.e. x ∈ [–1, 1]. For x ∈ [–1, 1] and x �= c, the equation has the form

–y′′(x) + q(x)y(x) + v(x)y(c) = λw(x)y(x) a.e. x ∈ [–1, 1].

Integrating both sides of (3.3) on the interval [c – ε, c + ε] for arbitrary ε > 0, then

y′(c – ε) – y′(c + ε) +
∫ 1

–1
v(t)y(t) dt =

∫ c+ε

c–ε

((
λw(x) – q(x)

)
y(x) – v(x)y(c)

)
dx.

Let ε → 0, one sees that y′(c – 0) – y′(c + 0) +
∫ 1

–1 v(x)y(x) dx = 0. Then y satisfies

⎧⎨
⎩

–y′′(x) + q(x)y(x) + v(x)y(c) = λw(x)y(x) a.e. x ∈ [–1, 1], x �= c,

y′(c – 0) – y′(c + 0) +
∫ 1

–1 v(x)y(x) dx = 0.
(3.4)

If the boundary condition is given in the form y(–1) = 0, y′(1) = 0 for (1.1) and let c = 1,
then from (3.4) we see that the nonlocal indefinite eigenvalue problem takes the form

⎧⎨
⎩

–y′′(x) + q(x)y(x) + v(x)y(1) = λw(x)y(x),

y(–1) = 0, y′(1 – 0) +
∫ 1

–1 v(x)y(x) dx = 0.
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The authors in [1, 19] investigate the eigenvalue problem with q ≡ 0, w ≡ 1. For simplicity,
we will write y′(1) instead of y′(1 – 0) in the following discussion.

4 A priori bounds of non-real eigenvalues
Consider the nonlocal indefinite Sturm–Liouville problem

⎧⎨
⎩

τy := –y′′(x) + q(x)y(x) + v(x)y(1) = λw(x)y(x),

By = 0 : y(–1) = 0, y′(1) +
∫ 1

–1 v(x)y(x) dx = 0,
(4.1)

where q, v, w are real-valued functions satisfying the standard conditions

w(x) �= 0 a.e. x ∈ [–1, 1], q, v, w ∈ L1[–1, 1]. (4.2)

The operator S associated to the nonlocal right-definite problem

–y′′(x) + q(x)y(x) + v(x)y(1) = λ
∣∣w(x)

∣∣y(x), By = 0, (4.3)

is defined as Sy = 1
|w|τy for y ∈ D(S), where

D(S) =
{

y ∈ L2
|w| : y, y′ ∈ ACloc[–1, 1], τy/|w| ∈ L2

|w|,By = 0
}

.

It follows from [22] that S is a self-adjoint operator in the Hilbert space (L2
|w|, (·, ·)|w|) and

its spectrum consists of real eigenvalues, which are bounded from below.
To simplify our statements, let ‖ · ‖p be the Lp[–1, 1]-norm, 1 ≤ p < ∞, ‖ · ‖∞ be the

L∞[–1, 1]-norm and

Nq,v = 1 + 8
(‖q–‖1 + 8‖v‖2

1
)
, q– = max{–q, 0},‖q‖1 =

∫ 1

–1
|q|,‖v‖1 =

∫ 1

–1
|v|. (4.4)

If xw(x) > 0 a.e. on [–1, 1], we can choose ε > 0 such that

Ω(ε) =
{

x ∈ [–1, 1] : xw(x) < ε
}

, m(ε) = mesΩ ≤ 1
4Nq,v

. (4.5)

Since w2(x) > 0 a.e. on [–1, 1], we can choose η > 0 such that

Ω̃(η) =
{

x ∈ [–1, 1] : w2(x) < η
}

, m(η) = mes Ω̃ ≤ 1
4Nq,v

. (4.6)

A point at x which the weight function w(x) changes its sign will be called a turning point
[16]. If w(x) has only one turning point, we can obtain the following a priori bounds on
the non-real eigenvalues.

Theorem 4.1 Assume that xw(x) > 0 a.e. on [–1, 1] and (4.2) holds, then, for any possible
non-real eigenvalue λ of problem (4.1), we have

|λ| ≤ 2
ε

(√
Nq,v + 4Nq,v

(‖q–‖1 + 2‖v‖1
))

, | Imλ| ≤ 2
ε

(√
Nq,v + 8Nq,v‖v‖1

)
, (4.7)

where ε > 0 and q–, Nq,v are defined in (4.5) and (4.4), respectively.
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If w(x) is allowed to have more than one turning point, we will obtain the following
results.

Theorem 4.2 Assume that w ∈ AC[–1, 1], w′ ∈ L2[–1, 1] and (4.2) holds, then, for any non-
real eigenvalue λ of problem (4.1), we have

|λ| ≤ 2
η

(‖w‖∞Nq,v
(
1 + 2‖q–‖1 + 4‖v‖1

)
+ Λ

√
Nq,v

)
,

| Imλ| ≤ 2
η

(
4‖w‖∞‖v‖1Nq,v + Λ

√
Nq,v

)
,

(4.8)

where Λ = (
∫ 1

–1 |w′|2) 1
2 , η > 0 and q–, Nq,v are defined in (4.6) and (4.4), respectively.

In order to prove Theorems 4.1 and 4.2, we first introduce some concepts and prepare
some lemmas (cf. [17]). Let f be a real-valued function defined on the closed, bounded
interval [a, b] and � : a = x0 < x1 < · · · < xn – 1 < xn = b be a partition of [a, b]. We define
the variation of f with respect to � by

Var� =
n∑

i=1

∣∣f (xi) – f (xi–1)
∣∣,

and the total variation of f on [a, b] by

b∨
a

(f ) = sup
{
Var� : � is an any partition of [a, b]

}
.

A real-valued function f is said to be of bounded variation on the closed, bounded interval
[a, b] if

∨b
a(f ) < ∞.

Lemma 4.3 (cf. [14, Lemma 2] and [17, Lemma 5.2.2, p. 246]) Let g be of bounded variation
over all of [a, b], that is, g satisfies the inequality

∫ x
a |dg(x)| < ∞. Then for all x ∈ (a, b] and

for every δ > 0 there exists a ρ = ρ(δ, x) > 0 such that

∫ x

a

∣∣f (t)
∣∣2∣∣dg(t)

∣∣ ≤ ρ(δ, x)
∫ x

a

∣∣f (t)
∣∣2 dt + δ

∫ x

a

∣∣f ′(t)
∣∣2 dt, (4.9)

where

ρ(δ, x) =
1

x – a
+

c
δ

, c =
∫ b

a

∣∣dg(x)
∣∣.

Lemma 4.4 Let q, v ∈ L1[–1, 1] and φ ∈ D(T). Then

∫ 1

–1

∣∣q– +
√

2ε‖v‖1|v|
∣∣|φ|2 ≤

(
1
2

+
‖q–‖1 +

√
2ε‖v‖2

1
δ

)∫ 1

–1
|φ|2 + δ

∫ 1

–1

∣∣φ′∣∣2. (4.10)
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Proof Replacing f (t) and g(t) by φ(t) and
∫ t

–1(q–(x) +
√

2ε‖v‖1|v(x)|) dx in Lemma 4.3, re-
spectively, then

∫ x

–1

∣∣dg(t)
∣∣ =

∫ x

–1

∣∣∣∣d
(∫ t

–1

(
q–(x) +

√
2ε‖v‖1

∣∣v(x)
∣∣)dx

)∣∣∣∣
=

∫ x

–1

∣∣q–(t) +
√

2ε‖v‖1
∣∣v(t)

∣∣∣∣dt ≤ ‖q–‖1 +
√

2ε‖v‖2
1 < ∞.

Using this result in (4.9), one sees that (4.10) holds immediately. �

The following lemma presents estimates of ‖φ′‖2 and ‖φ‖∞, where φ is an eigenfunction
of (4.1) corresponding to a non-real eigenvalue λ. That is, Bφ = 0 and

–φ′′ + qφ + vφ(1) = λwφ. (4.11)

Since the problem (4.1) is a linear system and φ is continuous, we can choose φ to satisfy∫ 1
–1 |φ(x)|2 dx = 1 in the following discussion.

Lemma 4.5 Let λ, φ be defined as above and Nq,v in (4.4). Then

∥∥φ′∥∥2
2 ≤ Nq,v, ‖φ‖2

∞ ≤ 2Nq,v.

Proof Multiplying both sides of (4.11) by φ and integrating by parts over the interval
[–1, 1], then from Bφ = 0 we have

λ

∫ 1

–1
w|φ|2 =

∫ 1

–1

∣∣φ′∣∣2 +
∫ 1

–1
q|φ|2 + 2 Re

∫ 1

–1
vφφ(1).

This together with Imλ �= 0 yields
∫ 1

–1 w|φ|2 = 0 and hence

∫ 1

–1

∣∣φ′∣∣2 +
∫ 1

–1
q|φ|2 + 2 Re

∫ 1

–1
vφφ(1) = 0. (4.12)

It follows from Lemma 4.4 and φ(1) =
∫ 1

–1 φ′(t) dt that

∫ 1

–1
q–|φ|2 + 2

∫ 1

–1
|v||φ|∣∣φ(1)

∣∣

≤
∫ 1

–1
q–|φ|2 + 2

√
2
(∫ 1

–1
|v|

) 1
2
(∫ 1

–1
|v||φ|2

) 1
2
(∫ 1

–1

∣∣φ′∣∣2
) 1

2

≤
∫ 1

–1

(
q–|φ|2 +

√
2ε‖v‖1|v||φ|2) +

√
2

ε

∫ 1

–1

∣∣φ′∣∣2

≤
(

1
2

+
‖q–‖1 +

√
2ε‖v‖2

1
δ

)∫ 1

–1
|φ|2 + δ

∫ 1

–1

∣∣φ′∣∣2 +
√

2
ε

∫ 1

–1

∣∣φ′∣∣2.

Setting ε = 4
√

2 and δ = 1/4,

∫ 1

–1
q–|φ|2 + 2

∫ 1

–1
|v||φ|∣∣φ(1)

∣∣ ≤ 1
2

+ 4
(‖q–‖1 + 8‖v‖2

1
)

+
1
2

∫ 1

–1

∣∣φ′∣∣2. (4.13)
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Therefore, (4.12), (4.13) and q = q+ – q–, q± = max{0,±q} lead us to

∫ 1

–1

∣∣φ′∣∣2 =
∫ 1

–1
q–|φ|2 –

∫ 1

–1
q+|φ|2 – 2 Re

∫ 1

–1
vφφ(1)

≤
∫ 1

–1
q–|φ|2 + 2

∫ 1

–1
|v||φ|∣∣φ(1)

∣∣ ≤ 1
2

+ 4
(‖q–‖1 + 8‖v‖2

1
)

+
1
2

∫ 1

–1

∣∣φ′∣∣2,

and hence

∫ 1

–1

∣∣φ′∣∣2 ≤ Nq,v, (4.14)

where Nq,v is defined in (4.4). Note that φ(x) =
∫ x

–1 φ′(t) dt by φ(–1) = 0, from the Cauchy–
Schwarz inequality one sees that

∣∣φ(x)
∣∣2 =

∣∣∣∣
∫ x

–1
φ′(t) dt

∣∣∣∣
2

≤ 2
∫ 1

–1

∣∣φ′(t)
∣∣2 dt,

which together with (4.14) implies that

‖φ‖2
∞ ≤ 2

∫ 1

–1

∣∣φ′(t)
∣∣2 dt ≤ 2Nq,v.

The proof of Lemma 4.5 is complete. �

With the aid of the above results we prove the main results of this section.

Proof of Theorem 4.1 Multiplying both sides of (4.11) by φ and integrating on [x, 1], we
have

λ

∫ 1

x
w|φ|2 = φ′φ +

∫ 1

–1
vφφ(1) +

∫ 1

x

(∣∣φ′∣∣2 + q|φ|2 + vφφ(1)
)
. (4.15)

Separating the imaginary parts yields

Imλ

∫ 1

x
w|φ|2 = Im

(
φ′φ

)
+ Im

∫ 1

–1
vφφ(1) + Im

∫ 1

x
vφφ(1). (4.16)

It follows from
∫ 1

–1 w|φ|2 = 0, (4.5) and Lemma 4.5 that

∫ 1

–1

∫ 1

x
w(t)

∣∣φ(t)
∣∣2 dt dx =

∫ 1

–1
xw(x)

∣∣φ(x)
∣∣2 dx

≥ ε

(∫ 1

–1

∣∣φ(x)
∣∣2 dx –

∫
Ω(ε)

∣∣φ(x)
∣∣2 dx

)

≥ ε
[
1 – m(ε)‖φ‖2

∞
] ≥ ε

2
. (4.17)
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Then integrating (4.16) and using (4.17), Lemma 4.5, the Schwarz inequality, we have

ε

2
| Imλ| ≤ | Imλ|

∫ 1

–1

∫ 1

x
w(t)

∣∣φ(t)
∣∣2 dt dx

≤
∣∣∣∣
∫ 1

–1
Im

(
φ′(x)φ(x) +

∫ 1

–1
v(t)φ(t)φ(1) dt +

∫ 1

x
v(t)φ(t)φ(1) dt

)
dx

∣∣∣∣

≤
∫ 1

–1

∣∣φ′(x)
∣∣∣∣φ(x)

∣∣dx + 2
∫ 1

–1

∣∣v(x)
∣∣∣∣φ(x)

∣∣∣∣φ(1)
∣∣dx

+ 2
∫ 1

–1

∣∣v(x)
∣∣∣∣φ(x)

∣∣∣∣φ(1)
∣∣dx

≤ √
Nq,v + 4‖φ‖∞‖v‖1 ≤ √

Nq,v + 8Nq,v‖v‖1. (4.18)

Set q+(x) = max{0, q(x)}, then |q| = q + 2q–, these facts with (4.12) lead us to

∣∣∣∣
∫ 1

–1

∫ 1

x

(∣∣φ′(t)
∣∣2 + q(t)

∣∣φ(t)
∣∣2)dt dx +

∫ 1

–1

(∫ 1

–1
v(t)φ(t)φ(1) dt

+
∫ 1

x
v(t)φ(t)φ(1) dt

)
dx

∣∣∣∣

=
∣∣∣∣
∫ 1

–1
(x + 1)

(∣∣φ′(x)
∣∣2 + q(x)

∣∣φ(x)
∣∣2)dx + 2

∫ 1

–1
v(x)φ(x)φ(1) dx

+
∫ 1

–1
(x + 1)

(
v(x)φ(x)φ(1)

)
dx

∣∣∣∣

≤
∫ 1

–1

∣∣φ′(x)
∣∣2 dx +

∫ 1

–1

(
q(x) + 2q–(x)

)∣∣φ(x)
∣∣2 dx +

∫ 1

–1
2
∣∣v(x)

∣∣∣∣φ(x)
∣∣∣∣φ(1)

∣∣dx

=
∫ 1

–1
2q–(x)

∣∣φ(x)
∣∣2 dx –

∫ 1

–1
2 Re

(
v(x)φ(x)φ(1)

)
dx +

∫ 1

–1
2
∣∣v(x)

∣∣∣∣φ(x)
∣∣∣∣φ(1)

∣∣dx

≤
∫ 1

–1
2q–(x)

∣∣φ(x)
∣∣2 dx + 4

∫ 1

–1

∣∣v(x)
∣∣∣∣φ(x)

∣∣∣∣φ(1)
∣∣dx ≤ 2‖q–‖1‖φ‖2

∞ + 4‖v‖1‖φ‖2
∞,

which, together with the integration of (4.15), Lemma 4.5 and the Cauchy–Schwarz in-
equality implies that

ε

2
|λ| ≤ |λ|

∫ 1

–1

∫ 1

x
w(t)

∣∣φ(t)
∣∣2 dt dx

≤
∣∣∣∣
∫ 1

–1
φ′(x)φ(x) dx +

∫ 1

–1

∫ 1

–1
v(t)φ(t)φ(1) dt dx

+
∫ 1

–1

∫ 1

x

(∣∣φ′(t)
∣∣2 + q(t)

∣∣φ(t)
∣∣2 + v(t)φ(t)φ(1)

)
dt dx

∣∣∣∣
≤ ∥∥φ′∥∥

2 + 2‖q–‖1‖φ‖2
∞ + 4‖v‖1‖φ‖2

∞

≤ √
Nq,v + 4‖q–‖1Nq,v + 8‖v‖1Nq,v. (4.19)

So the inequalities in (4.7) can be obtained through (4.19) and (4.18) immediately. �
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Proof of Theorem 4.2 Multiplying both sides of (4.11) by wφ and integrating by parts on
[–1, 1], we have from Bφ = 0

λ

∫ 1

–1
w2|φ|2 =

∫ 1

–1

(
w

∣∣φ′∣∣2 + wq|φ|2) +
∫ 1

–1
w′φ′φ

+
∫ 1

–1

(
wvφφ(1) + w(1)vφφ(1)

)
. (4.20)

Separating the imaginary parts of (4.20) implies

Imλ

∫ 1

–1
w2|φ|2 =

∫ 1

–1
Im

(
w′φ′φ + wvφφ(1) + w(1)vφφ(1)

)
. (4.21)

It follows from w′ ∈ L2[–1, 1], Λ = (
∫ 1

–1 |w′|2)1/2, Lemma 4.5 and the Cauchy–Schwarz in-
equality that

∣∣∣∣
∫ 1

–1
w′φ′φ

∣∣∣∣ ≤ ‖φ‖∞
(∫ 1

–1

∣∣w′∣∣2
)1/2(∫ 1

–1

∣∣φ′∣∣2
)1/2

≤ Λ
√

Nq,v. (4.22)

Using q, v ∈ L1[–1, 1] and Lemma 4.5, one sees that

∣∣∣∣
∫ 1

–1

(
wvφφ(1) + w(1)vφφ(1)

)∣∣∣∣ ≤ 2‖w‖∞‖φ‖2
∞

∫ 1

–1
|v| ≤ 4‖w‖∞Nq,v‖v‖1, (4.23)

∣∣∣∣
∫ 1

–1

(
w

∣∣φ′∣∣2 + wq|φ|2)
∣∣∣∣ ≤ ‖w‖∞

(∫ 1

–1

∣∣φ′∣∣2 + ‖φ‖2
∞

∫ 1

–1
|q|

)

≤ ‖w‖∞Nq,v
(
1 + 2‖q‖1

)
. (4.24)

Recall the definition of η in (4.6),

∫ 1

–1
w2|φ|2 ≥ η

(∫ 1

–1
|φ|2 –

∫
Ω̃(η)

|φ|2
)

≥ η
(
1 – m(η)‖φ‖2

∞
) ≥ η

2
, (4.25)

which together with (4.21), (4.22) and (4.23) yields

| Imλ|η
2

≤ | Imλ|
∫ 1

–1
w2|φ|2 ≤ (

4‖w‖∞‖v‖1Nq,v + Λ
√

Nq,v
)
. (4.26)

The facts (4.20), (4.22), (4.23), (4.24) and (4.25) show

|λ|η
2

≤ |λ|
∫ 1

–1
w2|φ|2 ≤ (‖w‖∞Nq,v

(
1 + 2‖q–‖1 + 4‖v‖1

)
+ Λ

√
Nq,v

)
. (4.27)

As a result, (4.27) and (4.26) yields the inequalities in (4.8). �

5 Conclusion
Nonlocal boundary value problems have attracted lots of attention for the wide applica-
tions in various fields. In this paper, non-real eigenvalues of regular nonlocal indefinite
Sturm–Liouville problems are considered. The existence of non-real eigenvalues of an
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indefinite Sturm–Liouville differential equation is studied. Furthermore, a priori upper
bounds of non-real eigenvalues for a class of indefinite differential equation involving non-
local point interference potential function is obtained. These results are of both theoretical
and practical significance.
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