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1 Introduction
Considerable attention has been devoted to fractional and non-local operators of elliptic
type in recent years, both for their interesting theoretical structure and in view of concrete
applications, like flame propagation, chemical reactions of liquids, population dynamics,
geophysical fluid dynamics, and American options; see [3, 7, 19, 20] and the references
therein.

In this paper we consider the following critical problem:

(P)γ

⎧
⎨

⎩

(–�)su = λu + |u|p–2u + γ g(x) in Ω ,

u = 0 in R
N \ Ω ,

(1.1)

where s ∈ (0, 1) is fixed and (–�)s is the fractional Laplace operator, Ω ⊂ R
N (N > 2s) is a

smooth bounded domain, p = 2∗
s := 2N

N–2s , g ∈ C0(Ω), g(x) ≥ 0 a.e. in Ω and g(x) �≡ 0 in Ω ,
λ ≥ 0, γ > 0 are some given constants.

We are interested in the existence of positive solutions of (P)γ since it exhibits many
interesting existence phenomena which are related to some lack of compactness of the
corresponding energy functional (see (1.2)). It is worth noting here that the problem (P)γ ,
with λ = 0, γ = 0, has no positive solution whenever Ω is a star-shaped domain; see [6,
11]. This fact motivates the perturbation terms λu and γ g(x), in our work. Servadei and
Valdinoci [14, 15], and Tan [17] studied problem (P)γ with γ = 0 and obtained Brezis–
Nirenberg type results. An interesting problem is whether the existence phenomena still
remain true if we give (P)γ with γ = 0 a lower order homogeneous perturbation in the
sense limu→0

f (x,u)
up–1 = 0 and f (x, 0) = 0. The existence results have been obtained in [14,
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15] for the fractional Laplace operator, and [8] for the fractional p-Laplace operator. We
consider here the nonhomogeneous perturbation case. Note that problem (P)γ in the local
case s = 1 has been investigated in [4, 18].

The fractional Laplace operator (–�)s (up to normalization factors) may be defined as

–(–�)su(x) =
∫

RN

(
u(x + y) + u(x – y) – 2u(x)

)
K(y) dy, x ∈R

N ,

where K(x) = |x|–(N+2s), x ∈ R
N . We will denote by Hs(RN ) the usual fractional Sobolev

space endowed with the so-called Gagliardo norm,

‖u‖Hs(RN ) = ‖u‖L2(RN ) +
(∫

R2N

∣
∣u(x) – u(y)

∣
∣2K(x – y) dx dy

)1/2

,

while X0 is the function space defined as

X0 =
{

u ∈ Hs(
R

N)
: u = 0 a.e. in R

N \ Ω
}

.

We refer to [9, 12, 13] for a general definition of X0 and its properties. The embedding
X0 ↪→ Lq(Ω) is continuous for any q ∈ [1, 2∗

s ] and compact for any q ∈ [1, 2∗
s ). The space

X0 is endowed with the norm defined as

‖u‖X0 =
(∫

R2N

∣
∣u(x) – u(y)

∣
∣2K(x – y) dx dy

)1/2

.

By Lemma 5.1 in [12] we have C2
0(Ω) ⊂ X0. Thus X0 is non-empty. Note that (X0,‖ · ‖X0 )

is a Hilbert space with scalar product

(u, v)X0 =
∫

R2N

(
u(x) – u(y)

)(
v(x) – v(y)

)
dx dy.

We say that u ∈ X0 is a weak solution of (1.1) if the identity

∫

R2N

(
u(x) – u(y)

)(
ϕ(x) – ϕ(y)

)
K(x – y) dx dy

= λ

∫

Ω

uϕ dx +
∫

Ω

|u|p–2uϕ dx + γ

∫

Ω

gϕ dx

holds for all ϕ ∈ X0.
We consider the energy functional associated with (1.1)

I(u) =
1
2

∫

R2N

∣
∣u(x) – u(y)

∣
∣2K(x – y) dx dy –

1
2
λ

∫

Ω

u2 dx

–
1
p

∫

Ω

|u|p dx – γ

∫

gu dx. (1.2)

The critical points of the functional I correspond to weak solutions of (1.1).
Let λ1 be the first eigenvalue of (–�)s on X0. Our main results are as follows.
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Theorem 1.1 For λ ∈ [0,λ1) there exists a positive constant γ ∗ such that (P)γ admits a
positive minimal solution for all γ ∈ (0,γ ∗] and admits no positive solution for γ > γ ∗.

We prove Theorem 1.1 by the method of monotonic iteration, also known as the super
and subsolution method, which is a basic tool in nonlinear partial differential equations.
In this paper, we discuss a fractional Laplace operator version of this method compared
with second order linear or quasilinear elliptic operator. With respect to the classical case
of the Laplacian, here some estimates are more delicate, due to the non-local nature of the
operator (–�)s.

Theorem 1.2 For λ ∈ [0,λ1), γ ∈ (0,γ ∗), where γ ∗ is the one in Theorem 1.1, problem (P)γ
admits at least two positive solutions.

In order to prove Theorem 1.2, we adapt the variational approach used in [1] to the
non-local framework (see also [15]).

This paper is organized as follows. In Sect. 2 we prove the existence of the first solution
of (P)γ by the method of monotonic iteration. In Sect. 3 we prove the existence of the
second solution of (P)γ by variational methods. We denote by | · |p the Lp(Ω)-norm for
any p > 1, respectively.

2 Existence of the first positive solution
In this section we prove existence of the first solution of (P)γ by the method of monotonic
iteration.

Definition 1 We say that u ∈ X0 is a weak supersolution of problem (P)γ if
∫

R2N

(
u(x) – u(y)

)(
ϕ(x) – ϕ(y)

)
K(x – y) dx dy

≥ λ

∫

Ω

uϕ dx +
∫

Ω

|u|p–2uϕ dx + γ

∫

Ω

gϕ dx

for any ϕ ∈ X0, ϕ ≥ 0 a.e. in Ω .

Definition 2 We say that u ∈ X0 is a weak subsolution of problem (P)γ if
∫

R2N

(
u(x) – u(y)

)(
ϕ(x) – ϕ(y)

)
K(x – y) dx dy

≤ λ

∫

Ω

uϕ dx +
∫

Ω

|u|p–2uϕ dx + γ

∫

Ω

gϕ dx

for any ϕ ∈ X0, ϕ ≥ 0 a.e. in Ω .

Let λ1 be the first eigenvalue of (–�)s on X0 with φ1 ≥ 0 the corresponding normalized
eigenfunction; see Proposition 9 in [13]. We show φ1 > 0 in Ω . By Proposition 4 in [14],
φ1 ∈ L∞(Ω). Furthermore, by Proposition 1.1 in [10], φ1 ∈ Cs(RN ). Assume by contra-
diction that there exists x0 ∈ Ω such that φ1(x0) = 0. It follows from the definition of the
fractional Laplace (–�)s that

0 > –
∫

RN

(
φ1(x0 + y) + φ1(x0 – y) – 2φ1(x0)

)
K(y) dy = λ1φ1(x0) = 0,

we get a contradiction. Thus, φ1 > 0 in Ω .
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Lemma 2.1 For λ ∈ [0,λ1) there exists a constant γ̂ > 0 such that (P)γ has no positive
solution for γ > γ̂ .

Proof Taking C1 = mint≥0[tp–1 – (λ1 – λ)t] we get

tp–1 ≥ [λ1 – λ]t + C1, ∀t ≥ 0. (2.1)

Multiplying (1.1) by φ1 and integrating on Ω we get
∫

R2N

(
u(x) – u(y)

)(
φ1(x) – φ1(y)

)
K(x – y) dx dy

= λ

∫

Ω

uφ1 dx +
∫

Ω

up–1φ1 dx + γ

∫

Ω

gφ1 dx.

Consequently,

λ1

∫

Ω

uφ1 dx = λ

∫

Ω

uφ1 dx +
∫

Ω

up–1φ1 dx + γ

∫

Ω

gφ1 dx.

Hence from (2.1) we have

γ ≤ γ̂ :=
–C1

∫

Ω
φ1 dx

∫

Ω
gφ1 dx

. �

Lemma 2.2 Let u1, u2 ∈ X0 be supersolutions of (Pγ ). Then u1 ∧ u2 := min{u1, u2} is a su-
persolution of (Pγ ). Similarly, if v1, v2 ∈ X0 are subsolutions of (Pγ ), then so is v1 ∨ v2 :=
max{v1, v2}.

Proof By density results for X0, there exists a sequence {wn} ⊂ C∞(Ω) such that wn →
w := u1 – u2 in X0. It follows that wn(x) → w(x) for a.e. x ∈ Ω .

Let η ∈ C∞(R) be a nondecreasing function such that (i) 0 ≤ η(t) ≤ 1; (ii) η(t) = 0 for
t ≤ 0, η(t) = 1 for t ≥ 1. Set ηn(t) = η(nt). Then ηn(t) = 0 for t ≤ 0, ηn(t) = 1 for t ≥ 1

n .
Now for any nonnegative function ϕ ∈ C∞

0 (Ω) we define

ψ1,n = (1 – ηn ◦ wn)ϕ, ψ2,n = (ηn ◦ wn)ϕ,

where ηn ◦ wn denotes the composition of wn and gn. Of course, ψ1,n,ψ2,n ≥ 0 and ϕ =
ψ1,n + ψ2,n. Since u1, u2 are supersolutions of (P)γ , we have

∫

R2N

(
ui(x) – ui(y)

)[
ψi,n(x) – ψi,n(y)

]
K(x – y) dx dy

≥ λ

∫

Ω

uiψi,n dx +
∫

Ω

|ui|p–2uiψi,n dx + γ

∫

Ω

gψi,n dx,

for i = 1, 2. It follows that
∫

R2N

(
u1(x) – u1(y)

){[
1 – ηn

(
wn(x)

)]
ϕ(x) –

[
1 – ηn

(
wn(y)

)]
ϕ(y)

}
K(x – y) dx dy

≥ λ

∫

Ω

u1(x)
[
1 – ηn

(
wn(x)

)]
ϕ(x) dx +

∫

Ω

|u1|p–2u1
[
1 – ηn

(
wn(x)

)]
ϕ(x) dx

+ γ

∫

Ω

g
[
1 – ηn

(
wn(x)

)]
ϕ(x) dx (2.2)
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and
∫

R2N

(
u2(x) – u2(y)

){
ηn

(
wn(x)

)
ϕ(x) – ηn

(
wn(y)

)
ϕ(y)

}
K(x – y) dx dy

≥ λ

∫

Ω

u2(x)ηn
(
wn(x)

)
ϕ(x) dx +

∫

Ω

|u2|p–2u2ηn
(
wn(x)

)
ϕ(x) dx

+ γ

∫

Ω

gηn
(
wn(x)

)
ϕ(x) dx. (2.3)

For a.e. x ∈ Ω1 := {x ∈ Ω : u1(x) > u2(x)}, w(x) > 0 and hence ηn(wn(x)) → 1 for a.e. x ∈ Ω1.
Similarly, ηn(wn(x)) → 0 for a.e. x ∈ Ω2 := {x ∈ Ω : u1(x) < u2(x)}. Adding (2.2) and (2.3),
we have

∫

R2N

[
u2(x) – u2(y) –

(
u1(x) – u1(y)

)]{
ηn

(
wn(x)

)
ϕ(x) – ηn

(
wn(y)

)
ϕ(y)

}
K(x – y) dx dy

+
∫

R2N

(
u1(x) – u1(y)

)(
ϕ(x) – ϕ(y)

)
K(x – y) dx dy

≥ λ

∫

Ω

u1(x)ϕ(x) dx + λ

∫

Ω

[
u2(x) – u1(x)

]
ηn

(
wn(x)

)
ϕ(x) dx +

∫

Ω

|u1|p–2u1ϕ dx

+
∫

Ω

[|u2|p–2u2 – |u1|p–2u1
]
ηn

(
wn(x)

)
ϕ(x) dx + γ

∫

Ω

gϕ(x) dx. (2.4)

Define

A1 :=
{

(x, y) ∈R
2N : w(x) > 0, w(y) > 0

}
, A2 :=

{
(x, y) ∈ R

2N : w(x) > 0, w(y) ≤ 0
}

,

A3 :=
{

(x, y) ∈R
2N : w(x) ≤ 0, w(y) > 0

}
, A4 :=

{
(x, y) ∈R

2N : w(x) ≤ 0, w(y) ≤ 0
}

.

By the dominated convergence theorem, we find, as n → ∞,

∫

R2N

[
u2(x) – u2(y) –

(
u1(x) – u1(y)

)]{
ηn

(
wn(x)

)
ϕ(x) – ηn

(
wn(y)

)
ϕ(y)

}
K(x – y) dx dy

+
∫

R2N

(
u1(x) – u1(y)

)(
ϕ(x) – ϕ(y)

)
K(x – y) dx dy

→
∫

A1

[
u2(x) – u2(y) –

(
u1(x) – u1(y)

)](
ϕ(x) – ϕ(y)

)
K(x – y) dx dy

+
∫

A2

[
u2(x) – u2(y) –

(
u1(x) – u1(y)

)]
ϕ(x)K(x – y) dx dy

–
∫

A3

[
u2(x) – u2(y) –

(
u1(x) – u1(y)

)]
ϕ(y)K(x – y) dx dy

+
∫

R2N

(
u1(x) – u1(y)

)(
ϕ(x) – ϕ(y)

)
K(x – y) dx dy

=
∫

A1∪A4

[
(u1 ∧ u2)(x) – (u1 ∧ u2)(y)

][
ϕ(x) – ϕ(y)

]
K(x – y) dx dy

+
∫

A2

[
u2(x) – u2(y) –

(
u1(x) – u1(y)

)]
ϕ(x)K(x – y) dx dy

–
∫

A3

[
u2(x) – u2(y) –

(
u1(x) – u1(y)

)]
ϕ(y)K(x – y) dx dy
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+
∫

A2∪A3

(
u1(x) – u1(y)

)(
ϕ(x) – ϕ(y)

)
K(x – y) dx dy

≤
∫

A1∪A4

[
(u1 ∧ u2)(x) – (u1 ∧ u2)(y)

][
ϕ(x) – ϕ(y)

]
K(x – y) dx dy

+
∫

A2

[
(u1 ∧ u2)(x) – (u1 ∧ u2)(y)

][
ϕ(x) – ϕ(y)

]
K(x – y) dx dy

+
∫

A3

[
(u1 ∧ u2)(x) – (u1 ∧ u2)(y)

][
ϕ(x) – ϕ(y)

]
K(x – y) dx dy

=
∫

R2N

[
(u1 ∧ u2)(x) – (u1 ∧ u2)(y)

][
ϕ(x) – ϕ(y)

]
K(x – y) dx dy.

Similarly, as n → ∞,

λ

∫

Ω

u1(x)ϕ(x) dx + λ

∫

Ω

[
u2(x) – u1(x)

]
ηn

(
wn(x)

)
ϕ(x) dx → λ

∫

Ω

(u1 ∧ u2)(x)ϕ(x) dx

and

∫

Ω

|u1|p–2u1ϕ dx +
∫

Ω

[|u2|p–2u2 – |u1|p–2u1
]
ηn

(
wn(x)

)
ϕ(x) dx

→
∫

Ω

|u1 ∧ u2|p–2(u1 ∧ u2)ϕ dx.

Thus, by (2.4), we obtain

∫

R2N

[
(u1 ∧ u2)(x) – (u1 ∧ u2)(y)

](
ϕ(x) – ϕ(y)

)
K(x – y) dx dy

≥ λ

∫

Ω

(u1 ∧ u2)ϕ dx +
∫

Ω

|u1 ∧ u2|p–2(u1 ∧ u2)ϕ dx + γ

∫

Ω

gϕ dx

for any ϕ ∈ C∞
0 (Ω) with ϕ ≥ 0. Since C∞

0 (Ω) is dense in X0, for any ϕ ∈ X0 with ϕ ≥ 0, we
can find ϕn ∈ C∞

0 such that ϕn → ϕ in the X0 norm. This completes the proof. �

Remark 2.3 Lemma 2.2 is valid for the following second order quasilinear elliptic operator
in divergence form:

N∑

i=1

Di
(
Ai

(
x, u(x), Du(x)

))
,

where Ai (i = 1, . . . , N ) satisfies some conditions; see [5] for more details.

Lemma 2.4 For any λ ∈ [0,λ1) problem (P)γ admits at least one positive solutions which
is a minimum of all solutions if γ is small enough.

Proof Set

ε =
1
2

(λ1 – λ)1/(p–2)

maxx∈Ω φ1(x)
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and

ρ =
infx∈supp g{[λ1 – λ]εφ1 – (εφ1)p–1}

supx∈Ω g(x)
,

where supp g denotes the closure of {x ∈ Ω|g(x) �= 0}. It is easy to verify that u = εφ1 is a
supersolution of (P)γ if γ ≤ ρ and u = 0 is a subsolution of (P)γ for all γ ≥ 0.

Now let u0 = u, and then given un inductively define un+1 to be the unique weak solution
of linear boundary value problem

⎧
⎨

⎩

(–�)sun+1 = λun + |un|p–2un + γ g in Ω ,

un+1 = 0 in R
N \ Ω .

(2.5)

Similarly let w0 = u, and then given wn inductively define wn+1 to be the unique weak so-
lution of linear boundary value problem

⎧
⎨

⎩

(–�)swn+1 = λwn + |wn|p–2wn + γ g in Ω ,

wn+1 = 0 in R
N \ Ω .

(2.6)

Claim 1. u = u0 ≤ u1 ≤ w1 ≤ w0 = u.
From (2.5) we deduce

∫

R2N

(
u1(x) – u1(y)

)(
ϕ(x) – ϕ(y)

)
K(x – y) dx dy = γ

∫

Ω

gϕ dx, ∀ϕ ∈ X0. (2.7)

Similarly from (2.6) we have

∫

R2N

(
w1(x) – w1(y)

)(
ϕ(x) – ϕ(y)

)
K(x – y) dx dy

= λ

∫

Ω

uϕ dx +
∫

Ω

up–1ϕ dx + γ

∫

Ω

gϕ dx, ∀ϕ ∈ X0. (2.8)

Subtract (2.8) from (2.7) and set ϕ = (u1 – w1)+. We obtain
∫

R2N

[
ψ1(x) – ψ1(y)

][
ψ+

1 (x) – ψ+
1 (y)

]
K(x – y) dx dy ≤ 0, (2.9)

where ψ1(x) = u1(x) – w1(x), for all x ∈ R
N . It is easy to see that

[
ψ1(x) – ψ1(y)

][
ψ+

1 (x) – ψ+
1 (y)

] ≥ ∣
∣ψ+(x) – ψ+(y)

∣
∣2, ∀x, y ∈R

N .

So, by (2.9),

ψ+
1 (x) – ψ+

1 (y) = 0, ∀x, y ∈R
N .

Then, ψ+
1 (x) = 0 for all x ∈ R

N since ψ(x) = 0 for any x ∈ R
N \ Ω . So ψ1 ≤ 0 and u1 ≤ w1

a.e. in Ω .
Similarly, by the definition of supersolution and subsolution, (2.5) and (2.6) we can prove

u0 ≤ u1 and w1 ≤ w0.
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Claim 2. un ≤ un+1 ≤ wn+1 ≤ wn a.e. in Ω , ∀n = 0, 1, 2, . . . .
Claim 2 obviously holds for n = 0. Assume for induction that

un–1 ≤ un ≤ wn ≤ wn–1 a.e. in Ω .

From (2.5) and (2.6) we have

∫

R2N

(
un+1(x) – un+1(y)

)(
ϕ(x) – ϕ(y)

)
K(x – y) dx dy

= λ

∫

Ω

unϕ dx +
∫

Ω

up–1
n ϕ dx + γ

∫

Ω

gϕ dx, (2.10)
∫

R2N

(
wn+1(x) – wn+1(y)

)(
ϕ(x) – ϕ(y)

)
K(x – y) dx dy

= λ

∫

Ω

wnϕ dx +
∫

Ω

wp–1
n ϕ dx + γ

∫

Ω

gϕ dx (2.11)

for all ϕ ∈ X0. Subtract (2.11) from (2.10) and set ϕ = (un+1 – wn+1)+. We obtain
∫

R2N

[
ψn+1(x) – ψn+1(y)

][
ψ+

n+1(x) – ψ+
n+1(y)

]
K(x – y) dx dy

= λ

∫

Ω

(un – wn)ψ dx +
∫

Ω

(
up–1

n – wp–1
n

)
ϕ dx ≤ 0,

where ψn+1(x) = un+1(x) – wn+1(x), for all x ∈R
N . Thus un+1 ≤ wn+1 a.e. in Ω . Similarly we

can get un ≤ un+1 and wn+1 ≤ wn.
By Claims 1 and 2 we have

u = u0 ≤ u1 ≤ · · · ≤ un ≤ un+1 ≤ · · · ≤ wn+1 ≤ wn · · · ≤ w1 ≤ w0 = u.

Set

u(x) = lim
n→∞ un(x), w(x) = lim

n→∞ wn(x).

Clearly, u(x) ≤ w(x) a.e. in Ω . Taking ϕ = un+1 in (2.10) we have

∫

R2N

(
un+1(x) – un+1(y)

)2K(x – y) dx dy

= λ

∫

Ω

unun+1 dx +
∫

Ω

up–1
n un+1 dx + γ

∫

Ω

gun+1 dx

≤ λ

∫

Ω

u2 dx +
∫

Ω

up dx + γ

(∫

Ω

g2 dx
)1/2(∫

Ω

u2 dx
)1/2

.

This shows {‖un‖X0} is bounded. So, going if necessary to a subsequence, we can assume
that un ⇀ u in X0. The Lebesgue’s dominated convergence theorem yields

∫

Ω

up–1
n ϕ dx →

∫

Ω

up–1ϕ dx, ∀ϕ ∈ X0

as n → ∞.
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Letting n → ∞ in (2.10) we have

∫

R2N

(
u(x) – u(y)

)(
ϕ(x) – ϕ(y)

)
K(x – y) dx dy

= λ

∫

Ω

uϕ dx +
∫

Ω

up–1ϕ dx + γ

∫

Ω

gϕ dx, ∀ϕ ∈ X0.

Similarly we can verify that w is a weak solution of (P)γ . However, we cannot rule out the
possibility that u and w are the same solution. Note that, since u ≤ εφ1 and φ1 ∈ L∞(Ω),
we get u ∈ L∞(Ω). It is easy to see that u(x) > 0 in Ω .

Next we show that u is a minimal solution. Assume that U is any weak solution of (P)γ .
By Lemma 2.2, U ∧ ū := min{U , ū} is a supersolution of (P)γ . Using the same method of
monotonic iteration we get a positive solution v of (P)γ such that v ≤ U ∧ ū ≤ ū. Using the
same argument as proof of Claim 2 above we obtain

un ≤ v ≤ wn for all n.

Passing to the limit we have

u ≤ v ≤ w.

Consequently, u ≤ v ≤ U . This shows that u is a minimal solution. �

Lemma 2.5 For λ ∈ [0,λ1) there exists a positive constant γ ∗ such that (P)γ has a positive
minimal solution for all γ ∈ (0,γ ∗), and (P)γ has no positive solutions if γ > γ ∗.

Proof Set

γ ∗ = sup
{
γ > 0|(P)γ has at least one positive solution for all γ ∈ (0,γ )

}
.

Lemma 2.1 and Lemma 2.4 imply that γ ∗ is well defined.
For any fixed γ0 ∈ (0,γ ∗), we take δ > 0 such that γ0 + δ < γ ∗. Let uγ0+δ be a positive

solution of (P)γ0+δ . It is easy to verify that 0 is a subsolution and uγ0+δ is a supersolution
of (P)γ0 . Using the same method of monotonic iteration as that in proof of Lemma 2.4 we
find a minimal solution uγ0 of (P)γ0 .

By similar arguments we can show there is no positive solution of (P)γ for any
γ > γ ∗. �

Lemma 2.6 Assume that λ ∈ [0,λ1), γ ∈ (0,γ ∗), where γ ∗ is the one in Lemma 2.5. Let uγ

be the positive minimal solution of (P)γ . Then

τ = inf

{∫

R2N

(
ψ(x) – ψ(y)

)2K(x – y) dx dy – λ

∫

Ω

ψ2 dx
∣
∣
∣ (p – 1)

∫

Ω

up–2
γ ψ2 dx = 1,

ψ ∈ X0

}

(2.12)

can be attained and τ > 1.
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Proof Clearly, 0 ≤ τ < +∞. Let {ψn} ⊂ X0 be a minimizing sequence of (2.12). Then

[λ1 – λ]
∫

Ω

ψ2
n dx ≤

∫

R2N

(
ψn(x) – ψn(y)

)2K(x – y) dx dy – λ

∫

Ω

ψ2
n dx = τ + o(1).

So |ψn|2 is bounded. Since
∫

R2N

(
ψn(x) – ψn(y)

)
K(x – y) dx dy = λ

∫

Ω

ψ2
n dx + τ + o(1),

we see that ‖ψn‖X0 is bounded. Consequently, we may assume that there is a subsequence,
still denoted by ψn, such that

ψn ⇀ ψ0 in X0,

ψn → ψ0 in L2(
R

N)
,

ψn → ψ0 a.e. in R
N .

Hence, as n → ∞,

τ = lim inf
n→∞

[∫

R2N

(
ψn(x) – ψn(y)

)2K(x – y) dx dy – λ

∫

Ω

ψ2
n dx

]

≥
∫

R2N

(
ψ0(x) – ψ0(y)

)2K(x – y) dx dy – λ

∫

Ω

ψ0 dx.

By the Lebesgue dominated convergence theorem, we have

(p – 1)
∫

Ω

up–2
γ ψ2

0 dx = lim
n→∞(p – 1)

∫

Ω

up–2
γ ψ2

n dx = 1.

Hence ψ0 reaches τ . Since

τ ≤
∫

R2N

(∣
∣ψ0(x)

∣
∣ –

∣
∣ψ0(y)

∣
∣
)2K(x – y) dx dy – λ

∫

Ω

|ψ0|2 dx

≤
∫

R2N

(
ψ0(x) – ψ0(y)

)2K(x – y) dx dy – λ

∫

Ω

ψ2
0 dx = τ ,

|ψ0| also achieves τ . So we can assume ψ0 ≥ 0 in Ω . It follows from the Lagrange multiplier
rule that

∫

R2N

(
ψ0(x) – ψ0(y)

)(
ϕ(x) – ϕ(y)

)
K(x – y) dx dy

= λ

∫

Ω

ψ0ϕ dx + τ (p – 1)
∫

Ω

up–2
γ ψ0ϕ dx, ∀ϕ ∈ X0.

We take δ > 0 such that γ + δ < γ ∗. Set u = uγ +δ , where uγ +δ is a positive solution of (P)γ +δ .
Then u is a supersolution of (P)γ . Taking ϕ = u – uγ in the equation above we get

∫

R2N
(ψ0(x) – ψ0(y)

[
(u – uγ )(x) – (u – uγ )(y)

]
dx

= λ

∫

Ω

ψ0(u – uγ ) dx + τ (p – 1)
∫

Ω

up–2
γ ψ0(u – uγ ) dx. (2.13)
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On the other hand, by the definition of u and uγ , we have

λ

∫

Ω

(u – uγ )ψ0 dx +
∫

Ω

[
up–1 – up–1

γ

]
ψ0 dx

≤
∫

R2N
(ψ0(x) – ψ0(y)

[
(u – uγ )(x) – (u – uγ )(y)

]
dx. (2.14)

By (2.13) and (2.14) we have

τ (p – 1)
∫

Ω

up–2
γ (u – uγ )ψ0 dx ≥

∫

Ω

[
up–1 – up–1

γ

]
ψ0 dx

> (p – 1)
∫

Ω

up–2
γ (u – uγ )ψ0 dx.

Hence τ > 1. �

Lemma 2.7 There results

sup
uγ ∈S

‖uγ ‖X0 < ∞,

where

S =
{

uγ |γ ∈ (
0,γ ∗), uγ is the minimal solution of (P)γ

}
.

Proof For any uγ ∈ S , from Lemma 2.6 we get

∫

R2N

(
uγ (x) – uγ (y)

)2K(x – y) dx dy – λ

∫

Ω

u2
γ dx – (p – 1)

∫

Ω

up
γ dx

≥ (τ – 1)(p – 1)
∫

Ω

up
γ dx ≥ 0.

Consequently,
∫

R2N

(
uγ (x) – uγ (y)

)2K(x – y) dx dy ≥ λ

∫

Ω

u2
γ dx + (p – 1)

∫

Ω

up
γ dx. (2.15)

Clearly,
∫

R2N

(
uγ (x) – uγ (y)

)2K(x – y) dx dy = λ

∫

Ω

u2
γ dx +

∫

Ω

up
γ dx + γ

∫

Ω

guγ dx. (2.16)

By (2.15) and (2.16), we have

(p – 2)
[∫

R2N

(
uγ (x) – uγ (y)

)2K(x – y) dx dy – λ

∫

Ω

u2
γ dx

]

≤ (p – 1)γ
∫

Ω

guγ dx. (2.17)

Since
∫

R2N

(
uγ (x) – uγ (y)

)2K(x – y) dx dy – λ

∫

Ω

u2
γ dx ≥ [λ1 – λ]

∫

Ω

u2
γ dx,
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we deduce

∫

Ω

u2
γ dx ≤ (p – 1)γ

(p – 2)[λ1 – λ]

∫

Ω

guγ dx

≤ (p – 1)γ
(p – 2)[λ1 – λ]

[
1

2δ

∫

Ω

g2 dx +
δ

2

∫

Ω

u2
γ dx

]

,

for δ > 0 small enough such that

δ <
2(p – 2)[λ1 – λ]

(p – 1)γ
.

So there exists a positive constant C2 such that

∫

Ω

u2
γ dx ≤ C2, (2.18)

where C2 depends only on λ1, λ, p, γ , and g .
By (2.17) and (2.18) we have

∫

R2N

(
uγ (x) – uγ (y)

)2K(x – y) dx dy ≤ λ

∫

Ω

u2
γ +

(p – 1)γ
p – 2

∫

Ω

guγ dx

≤
[

λ +
(p – 1)γ
2(p – 2)

]∫

Ω

u2
γ dx +

(p – 1)γ
2(p – 2)

∫

Ω

g2 dx

≤
[

λ +
(p – 1)γ ∗

2(p – 2)

]∫

Ω

u2
γ dx +

(p – 1)γ ∗

2(p – 2)

∫

Ω

g2 dx.

So there exists a positive constant C independent of γ such that

‖uγ ‖X0 ≤ C. (2.19)
�

Now we prove Theorem 1.1.

Proof of Theorem 1.1 Assume that γj ↗ γ ∗ and uγj ∈ S . By Lemma 2.7 there is a subse-
quence, still denoted by {uγj}, such that

uγj ⇀ u∗ in X0,

uγj → u∗ in L2(
R

N)
,

uγj → u∗ a.e. in R
N .

It is easy to verify that u∗ is a solution of (P)γ ∗ . Note that 0 is a subsolution of (P)γ for any
γ ≥ 0. So we can use the method of monotone iteration to find a minimal solution. �
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3 Existence of the second positive solution
We introduce the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

(–�)sv = vp–1 + a(x)v + h(x, v) in Ω ,

v > 0 in Ω ,

v = 0 in R
N \ Ω ,

(3.1)

where a(x) = λ + (p – 1)up–2
γ (x), and

h(x, v) =
(
v + uγ (x)

)p–1 – up–1
γ (x) – vp–1 – (p – 1)up–2

γ v.

In order to obtain a second solution of (P)γ it suffices to prove (3.1) has a nontrivial solu-
tion. Thus uγ + v is a second solution of (P)γ .

For problem (3.1), we define the energy functional J : X0 →R as follows:

J(v) =
1
2

∫

R2N

(
v(x) – v(y)

)2K(x – y) dx dy –
1
2

∫

Ω

a(x)
(
v+)2 dx

–
1
p

∫

Ω

(
v+)p dx –

∫

Ω

H
(
x, v+)

dx,

where H(x, v) =
∫ v

0 h(x, t) dt, v+ = max{v, 0} denotes the positive part of v. By the maximum
principle [2, 16], we know that the nontrivial critical points of energy functional J are the
positive solutions of (3.1).

It is easy to see that h satisfies
(i) sup{|h(x, t)| : a.e. x ∈ Ω , t ≤ M} < +∞ for any M > 0;

(ii) limt→0+ h(x,t)
t = 0 uniformly in x ∈ Ω ;

(iii) limt→+∞ h(x,t)
tp–1 = 0 uniformly in x ∈ Ω .

The following theorem is a modification of Theorem 3 in [15].

Theorem 3.1 Let λ ∈ [0,λ1), γ ∈ (0,γ ∗), if there exists some v0 ∈ X0 \ {0} with v0 ≥ 0 a.e.
in R

N , such that

sup
t≥0

J(tv0) <
s
N

S
N
2s
s , (3.2)

then problem (3.1) admits a solution.

Since the proof of Theorem 3.1 is nearly same as that of Theorem 3 in [15] (cf. Theorem
2.1 in [1]), we omit it.

In the following, we shall verify the crucial condition (3.2) holds for λ ∈ [0,λ1), γ ∈
(0,γ ∗). To this end, we need some preliminary results.

Consider the following minimization problem:

Ss := inf
v∈Hs(RN )\{0}

∫

R2N |v(x) – v(y)|2K(x – y) dx dy
(
∫

RN |v|p dx)2/p .

It is well known from [15] that the infimum in the formula above is attained at ũ, where

ũ(x) =
κ

(μ2 + |x – x0|2) N–2s
2

, x ∈ R
N , (3.3)
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with κ > 0, μ > 0 and x0 ∈R
N fixed constants. Equivalently, the function ū defined as

ū =
ũ

‖ũ‖Lp(RN )

is such that

Ss =
∫

R2N

∣
∣ū(x) – ū(y)

∣
∣2K(x – y) dx dy.

The function

u∗(x) = ū
(

x
S1/(2s)

s

)

, x ∈R
N ,

is a solution of

(–�)su = |u|p–2u in R
N . (3.4)

Now, we consider the family of the function Uε defined as

Uε(x) = ε–(N–2s)/2u∗(x/ε), x ∈ R
N ,

for any ε > 0. The function Uε is a solution of problem (3.4) and satisfies

∫

R2N

∣
∣Uε(x) – Uε(y)

∣
∣2K(x – y) dx dy =

∫

RN

∣
∣Uε(x)

∣
∣p dx = SN/(2s)

s . (3.5)

Without loss of generality we may suppose 0 ∈ Ω . Let us fix ρ > 0 such that B4ρ ⊂ Ω and
let η ∈ C∞ be such that 0 ≤ η ≤ 1 in R

N , η(x) = 1 if |x| < ρ ; η(x) = 0 if |x| ≥ 2ρ . For every
ε > 0 we denote by uε the following function:

uε(x) = η(x)Uε(x), x ∈R
N . (3.6)

In what follows we suppose that up to a translation x0 = 0 in (3.3). From [15] we have the
following estimates:

∫

R2N

∣
∣uε(x) – uε(y)

∣
∣2K(x – y) dx dy ≤ SN/(2s)

s + O
(
εN–2s), (3.7)

∫

RN
|uε|p dx = SN/(2s)

s + O
(
εN)

, (3.8)

∫

RN
u2

ε dx ≥

⎧
⎪⎪⎨

⎪⎪⎩

Csε
2s + O(εN–2s), N > 4s,

Csε
2s| ln ε| + O(ε2s), N = 4s,

Csε
N–2s + O(ε2s), N < 4s,

(3.9)

where Cs is a positive constant depending on s.
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Lemma 3.2 Assume that λ ∈ [0,λ1), γ ∈ (0,γ ∗), where γ ∗ is the one in Lemma 2.5. Let uγ

be the positive minimal solution of (P)γ . Then

τ̂ = inf

{∫

R2N

(
ψ(x) – ψ(y)

)2K(x – y) dx dy –
∫

Ω

a(x)ψ2 dx
∣
∣
∣
∣

∫

Ω

ψ2 dx = 1,

ψ ∈ X0(Ω)
}

(3.10)

can be attained and τ̂ > 0.

Proof By Lemma 2.6, we have

∫

R2N

(
ψ(x) – ψ(y)

)2K(x – y) dx dy – λ

∫

Ω

ψ2 dx ≥ τ (p – 1)
∫

Ω

up–2
γ ψ2 dx,

for any ψ ∈ X0,

where τ > 1. So,

∫

R2N

(
ψ(x) – ψ(y)

)2K(x – y) dx dy –
∫

Ω

a(x)ψ2 dx ≥ (τ – 1)(p – 1)
∫

Ω

up–2
γ ψ2 dx,

for any ψ ∈ X0.

Thus, 0 ≤ τ̂ < +∞. Let {ψn} ⊂ X0 be a minimizing sequence of (3.10). Then

∫

R2N

(
ψ(x) – ψ(y)

)2K(x – y) dx dy =
∫

Ω

a(x)ψ2
n dx + τ̂ + o(1),

and
∫

Ω
ψ2

n dx = 1. Since a ∈ L∞(Ω), we have ‖ψn‖X0 is bounded. Consequently, we may
assume that there is a subsequence, still denoted by ψn, such that

ψn ⇀ ψ0 in X0,

ψn → ψ0 in L2(
R

N)
,

ψn → ψ0 a.e. in R
N .

Hence,

τ̂ = lim
n→∞

(∫

R2N

(
ψn(x) – ψn(y)

)2K(x – y) dx dy –
∫

Ω

a(x)ψ2
n dx

)

≥ lim
n→∞(τ – 1)(p – 1)

∫

Ω

up–2
γ ψ2

n dx

= (τ – 1)(p – 1)
∫

Ω

up–2
γ ψ2

0 dx > 0. �

Lemma 3.3 Let uε be given by (3.6). Then there exists a constant tε > 0 such that

sup
t≥0

J(tuε) = J(tεuε) (3.11)
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and

J(tεuε) ≤ s
N

SN/(2s)
s –

1
2
λt2

ε

∫

Ω

u2
ε dx –

∫

Ω

Q(x, tεuε) dx + O
(
εN–2s), (3.12)

where Q(x, v) =
∫ v

0 q(x, t) dt and q(x, t) = (t + uγ (x))p–1 – up–1
γ – tp–1 for t ≥ 0.

Proof Let

ψ(t) = J(tuε)

=
1
2

t2
∫

R2N

(
uε(x) – uε(y)

)2K(x – y) dx dy –
1
2

t2
∫

Ω

a(x)u2
ε dx

–
1
p

tp
∫

Ω

up
ε dx –

∫

Ω

H(x, tuε) dx,

for t ≥ 0. Let

σ (t) =
∫

Ω

H(x, tuε).

Since for every δ > 0 there exists Cδ > 0 such that
∣
∣H(x, t)

∣
∣ ≤ δt2 + Cδ|t|p,

for all t ≥ 0 and for a.e. x ∈ Ω , we have

∣
∣σ (t)

∣
∣ ≤ δt2

∫

Ω

u2
ε dx + Cδtp

∫

Ω

up
ε dx. (3.13)

By Lemma 3.2, there exists τ̂ > 0 such that
∫

R2N

(
uε(x) – uε(y)

)2K(x – y) dx dy –
∫

Ω

a(x)u2
ε dx ≥ τ̂

∫

Ω

u2
ε dx. (3.14)

By (3.13) and (3.14), there exists a constant α > 0 depending on ε such that

ψ(t) = αt2 + o
(
t2) (3.15)

for ε < 1
2 τ̂ as t → 0+.

Next we study ψ for t large. Note that

ψ(t) ≤ 1
2

t2
∫

R2N

(
uε(x) – uε(y)

)2K(x – y) dx dy –
1
p

tp
∫

Ω

up
ε dx

and thus ψ(t) → –∞ as t → +∞. Therefore, we see that there exists tε > 0 such that

sup
t≥0

J(tuε) = J(tεuε).

We show limε→0 tε = 1. Note that for every δ̃ > 0 there exists Cδ̃ such that

∣
∣h(x, t)

∣
∣ ≤ δ̃|t|p–1 + Cδ̃|t|,

∣
∣H(x, t)

∣
∣ ≤ 1

p
δ̃|t|p +

1
2

Cδ̃|t|2 (3.16)

for all t ≥ 0 and for a.e. x ∈ Ω .
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Clearly,

0 =
dψ

dt

∣
∣
∣
∣
t=tε

= tε
∫

R2N

(
uε(x) – uε(y)

)2K(x – y) dx dy – tε
∫

Ω

a(x)u2
ε dx

– tp–1
ε

∫

Ω

up
ε dx –

∫

Ω

h(x, tuε)uε dx. (3.17)

Then, by (3.7) and (3.8), we have

tp–2
ε =

∫

R2N (uε(x) – uε(y))2K(x – y) dx dy – λ
∫

Ω
u2

ε dx – 1
tε

∫

Ω
q(x, tεuε)uε dx

∫

Ω
up

ε dx

≤
∫

R2N (uε(x) – uε(y))2K(x – y) dx dy
∫

Ω
up

ε dx

=
SN/(2s)

s + O(εN–2s)
SN/(2s)

s + O(εN )
= 1 + O

(
εN–2s) as ε → 0. (3.18)

On the other hand, by (3.17) and (3.16), we have

tp–2
ε =

∫

R2N (uε(x) – uε(y))2K(x – y) dx dy –
∫

Ω
a(x)u2

ε dx – 1
tε

∫

Ω
h(x, tεuε)uε dx

∫

Ω
up

ε dx

≥
∫

R2N (uε(x) – uε(y))2K(x – y) dx dy –
∫

Ω
a(x)u2

ε dx –
∫

Ω
(δ̃tp–2

ε up
ε + Cδ̃u2

ε) dx
∫

Ω
up

ε dx

=
∫

R2N (uε(x) – uε(y))2K(x – y) dx dy –
∫

Ω
a(x)u2

ε dx dx
∫

Ω
up

ε dx
– δ̃tp–2

ε – Cδ̃

∫

Ω
u2

ε dx
∫

Ω
up

ε dx
,

consequently, by (3.7)–(3.9), we get

tp–2
ε ≥ 1

1 + δ̃

(∫

R2N (uε(x) – uε(y))2K(x – y) dx dy –
∫

Ω
a(x)u2

ε dx dx
∫

Ω
up

ε dx
– Cδ̃

∫

Ω
u2

ε dx
∫

Ω
up

ε dx

)

→ 1
1 + δ̃

, (3.19)

as ε → 0. Combining (3.18) and (3.19), we have limε→0 tε = 1.
Let

dε =
∫

R2N (uε(x) – uε(y))2K(x – y) dx dy
∫

Ω
up

ε dx
.

Since the function t �→ 1
2 t2 ∫

R2N (uε(x) – uε(y))2K(x – y) dx dy – 1
p tp ∫

Ω
up

ε dx is increasing
on the interval [0, dε], we have, by (3.18),

J(tεuε) ≤ 1
2

d2
ε

∫

R2N

(
uε(x) – uε(y)

)2K(x – y) dx dy –
1
p

dp
ε

∫

Ω

up
ε dx

–
1
2

t2
ε

∫

Ω

a(x)u2
ε dx –

∫

Ω

H(x, tεuε) dx

=
s
N

SN/(2s)
s –

1
2
λt2

ε

∫

Ω

u2
ε dx –

∫

Ω

Q(x, tεuε) dx + O
(
εN–2s). �
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Lemma 3.4 The condition (3.2) holds.

Proof We consider three cases.
Case 1. N > 4s.
By Lemma 3.5 in [4], there exist δ > 0 and T > 0 such that

q(x, t) ≥ tδ for x ∈ B4ρ , t ≥ T .

Taking q̄(t) = Tδχ[T ,+∞)(t), then

q(x, t) ≥ q̄(t) ≥ 0 for x ∈ B4ρ , t ≥ 0, (3.20)

where χ[T ,+∞) denotes the characteristic function of [T , +∞). Thus

Q̄(t) :=
∫ t

0
q̄(s) ds ≥ T1+δ for t ≥ 2T .

Direct computation yields

∫

|x|<ρ

Q̄(tεuε) dx = ωN–1ε
N

∫ ρ/(S1/(2s)ε)

0
Q̄

(

tεAκ

(
ε–1

μ2 + t2

) N–2s
2

)

tN–1 dt, (3.21)

where ωN–1 is the area of SN–1, A = (
∫

RN ũp dx)1/p, κ ,μ > 0 are constants. By (3.20) and
(3.21), we have

1
εN–2s

∫

|x|<ρ

Q(x, tεuε) dx ≥ 1
εN–2s

∫

|x|<ρ

Q̄(tεuε) dx

≥ ωN–1ε
2s

∫ Cε–1/2

0
T1+δtN–1 dt

=
Tδ+1CN

N
ε2s– N

2 ,

where C > 0 is a some constant such that tεAκ( ε–1

μ2+t2 ) N–2s
2 ≥ 2T for all t ≤ Cε–1/2 and ε is

small enough. Thus,

1
εN–2s

∫

|x|<ρ

Q(x, tεuε) dx → +∞

as ε → 0 since N > 4s.
By (3.12), we have

J(tεuε) ≤ s
N

SN/(2s)
s –

1
2
λt2

ε

∫

Ω

u2
ε dx –

∫

Ω

Q(x, tεuε) dx + O
(
εN–2s)

=
s
N

SN/(2s)
s –

1
2
λt2

ε

∫

Ω

u2
ε dx – εN–2s

(
1

εN–2s

∫

|x|<ρ

Q(x, tεuε) dx + O(1)
)

<
s
N

SN/(2s)
s ,

as ε → 0.
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Case 2. N = 4s.
Clearly, p – 1 = N+2s

N–2s = 3. Note that there exists C1 > 0 such that

q(x, t) ≥ C1t for x ∈ B4ρ , t ≥ 0.

Thus,

1
εN–2s

∫

|x|<ρ

Q(x, tεuε) dx

≥ 1
εN–2s ωN–1ε

N
∫ ρ/(S1/(2s)ε)

0

1
2

C1

(

tεAκ

(
ε–1

μ2 + t2

) N–2s
2

)2

tN–1 dt

=
1
2

C1ωN–1(tεAκ)2
∫ ρ/(S1/(2s)ε)

0

1
(μ2 + t2)2s tN–1 dt

≥ 1
2

C1ωN–1(tεAκ)24–s
∫ ρ/(S1/(2s)ε)

ρ/(S1/(2s)ε1/2)

1
t4s t4s–1 dt

=
1

41+s C1ωN–1(tεAκ)2| ln ε| → +∞,

as ε → 0.
By (3.12), we have

J(tεuε) ≤ s
N

SN/(2s)
s –

1
2
λt2

ε

∫

Ω

u2
ε dx –

∫

Ω

Q(x, tεuε) dx + O
(
ε2s)

=
s
N

SN/(2s)
s –

1
2
λt2

ε

∫

Ω

u2
ε dx – εN–2s

(
1

41+s C1ωN–1(tεAκ)2| ln ε| + O(1)
)

<
s
N

SN/(2s)
s ,

as ε → 0.
Case 3. N < 4s.
Clearly, p – 1 = N+2s

N–2s > 3. By Lemma 3.4 in [4], there exists C2 > 0 such that

q(x, t) ≥ C2tp–2 for x ∈ B4ρ , t ≥ 0.

Thus,

1
εN–2s

∫

|x|<ρ

Q(x, tεuε) dx

≥ 1
εN–2s ωN–1ε

N
∫ ρ/(S1/(2s)ε)

0

1
p – 1

C2

(

tεAκ

(
ε–1

μ2 + t2

) N–2s
2

)p–1

tN–1 dt

=
1

p – 1
C2ωN–1(tεAκ)p–1ε– N–2s

2

∫ ρ/(S1/(2s)ε)

0

1
(μ2 + t2) N+2s

2
tN–1 dt

≥ 1
p – 1

C2ωN–1(tεAκ)p–1ε– N–2s
2

∫ 1

0

1
(μ2 + t2) N+2s

2
tN–1 dt → +∞,

as ε → 0.
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By (3.12), we have

J(tεuε) ≤ s
N

SN/(2s)
s –

1
2
λt2

ε

∫

Ω

u2
ε dx –

∫

Ω

Q(x, tεuε) dx + O
(
εN–2s)

=
s
N

SN/(2s)
s –

1
2
λt2

ε

∫

Ω

u2
ε dx – εN–2s

(
1

εN–2s

∫

|x|<ρ

Q(x, tεuε) dx + O(1)
)

<
s
N

SN/(2s)
s ,

as ε → 0. �

Proof of Theorem 1.2 By Lemma 3.3 and Theorem 3.1, we see that problem (3.1) has a
solution v for λ ∈ [0,λ1) and γ ∈ (0,γ ∗). We can obtain the second solution of (P)γ by
taking u = uγ + v. Combining with Lemma 2.5 we complete our proof. �
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