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Abstract
In this paper, we introduce the concept of almost-complete-closed time scales
(ACCTS) that allows independent variables of functions to possess almost-periodicity
under translations. For this new type of time scale, a class of piecewise functions with
double-almost-periodicity is proposed and studied. Based on these, concepts of
weighted pseudo-double-almost-periodic functions (WPDAP) in Banach spaces and a
translation-almost-closed set are introduced. Further, we prove that the function
space WPDAP0 affiliated to WPDAP is a translation-almost-closed set. Then, by
introducing the concept of almost-uniform convergence for piecewise functions on
ACCTS and using measure theory on time scales, some composition theorems of
WPDAP and the completeness of the function space are proved.

MSC: 26E70; 43A60

Keywords: Time scales; Double-almost-periodic functions; Weighted
pseudo-double-almost-periodic; Completeness

1 Introduction
The theory of time scales was initiated by Hilger in 1988 [1] to unify continuous and dis-
crete analysis, especially to combine different types of equations in hybrid domains such
as T = R, T = qN0 := {qt : t ∈N0 for q > 1}, T = qZ := qZ ∪{0}, T = hN and T = N

2, etc. Many
works have been done in this research field (see [2–11]).

In 1927, H. Bohr developed a theory of almost-periodic functions and systems, based
on this theory, almost-periodic phenomena were considered under the background of dy-
namic equations (see [12–15]). Since then, several different types of generalized almost-
periodic functions and their related generalizations were introduced and studied and were
applied to investigate the dynamical behavior of solutions with the properties of these
functions (see [16–23]). Moreover, some important properties such as completeness of the
function spaces and their invariance with respect to weights were established and proved
(see [24–26]). Particularly, to unify the discussion of hybrid domains, the related problems
of dynamic equations on time scales have been studied (see [27–31]). However, these re-
sults are based on the complete-closedness of time scales.

As is well known that most of time scales are almost-complete-closed rather than
complete-closed, which will lead to the fuzziness of time scales, i.e., a time scale may
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approximate itself under a translation, but it will never coincide with itself. Many natu-
ral phenomena are in such a time variable structure, for instance, the time intervals of a
round for a celestial body motion, the time intervals of recurrence of a tidal flood, etc. This
phenomenon will cause a time approximation when almost-periodic problems are con-
sidered (see [32–34]). Hence, it is necessary to introduce and study functions on “almost-
complete-closed” time scales.

Motivated by the above, in this paper, we conduct the further discussion of the al-
most-complete-closed time scales, based on this, we obtain some significant properties of
weighted pseudo-double-almost-periodic functions in a Banach space and establish some
composition theorems.

The organization of this paper is as follows. In Sect. 2, we collect some preliminary re-
sults concerning the theory of time scales and introduce the concept of almost-complete-
closed time scales (ACCTS). Also some basic properties of ACCTS are obtained and some
examples are given. In Sect. 3, we introduce the concept of almost-uniform convergence
of piecewise functions on ACCTS. Then we define piecewise-continuous almost-periodic
functions with double periodicity. Based on this, the concepts of weighted pseudo-double-
almost-periodic functions (WPDAP) in Banach spaces and a translation-almost-closed set
are introduced. Further, we prove that the function space WPDAP0 affiliated to WPDAP

is a translation-almost-closed set. Then, by introducing the concept of almost-uniform
convergence for piecewise functions on ACCTS and using measure theory on time scales,
some composition theorems of WPDAP and the completeness of the function space are
proved.

2 Almost-complete-closed time scales (ACCTS)
Before introducing the concept of almost-complete-closed time scales, the new concept
of periodic time scales from [11] will be renamed as “complete-closed time scales” (CCTS)
here.

Definition 2.1 ([11]) We say T is called a complete-closed time scale (CCTS) if

Π0 :=
{
τ ∈R : Tτ ⊆ T

}
/∈ {{0},∅}

. (2.1)

We say Π0 is the complete-closedness translation number set of CCTS. Furthermore, we
can describe it in detail as follows:

(a) if for any p > 0, there exists a number P > p and P ∈ Π0, we sayT is a positive-direction
CCTS;

(b) if for any q < 0, there exists a number Q < q and Q ∈ Π0, we say T is a negative-
direction CCTS.

(c) if ±τ ∈ Π0, we say T is a bi-direction CCTS;
(d) we say T is an oriented-direction CCTS if T is a positive-direction CCTS or a

negative-direction CCTS.

Example 2.1 Consider the following oriented-direction CCTS:

T1 =
+∞⋃

k=0

[
k(a + b), k(a + b) + a

]
, a, b ≥ 0, a + b > 0,

T2 =
+∞⋃

k=0

[
k(a + b), k(a + b) + a

]
, a, b ≤ 0, a + b < 0.



Wang et al. Boundary Value Problems        (2019) 2019:165 Page 3 of 22

One can observe that T1 is a positive-direction CCTS and T2 is a negative-direction
CCTS with translation number a + b, but they are not invariant under translations of time
scales (i.e., periodic time scales) in the sense of Definition 1.1 from [10] because infT1 =
supT2 = 0.

Remark 2.1 In fact, from [11], one can observe that CCTS can include the concept of
periodic time scales which were first proposed by Kaufmann and Raffoul.

Remark 2.2 From Definition 2.1, if T is a complete-closed time scale, i.e., there exists some
τ 	= 0 such that Tτ ⊆ T (i.e., (Tτ )–τ ⊆ T

–τ ), then one has T ⊆ T
–τ , i.e., T ∩ T

–τ = T, and
vice versa.

According to Remark 2.2, one can obtain the following equivalent definition of CCTS
immediately.

Definition 2.2 We say T is called a complete-closed time scale (CCTS) if

Π̃0 :=
{
τ ∈R : T–τ ∩T = T

}
/∈ {{0},∅}

. (2.2)

We say Π̃0 is the complete-closedness translation number set of CCTS.

Let Π := {τ ∈R : Tτ 	= ∅} 	= {0}, where Tτ = T∩T
τ , Tτ := T + τ = {t + τ : ∀t ∈ T}.

In the following, we provide a lemma to guarantee that one can abstract a complete-
closed time scale from an arbitrary time scale T.

Lemma 2.1 Let Π̃ ⊆ Π and Π̃ /∈ {{0},∅} be closed with respect to additive operation. If
⋂

τ∈Π̃ Tτ /∈ {{0},∅}, then
⋂

τ∈Π̃ Tτ is a complete-closed time scale.

Proof We consider the following family of sets C = {⋂τ∈A Tτ : A ⊂ Π̃}. Let
⋂

τ∈Π̃ Tτ := T0.
Obviously, T0 	= ∅ implies that T0 is the minimal element in the family of sets C , and for
any τ0 ∈ Π̃ , we obtain

T0 ∩T
τ0
0 =

(⋂

τ∈Π̃

Tτ

)
∩

(⋂

τ∈Π̃

Tτ

)τ0

=
(⋂

τ∈Π̃

Tτ

)
∩

(⋂

τ∈Π̃

(
T

τ0 ∩T
τ+τ0

))

=
(⋂

τ∈Π̃

Tτ

)
∩

(⋂

τ∈Π̃

T
τ+τ0

)
∩T

τ0 . (2.3)

Since (Π̃ , +) is closed with respect to additive operation, then Π̃ + τ0 := {τ + τ0 : ∀τ ∈
Π̃} ⊆ Π̃ . Hence, we obtain

⋂
τ∈Π̃ T

τ+τ0 =
⋂

τ∈Π̃+τ0
T

τ ⊇ ⋂
τ∈Π̃ T

τ ⊃ ⋂
τ∈Π̃ Tτ . Obviously,

one can also observe that Tτ0 ⊃ Tτ0 ⊃ ⋂
τ∈Π̃ Tτ , so it follows from (2.3) that T0 ∩ T

τ0
0 =

⋂
τ∈Π̃ Tτ = T0, which implies that

⋂
τ∈Π̃ Tτ is a complete-closed time scale according to

Definition 2.2. This completes the proof. �

From Lemma 2.1, we obtain the following corollary directly.

Corollary 2.1 Let Π̃ ⊆ Π and the pair (Π̃ , +) be an Abelian group. If
⋂

τ∈Π̃ Tτ /∈ {{0},∅},
then

⋂
τ∈Π̃ Tτ is a bi-direction CCTS.
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Example 2.2 Let T = {–2k, 2k + 1, k ∈ N}∪{ 2
3 , 3

4 , n
n+1 , n ∈ Z

+}. For this time scale, we obtain
Π∗ = {Π̃1, Π̃2, Π̃2, Π̃4} ⊂ Π , where

Π̃1 = {2k, k ∈ Z}, Π̃2 =
{

–
2
3

, –
3
4

, –
n

n + 1
, n ∈ Z

+
}

,

Π̃3 =
{

2k, k ∈ Z
+}

, Π̃4 =
{

2k, k ∈ Z
–}

.

We calculate that

⋂

τ∈Π̃1

Tτ =
( ⋂

τ∈Π̃3

Tτ

)
∩

( ⋂

τ∈Π̃4

Tτ

)
= {–2k, k ∈N} ∩ {2k + 1, k ∈N} = ∅,

and Π̃2 is not closed with respect to additive operation. Hence, Π̃1, Π̃2 does not satisfy
Lemma 2.1. Further,

T1∗ :=
⋂

τ∈Π̃3

Tτ = {–2k, k ∈N} /∈ {{0},∅}
,

T2∗ :=
⋂

τ∈Π̃4

Tτ = {2k + 1, k ∈N} /∈ {{0},∅}
,

and Π̃3 and Π̃4 are closed with respect to additive operation, and according to Lemma 2.1,
we obtain

⋂
τ∈Π̃3

Tτ and
⋂

τ∈Π̃4
Tτ are CCTS. In fact, through calculation, for any τ3 ∈ Π̃4

and τ4 ∈ Π̃3, one can easily obtain that Tτ3
1∗ ⊆ T1∗ and T

τ4
2∗ ⊆ T2∗.

Example 2.3 Let T = (
⋃+∞

k=–∞[2k, 2k + 1]) ∪ {2n + 1 + n
n+1 , n ∈ Z

+} ∪ {2n + n
1–n , n ∈ Z

–}. For
this time scale, we obtain Π∗ = {Π̃1, Π̃2, Π̃3} ⊂ Π , where

Π̃1 = {2k, k ∈ Z}, Π̃2 =
{

–2n – 1 –
n

n + 1
, n ∈ Z

+
}

,

Π̃3 =
{

–2n –
n

1 – n
, n ∈ Z

–
}

.

We calculate that

⋂

τ∈Π̃1

Tτ =
+∞⋃

k=–∞
[2k, 2k + 1] /∈ {{0},∅}

,

and Π̃1 is an Abelian group. According to Corollary 2.1,
⋂

τ∈Π̃1
Tτ is a bi-direction CCTS.

In fact, through calculation, we see that
⋂

τ∈Π̃1
Tτ is actually a bi-direction CCTS.

Let τ be a number and Aε
τ be a subset of R, A denotes the closure of the set A, and we

set the time scales:

T :=
⋃

i∈I

[αi,βi], T
τ := T + τ = {t + τ : ∀t ∈ T} :=

⋃

i∈I

[
ατ

i ,βτ
i
]
,

⋃

i∈I

[
α̃τ

i , β̃τ
i
]

= T\Aε
τ ,
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and define the distance between two time scales, T\Aε
τ and T

τ , by

d
(
T\Aε

τ ,Tτ
)

= max
{

sup
i∈I

∣∣α̃τ
i – ατ

i
∣∣, sup

i∈I

∣∣β̃τ
i – βτ

i
∣∣
}

, (2.4)

where I is an infinite index set while

ατ
i := inf

{
α ∈ T

τ : |αi – α|} and βτ
i := inf

{
β ∈ T

τ : |βi – β|},

α̃τ
i := inf

{
α ∈ T\Aε

τ :
∣∣ατ

i – α
∣∣} and β̃τ

i := inf
{
β ∈ T\Aε

τ :
∣∣βτ

i – β
∣∣}.

Definition 2.3 ([33]) We say that T is an almost-complete-closed time scale (ACCTS) if
for any given ε1 > 0, there exist a constant l(ε1) > 0 such that each interval of length l(ε1)
contains a τ (ε1) and sets Aε1

τ such that

d
(
T\Aε1

τ ,Tτ
)

< ε1

i.e., for any ε1 > 0, the following set

E{T, ε1} =
{
τ ∈ Π : d

(
T\Aε1

τ ,Tτ
)

< ε1
}

:= Πε1

is relatively dense in Π . Here, τ is called the ε1-translation number of T, l(ε1) is called
the inclusion length of E{T, ε1}, and E{T, ε1} the ε1-translation set of T, Aε1

τ is called the
ε1-improper set of T, RT(τ , ε1) := T ∩ (

⋃
τ∈Πε1

T–τ\Aε1
–τ ) the ε1-main region of T, where

Aε1
–τ = (Aε1

τ )–τ := {a – τ : a ∈ Aε1
τ }. Furthermore, we can describe it in detail as follows:

(a) if for any p > 0, there exists a number P > p and τ ∈ E{T, ε1} ∩ (P, +∞), then we say
T is a positive-direction ACCTS;

(b) if for any q < 0, there exists a number Q < q and τ ∈ E{T, ε1} ∩ (–∞, Q), then we say
T is a negative-direction ACCTS;

(c) for any p > 0, q < 0, there exist numbers Q < q, P > p and ±τ ∈ E{T, ε1} ∩ ((–∞, Q) ∪
(P, +∞)), then we say T is a bi-direction ACCTS;

(d) we say T is an oriented-direction ACCTS if T is a positive-direction ACCTS or a
negative-direction ACCTS.

Remark 2.3 Definition 2.3 generalizes Definition 2.1. In fact, if we let ε1 → 0 in Defini-
tion 2.3, then there exists A0

τ = T\Tτ such that d(T\A0
τ ,Tτ ) = 0, which implies that Tτ ⊆ T.

In fact, one can observe that if T = T
τ , then the 0-improper set A0

τ = ∅, i.e., T is a bi-
direction CCTS; if Tτ ⊂ T, then A0

τ = T\Tτ 	= ∅, i.e., T is an oriented-direction CCTS.

Next, we provide some sufficient and necessary conditions to guarantee that a time scale
is bi-direction CCTS or ACCTS.

Lemma 2.2 A time scale is a bi-direction CCTS if and only if there exists a 0-improper set
A0

τ such that A0
τ = ∅.

Proof If T is a bi-direction CCTS, then there exists a set Π̃0 = {τ ∈ R : Tτ ∪T
–τ ⊆ T} 	= {0},

soT
τ ⊆ T. For any t ∈ T, we have t –τ ∈ T

–τ ⊆ T, thus, t ∈ T
τ , so we obtainT⊆ T

τ . Hence,
T = T

τ . From Definition 2.3, we can take the 0-improper set A0
τ = T\Tτ = ∅.
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Figure 1 A new inclusion relation of time scales. New inclusion relationship among time scales

From Definition 2.3, if the 0-improper set of T is empty, i.e., A0
τ = ∅, then d(T,Tτ ) = 0

with τ 	= 0, which implies that T = T
τ , so for any t ∈ T, we have t + τ ∈ T

τ = T, i.e., t ∈ T
–τ ,

thus, T ⊆ T
–τ . Furthermore, for any t ∈ T

–τ , we have t + τ ∈ T = T
τ , so t ∈ T, i.e., T–τ ⊆ T.

Hence, T = T
–τ , i.e., T is a bi-direction CCTS. This completes the proof. �

Lemma 2.3 A time scale is an almost-periodic time scale if and only if there exists ε-
improper set Aε

τ such that μ�(Aε
τ ) < ε.

Proof Assume that there exists the ε-improper set of T such that μ�(Aε
τ ) < ε, and we can

take Aε
τ = T\Tτ , then it follows from d(T\Aε

τ ,Tτ ) < ε that d(T,Tτ ) = max{d(T\Aε
τ ,Tτ ),

μ�(Aε
τ )} < ε, i.e., T is an almost-periodic time scale.

If T is an almost-periodic time scale, for any τ ∈ Πε , let Aε
τ = T\Tτ , and we can obtain

μ�(Aε
τ ) ≤ d(T,Tτ ) < ε. This completes the proof. �

Lemma 2.4 A time scale is an oriented-direction ACCTS if and only if there exists a ε-
improper set Aε

τ such that μ�(Aε
τ ) > 0.

Proof If a time scale is ACCTS, from Definition 2.3, we can obtain that μ�(Aε
τ ) ≥ 0. By

Lemma 2.2, one can take A0
τ = ∅ such that μ�(A0

τ ) = 0 if and only if T is bi-direction CCTS.
Hence, there exists an ε-improper set Aε

τ such that μ�(Aε
τ ) > 0 if a time scale is ACCTS.

If there exists an ε-improper set Aε
τ such that μ�(Aε

τ ) > 0, according to Definition 2.3, T
is an oriented-direction ACCTS. This completes the proof. �

Remark 2.4 From the types of time scales introduced in the literature [11], we provide a
new inclusion relation of time scales (see Fig. 1).

3 Weighted piecewise pseudo-double-almost-periodic functions
Throughout this paper, by using the same notations and definitions in Sect. 3 in [33], we
will establish some fundamental results of WPDAP and WPDAP0.

In what follows, we shall assume that T is an almost-complete-closed time scale and
denote by X a Banach space; let B be the set consisting of all sequences {tk}k∈Z such
that θ = infk∈Z(tk+1 – tk) > 0. For {tk}k∈Z ∈ B, let BPCrd(T,X) be the space formed by all
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bounded rd-piecewise continuous functions φ : T → X such that φ(·) is continuous at t
for any t /∈ {tk}k∈Z and φ(tk) = φ(t–

k ) for all k ∈ Z; let Ω be a set of X and BPCrd(T× Ω ,X)
be the space formed by all bounded piecewise continuous functions φ : T× Ω → X such
that for any x ∈ Ω , φ(·, x) ∈ BPCrd(T,X) and for any t ∈ T, φ(t, ·) is continuous at x ∈ Ω .

Definition 3.1 ([33]) We say ϕ : T → X is rd-piecewise continuous with respect to a se-
quence {tk} ⊂ T which satisfy tk < tk+1, k ∈ Z, if ϕ(t) is continuous on [tk , tk+1)T and rd-
continuous on T\{tk}. Further, [tk , tk+1)T are called intervals of continuity of the function
ϕ(t).

Similarly, one can define a class of ld-piecewise continuous functions. For convenience,
we denote the space of all rd-piecewise continuous functions PCrd(T,X) and PCε

rd(T,X) :=
{f |RT(τ ,ε) : f ∈ PCrd(T,X)}.

Now, we introduce some definitions which will be used to introduce the concept
of weighted piecewise pseudo-double-almost-periodic functions on ACCTS. Let Bε =
{{tki ,ε} ⊂ {tk} : tki ∈ RT(τ , ε), tki ,ε < tki+1,ε , i ∈ Z, limi→∞ tki ,ε = ∞}.

Definition 3.2 ([33]) Let {tki ,ε} ∈Bε , i ∈ Z. We say {tj
ki ,ε} is a ε-derived sequence of {tki ,ε}

where tj
ki ,ε = tki+j ,ε – tki ,ε , i, j ∈ Z.

Definition 3.3 ([33]) For any ε2 > ε1 > 0, let Γ ⊂ Πε1 be a set of real numbers and
{tki ,ε1} ∈ Bε1 . We say {tj

ki ,ε1
}, i, j ∈ Z is equipotentially double-almost-periodic on an

almost-complete-closed time scale T if for r ∈ Γ , there exists at least one integer q such
that

∣∣tq
ki ,ε1

– r
∣∣ < ε2, for all i ∈ Z.

In the following, we introduce the concept of piecewise continuous double-almost-
periodic functions on ACCTS:

Definition 3.4 ([33]) Let T be an almost-complete-closed time scale and assume that
{tki ,ε1} ∈ Bε1 satisfying the ε1-derived sequence {tj

ki ,ε1
}, i, j ∈ Z, is equipotentially almost-

periodic. We call a function ϕ ∈ PCε1
rd(T,Rn) double-almost-periodic if:

(i) for any ε > 0, there is a positive number δ = δ(ε) such that if the points t′ and t′′

belong to the same interval of continuity and t′, t′′ ∈ RT(τ , ε1)\Bε1 , |t′ – t′′| < δ, then
‖ϕ(t′) – ϕ(t′′)‖ < ε;

(ii) for any ε2 > ε1 > 0, there is a relatively dense set Γ of ε2-almost-periods such that if
τ ∈ Γ ⊂ Πε1 , then ‖ϕ(t + τ ) – ϕ(t)‖ < ε2 for all t ∈ RT(τ , ε1) which satisfy the
condition |t – tki ,ε1 | > ε2, i ∈ Z.

We denote by DAP(T,X) the space of all rd-piecewise double-almost-periodic func-
tions. Obviously, for any fixed ε > 0, the space DAPε(T,X) := {f |RT(τ ,ε) : f ∈ DAP(T,X)}
endowed with norm ‖φ‖ε = supt∈RT(τ ,ε) ‖φ(t)‖ for any φ ∈ DAPε(T,X) is a Banach space.
We also denote by UPC(T,X) the space of all functions φ ∈ PCrd(T,X) such that φ satis-
fies the condition (i) in Definition 3.4 and UPCε(T,X) := {f |RT(τ ,ε) : f ∈ UPC(T,X)}. Now
BPCrd(T,X) denotes the space of all bounded rd-piecewise functions and BPCε

rd(T,X) :=
{f |RT(τ ,ε) : f ∈ BPCrd(T,X)}.



Wang et al. Boundary Value Problems        (2019) 2019:165 Page 8 of 22

Similarly, we can also introduce the concept of uniformly piecewise double-almost-
periodic functions on almost-complete-closed time scales as follows:

Definition 3.5 ([33]) Let T be an almost-complete-closed time scale and assume that
{tki ,ε1} ∈ Bε1 satisfying the ε1-derived sequence {tj

ki ,ε1
}, i, j ∈ Z, is equipotentially double-

almost-periodic. We call a function f ∈ PCε1
rd(T × Ω ,X) rd-piecewise double-almost-

periodic in t uniformly in x ∈ Ω if:
(i) for each compact set K ⊆ Ω , {f (·, x) : x ∈ K} is uniformly bounded;

(ii) for any ε > 0, there is a positive number δ = δ(ε) such that if the points t′ and t′′

belong to the same interval of continuity and t′, t′′ ∈ RT(τ , ε1)\Bε1 , |t′ – t′′| < δ,
then ‖f (t′, x) – f (t′′, x)‖ < ε for all x ∈ K ;

(iii) for any ε2 > ε1 > 0, there is relative dense set Γ of ε2-almost-periods such that if
τ ∈ Γ ⊂ Πε1 , then ‖f (t + τ , x) – f (t, x)‖ < ε2 for all t ∈ RT(τ , ε1), x ∈ K , which
satisfy the condition |t – tki ,ε1 | > ε2, i ∈ Z.

Now, let U be the set of all functions ρ : T → (0,∞) which are positive and locally �-
integrable over T and let Uε := {ρ|RT(τ ,ε) : ρ ∈ U}. For a given r1, r2 ∈ RT(τ , ε), r2 > r1, we
set

m(r1, r2, ρ̃) :=
∫ r2

r1

ρ̃(s)�s (3.1)

for each ρ̃ ∈ Uε . Let Dr := r2 – r1 and Ũε∞ := {ρ̃ ∈ Uε : limDr→∞ m(r1, r2, ρ̃) = ∞},

Uε
∞ =

{
ρ̃ ∈ Ũε

∞ : ρ̃(s) 	≡ 0 for all s ∈ (t – δ, t + δ)RT(τ ,ε), where t ∈ RT(τ , ε), δ > 0
}

,

Uε
B :=

{
ρ̃ ∈ Uε

∞ : ρ̃ is bounded and inf
s∈RT(τ ,ε)

ρ̃(s) > 0
}

.

It is clear that for any ε > 0, Uε
B ⊂ Uε∞ ⊂ Uε . Now, for ρ̃ ∈ Uε∞, by (3.1), we define

WPDAPε
0(T, ρ̃) :=

{
φ ∈ BPCε

rd(T,X) : lim
Dr→∞

1
m(r1, r2, ρ̃)

∫ r2

r1

∥∥φ(s)
∥∥ρ̃(s)�s = 0

}
.

Similarly, we define

WPDAPε
0(T×X, ρ̃)

:=
{
Φ ∈ BPCε

rd(T× Ω ,X) : lim
Dr→∞

1
m(r1, r2, ρ̃)

∫ r2

r1

∥∥Φ(s, x)
∥∥ρ̃(s)�s = 0

uniformly with respect to x ∈ K , where K is an arbitrary

compact subset of Ω

}
.

We are now ready to introduce the sets WPDAPε(T, ρ̃) and WPDAPε(T × X, ρ̃) of
weighted pseudo-double-almost-periodic functions on ACCTS:

WPDAPε(T, ρ̃) =
{

f = g + φ ∈ PCε
rd(T,X) : g ∈ DAPε(T,X) and φ ∈ WPDAPε

0(T, ρ̃)
}

,
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WPDAPε(T×X, ρ̃) =
{

f = g + φ ∈ PCε
rd(T×X,X) : g ∈ DAPε(T×X,X)

and φ ∈ WPDAPε
0(T×X, ρ̃)

}
.

Theorem 3.1 For any r ∈ Πε and a set {tn} := Λ∗ ⊂ [t0 – r, t0 + r)T, where t0 ∈ T, there
exists C1(Λ∗), C2(Λ∗) > 0 such that

C1
(
Λ∗) ∑

tj∈[t0–r,t0+r)T

ρ̃(tj) ≤
∑

tj∈[t0–r,t0+r)T

¯̃ρ(tj) ≤ C2
(
Λ∗) ∑

tj∈[t0–r,t0+r)T

ρ̃(tj),

where ρ̃(tj) = inf{ρ̃(t) : t ∈ [tj, tj+1)T} and ¯̃ρ(tj) = sup{ρ̃(t) : t ∈ [tj, tj+1)T}.

Proof Since ρ̃ : T → (0,∞) is locally �-integrable over T, then there exists a partition Λ∗

as follows

t0 – r := t1 < t2 < · · · < tn–1 < tn := t0 + r

such that
( ∑

tj∈[t0–r,t0+r)T

¯̃ρ(tj) –
∑

tj∈[t0–r,t0+r)T

ρ̃(tj)
)

(tj+1 – tj) < ε
(
Λ∗).

Denote δ(Λ∗) := inf(tj+1 – tj), then

∑

tj∈[t0–r,t0+r)T

¯̃ρ(tj) –
∑

tj∈[t0–r,t0+r)T

ρ̃(tj) <
ε(Λ∗)
δ(Λ∗)

,

which implies that

∑
tj∈[t0–r,t0+r)T

¯̃ρ(tj)
∑

tj∈[t0–r,t0+r)T ρ̃(tj)
<

∑
tj∈[t0–r,t0+r)T ρ̃(tj) + ε(Λ∗)

δ(Λ∗)∑
tj∈[t0–r,t0+r)T ρ̃(tj)

,

so, obviously, we have

C1
(
Λ∗) = 1 ≤

∑
tj∈[t0–r,t0+r)T

¯̃ρ(tj)
∑

tj∈[t0–r,t0+r)T ρ̃(tj)
≤ 1 +

ε(Λ∗)
δ(Λ∗)∑

tj∈[t0–r,t0+r)T ρ̃(tj)
= C2

(
Λ∗).

This completes the proof. �

Definition 3.6 In Theorem 3.1, the finite set Λ∗ is said to be a discretization partition of
m(r, ρ̃, t0) and

∑
tj∈[t0–r,t0+r)T ρ̃(tj) and

∑
tj∈[t0–r,t0+r)T

¯̃ρ(tj) are called the equivalent discrete
weights under the discretization partition Λ∗.

Lemma 3.1 Let φ ∈ BPCε1
rd(T,X). Then, φ ∈ WPDAPε1

0 (T, ρ̃) where ρ̃ ∈ Uε1∞ if and only if
for every ε2 > ε1 > 0,

lim
Dr→∞

1
m(r1, r2, ρ̃)

∫

Mr1,r2,ε2 (φ)
ρ̃(t)�t = 0,

and Mr1,r2,ε2 (φ) := {t ∈ [r1, r2]RT(τ ,ε1) : ‖φ(t)‖ ≥ ε2}.
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Proof (a) Necessity. For contradiction, suppose that there exist ε0
2 > ε0

1 > 0 such that

lim
Dr→∞

1
m(r1, r2, ρ̃)

∫

Mr1,r2,ε0
2

(φ)
ρ̃(t)�t 	= 0.

Then, there exists δ > 0 such that

1
m(rn1

1 , rn2
2 , ρ̃)

∫

M
rn1
1 ,rn2

2 ,ε0
2

(φ)
ρ̃(t)�t ≥ δ,

where rn1
1 ≤ �rn1� := n1, rn2

2 ≥ �rn2
2 � := n2 and rn1

1 ≤ rn2
2 , rn1

1 , rn2
2 ∈ RT(τ , ε0

1).
Thus, we have

1
m(rn1

1 , rn2
2 , ρ̃)

∫ rn2
2

rn1
1

∥∥φ(s)
∥∥ρ̃(s)�s

=
1

m(rn1
1 , rn2

2 , ρ̃)

∫

M
rn1
1 ,rn2

2 ,ε0
2

(φ)

∥∥φ(s)
∥∥ρ̃(s)�s

+
1

m(rn1
1 , rn2

2 , ρ̃)

∫

[r1,r2]
RT(τ ,ε0

1)\M
rn1
1 ,rn2

2 ,ε0
2

(φ)

∥∥φ(s)
∥∥ρ̃(s)�s

≥ 1
m(rn1

1 , rn2
2 , ρ̃)

∫

M
rn1
1 ,rn2

2 ,ε0
2

(φ)

∥∥φ(s)
∥∥ρ̃(s)�s

≥ ε0
2

m(rn1
1 , rn2

2 , ρ̃)

∫

M
rn1
1 ,rn2

2 ,ε0
2

(φ)
ρ̃(s)�s ≥ ε0

2δ,

and this contradicts the assumption.
(b) Sufficiency. Let M := supt∈RT(τ ,ε1) ‖φ(t)‖ < ∞. Assume that

lim
Dr→∞

1
m(r1, r2, ρ̃)

∫

Mr1,r2,ε2 (φ)
ρ̃(t)�t = 0.

Then, for every ε2 > ε1 > 0, there exists r0 > 0 such that for every Dr > r0,

1
m(r1, r2, ρ̃)

∫

Mr1,r2,ε2 (φ)
ρ̃(t)�t <

ε2

M
.

Now, we have

1
m(r1, r2, ρ̃)

∫ r2

r1

∥∥φ(s)
∥∥ρ̃(s)�s

=
1

m(r1, r2, ρ̃)

(∫

Mr1,r2,ε2 (φ)

∥∥φ(s)
∥∥ρ̃(s)�s

+
∫

[r1,r2]RT(τ ,ε1)\Mr1,r2,ε2 (φ)

∥∥φ(s)
∥∥ρ̃(s)�s

)

≤ M
m(r1, r2, ρ̃)

∫

Mr1,r2,ε2 (φ)
ρ̃(t)�t

+
ε2

m(r1, r2, ρ̃)

∫

[r1,r2]RT(τ ,ε1)\Mr1,r2,ε2 (φ)
ρ̃(s)�s ≤ 2ε2.
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Therefore, it follows that

lim
Dr→∞

1
m(r1, r2, ρ̃)

∫

[r1,r2]RT(τ ,ε1)

∥∥φ(s)
∥∥ρ̃(s)�s = 0,

that is, φ ∈ WPDAPε1
0 (T, ρ̃). This completes the proof. �

From the proof of Lemma 3.1, the following corollary is immediate.

Corollary 3.1 Let φ ∈ BPCε1
rd(T,X). Then, φ ∈ WPDAPε1

0 (T, ρ̃) where ρ ∈ Uε1∞ if and only
if for every ε2 > ε1 > 0,

lim
Dr→∞

1
m(r1, r2, ρ̃)

μ�

(
Mr1,r2,ε2 (φ)

)
= 0,

and Mr1,r2,ε2 (φ) := {t ∈ [r1, r2]RT(τ ,ε1) : ‖φ(t)‖ ≥ ε2}.

Lemma 3.2 Let T be an almost-complete-closed time scale. Then, WPDAPε
0(T, ρ̃) is a

translation-almost-closed set of BPCε
rd(T,X) if ρ̃ ∈ Uε∞, i.e., φ(t +s) := θsφ ∈ WPDAPε

0(T, ρ̃),
t ∈ RT(τ , ε), s ∈ Πε , if ρ̃ ∈ Uε∞.

Proof For φ ∈ WPDAPε1
0 (T, ρ̃), ε2 > ε1 > 0, r1, r2 ∈ RT(τ , ε1), we have

Mr1,r2,ε2 (θsφ) =
{

t ∈ [r1, r2]RT(τ ,ε1) :
∥∥θs(t)

∥∥ ≥ ε2
}

=
{

t ∈ [r1, r2]RT(τ ,ε1) :
∥∥φ(t + s)

∥∥ ≥ ε2
}

=
{

t ∈ [r1 + s, r2 + s]RT(τ ,ε1) :
∥∥φ(t)

∥∥ ≥ ε2
}

⊆ {
t ∈ [r̃1, r̃2]RT(τ ,ε1) :

∥∥φ(t)
∥∥ ≥ ε2

}
,

where r̃1, r̃2 ∈ RT(τ , ε1) and r̃1 < r1 + s and r̃2 > r2 + s. Let Dr̃ := r̃2 – r̃1, so Dr → +∞ implies
Dr̃ → +∞.

Hence, it follows that

1
m(r1, r2, ρ̃)

μ�

(
Mr1,r2,ε2 (θsφ)

) ≤ 1
m(r1, r2, ρ̃)

μ�

(
Mr̃1,r̃2,ε2 (θsφ)

)

=
m(r̃1, r̃2, ρ̃)
m(r1, r2, ρ̃)

1
m(r̃1, r̃2, ρ̃)

μ�

(
Mr1,r2,ε2 (φ)

)
.

Since φ ∈ WPDAPε1
0 (T, ρ̃), from Lemma 3.1, we have

1
m(r̃1, r̃2, ρ̃)

μ�

(
Mr̃1,r̃2,ε2 (φ)

) → 0, Dr → ∞.

Further, limDr→∞ m(r̃1,r̃2,ρ̃)
m(r1,r2,ρ̃) = 1, and thus

1
m(r1, r2, ρ̃)

μ�

(
Mr1,r2,ε2

(
θs(φ)

)) → 0, Dr → ∞.

Again, using Lemma 3.1, one finds θsφ ∈ WPDAPε1
0 (T, ρ̃). This completes the proof. �
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Let T , P ∈ Bε and let sε(T ∪ P) : Bε → Bε be a map such that the set sε(T ∪ P) forms
a strictly increasing sequence for any fixed ε > 0. Let D ⊂ RT(τ , ε), and we introduce the
notations Dξ = {t + ξ : t ∈ D}, Fξ (D) = D ∩ Dξ . We denote by φ̃ = (ϕ(t), T) the element from
the space PCε

rd(T,X) × Bε , and for every sequence of real numbers {sn}, n = 1, 2, . . . with
θsn φ̃, we consider the sets {ϕ(t + sn), T–sn} ⊂ PCε

rd ×Bε , where T–sn = {tki – sn : i ∈ Z, n =
1, 2, . . .}.

Next, we introduce the convergent form of piecewise functions on almost-complete-
closed time scales:

Definition 3.7 (Almost-uniform convergence for piecewise functions) Let T be an
almost-complete-closed time scale. The sequence {φ̃n}, φ̃n = (ϕn(t), Tn) ∈ PCε1

rd(T,X)×Bε1

is almost-convergent to φ̃, φ̃ = (ϕ(t), T), (ϕ(t), T) ∈ PCε1
rd(T,X) ×Bε1 if and only if for any

ε2 > ε1 > 0 there exists n0 > 0 such that n ≥ n0 implies

d̃(T , Tn) < ε2,
∥∥ϕn(t) – ϕ(t)

∥∥ < ε2

uniformly for t ∈ RT(τ , ε1)\Fε2 (sε1 (Tn ∪ T)), here d̃(·, ·) is an arbitrary distance in Bε1 .

Remark 3.1 The convergence described by Definition 3.7 is a distinct convergence form on
ACCTS, which will contribute to studying approximation of functions under the time scale
that is almost the same as each other under translations. Traditionally, researchers analyze
functions on complete-closed time scales, which provides no difficulties in introducing
and studying functions, especially for some important and basic functions like almost-
periodic functions, almost-automorphic functions, and so on, because such functions are
defined by their translations on the domain and their domain is at least a complete-closed
time scale. However, in the Introduction part of this paper and recent works [32–34],
ACCTS are a class of necessary and important time variable forms that exist. Obviously,
if we let ε1 → 0 in Definition 3.7, then one can easily obtain the convergence form for
piecewise functions on CCTS.

In view of Definition 3.7, we now introduce the second definition of piecewise continu-
ous double-almost-periodic functions on ACCTS:

Definition 3.8 Let T be an almost-complete-closed time scale. The function ϕ ∈ PCε
rd(T,

X) is said to be rd-piecewise continuous double-almost-periodic with respect to a se-
quence from the set T ∈Bε if for every sequence of real numbers {s′

m} ⊂ Πε there exists a
subsequence {sn}, sn = s′

mn and a sequence {A–sn} such that the limit set T0 of {T–sn\A–sn}
exists and θsn φ̃ is uniformly convergent on PCrd(T0,X) ×B0, where B0 := T0 ∩B.

From Definition 3.8, two lemmas below are immediate:

Lemma 3.3 Let φ ∈ DAPε(T,X), then for any ε > 0, the almost-range of φ, φ(RT(τ , ε)), is
a relatively compact subset of X.

Lemma 3.4 If f = g + φ with g ∈ DAPε(T,X), and φ ∈ WPDAPε
0(T,ρ), where ρ̃ ∈ Uε∞, then

g(RT(τ , ε)) ⊂ f (RT(τ , ε)).
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Lemma 3.5 For any ε > 0, one can decompose a weighted piecewise pseudo-double-almost-
periodic function according to DAPε ⊕WPDAPε

0 which is unique for any ρ̃ ∈ Uε∞.

Proof Assume that f = g1 + φ1 and f = g2 + φ2. Then, (g1 – g2) + (φ1 – φ2) = 0. Since g1 –
g2 ∈ DAPε(T,X), and φ1 – φ2 ∈ WPDAPε

0(T, ρ̃), we find that g1 – g2 = 0. Consequently,
φ1 – φ2 = 0, i.e., φ1 = φ2. This completes the proof. �

Theorem 3.2 For ρ̃ ∈ Uε∞, (WPDAPε(T, ρ̃),‖ · ‖ε) is a Banach space for any ε > 0.

Proof Assume that {fn}n∈N is a Cauchy sequence in WPDAPε(T, ρ̃). We can write fn = gn +
φn uniquely. Using Lemma 3.4, we have ‖gp – gq‖ε ≤ ‖fp – fq‖ε , from which we deduce that
{gn}n∈N is a Cauchy sequence in DAPε(T,X). Hence, φn = fn – gn is a Cauchy sequence in
WPDAPε

0(T, ρ̃). Thus, gn → g ∈ DAPε(T,X), φn → φ ∈ WPDAPε
0(T, ρ̃), and finally, fn →

g + φ ∈ WPDAPε(T, ρ̃). This completes the proof. �

Definition 3.9 Let ρ̃1, ρ̃2 ∈ Uε∞. We say that ρ̃1 is ε-equivalent to ρ̃2, written as ρ̃1 ∼ε ρ̃2,
if ρ̃1/ρ̃2 ∈ Uε

B.

Theorem 3.3 Let ρ̃1, ρ̃2 ∈ Uε∞. If ρ̃1 ∼ε ρ̃2, then WPDAPε(T, ρ̃1) = WPDAPε(T, ρ̃2).

Proof Assume that ρ̃1 ∼ε ρ̃2. Then, there exist a, b > 0 such that aρ̃1 ≤ ρ̃2 ≤ bρ̃1. Thus, for
any r1, r2 ∈ RT(τ , ε), we have am(r1, r2, ρ̃1) ≤ m(r1, r2, ρ̃2) ≤ bm(r1, r2, ρ̃1), and

a
b

1
m(r1, , r2, ρ̃1)

∫ r2

r1

∥∥φ(s)
∥∥ρ̃1(s)�s ≤ 1

m(r1, r2, ρ̃2)

∫ r2

r1

∥∥φ(s)
∥∥ρ̃2(s)�s

≤ b
a

1
m(r1, r2, ρ̃1)

∫ r2

r1

∥∥φ(s)
∥∥ρ̃1(s)�s.

This completes the proof. �

Lemma 3.6 If g ∈ DAPε(T × X,X) and α ∈ DAPε(T,X), then G(t) := g(·,α(·)) ∈
DAPε(T,X).

Proof Let T = {tki ,ε} ⊂ Bε , φ̃ = (g(t, x), T) ∈ DAPε(T × X,X) × Bε , and from every se-
quence {sn}∞n=1 ⊂ Πε , we can extract a subsequence {τn}∞n=1 and a sequence {A–τn} such
that the limit set T0 of {T–τn\A–τn} exists and

φ̃∗ :=
(
g∗(t, x), T∗) = lim

n→∞ θτn φ̃ = lim
n→∞

(
g(t + τn, x), T–τn

)
,

uniformly exists on PCε
rd(T0 ×X,X)×Bε . Since α ∈ DAPε(T,X), we can extract {τ ′

n} ⊂ {τn}
such that

lim
n→∞ θτ ′

n φ̃ = lim
n→∞

(
g
(
t + τ ′

n,α
(
t + τ ′

n
))

, T–τ ′
n
)

= lim
n→∞

(
g
(
t + τ ′

n,α∗(t)
)
, T–τ ′

n
)

=
(
g∗(t,α∗(t)

)
, T∗).

Hence, G ∈ DAPε(T,X). This completes the proof. �
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Theorem 3.4 Let f = g + φ ∈ WPDAPε(T × X, ρ̃), where g ∈ DAPε(T × X,X), φ ∈
WPDAPε

0(T×X, ρ̃), ρ̃ ∈ Uε∞ and the following conditions hold:
(i) {f (t, x) : t ∈ RT(τ , ε), x ∈ K} is bounded for every bounded subset K ⊆ Ω .

(ii) f (t, ·), g(t, ·) are uniformly continuous in each bounded subset of Ω uniformly in
t ∈ RT(τ , ε).

Then, f (·, h(·)) ∈ WPDAPε(T, ρ̃) if h ∈ WPDAPε(T, ρ̃) and h(RT(τ , ε)) ⊂ Ω .

Proof For any ε1 > 0, we have f = g +φ, where g ∈ DAPε1 (T×X,X) and φ ∈ WPDAPε1
0 (T×

X, ρ̃) and h = φ1 + φ2, where φ1 ∈ DAPε1 (T,X) and φ2 ∈ WPDAPε1
0 (T, ρ̃). Hence, the func-

tion f (·, h(·)) can be decomposed as

f
(·, h(·)) = g

(·,φ1(·)) + f
(·, h(·)) – g

(·,φ1(·))

= g
(·,φ1(·)) + f

(·, h(·)) – f
(·,φ1(·)) + φ

(·,φ1(·)).

By Lemma 3.6, g(·,φ1(·)) ∈ DAPε1 (T,X). Now, consider the function

Ψ (·) := f
(·, h(·)) – f

(·,φ1(·)).

Clearly, Ψ ∈ BPCε1
rd(T,X). For Ψ to be in WPDAPε1

0 (T, ρ̃), for any ε2 > ε1 > 0, it is sufficient
to show that

lim
Dr→∞

1
m(r1, r2, ρ̃)

∫

Mr1,r2,ε2 (Ψ )
ρ̃(t)�t = 0.

Let K be a bounded subset of Ω such that φ(RT(τ , ε1)) ⊆ K , φ1(RT(τ , ε1)) ⊆ K . From
(ii), f (t, ·) is uniformly continuous in φ1(RT(τ , ε1)) uniformly in t ∈ RT(τ , ε1). Hence, for
a given ε2 > ε1 > 0, there exists δε2 > 0 such that y1, y2 ∈ K and ‖y1 – y2‖ < δε2 implies that

∥∥f (t, y1) – f (t, y2)
∥∥ < ε2, t ∈ RT(τ , ε1).

Thus, for each t ∈ RT(τ , ε1), ‖φ2(t)‖ < δε2 implies that uniformly in t ∈ RT(τ , ε1),

∥∥f
(
t, h(t)

)
– f

(
t,φ1(t)

)∥∥ < ε2,

where φ2(t) = h(t) – φ1(t). For r1, r2 ∈ RT(τ , ε1), r2 > r1, let Mr1,r2,δε2
(φ2) = {t ∈ [r1,

r2]RT(τ ,ε1) : ‖φ2‖ ≥ δε2}, and we obtain

1
m(r1, r2, ρ̃)

∫

Mr1,r2,ε2 (Ψ (t))
ρ̃(t)�t

=
1

m(r1, r2, ρ̃)

∫

Mr1,r2,ε2 (f (t,h(t))–f (t,φ1(t)))
ρ̃(t)�t

≤ 1
m(r1, r2, ρ̃)

∫

Mr1,r2,δε2 (h(t)–φ1(t))
ρ̃(t)�t

=
1

m(r1, r2, ρ̃)

∫

Mr1,r2,δε2 (φ2(t))
ρ̃(t)�t.
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Now, since φ2 ∈ WPDAPε1
0 (T, ρ̃), Lemma 3.1 yields that

lim
Dr→∞

1
m(r1, r2, ρ̃)

∫

Mr1,r2,ε2 (φ2(t))
ρ̃(t)�t = 0,

which confirms that Ψ ∈ WPDAPε1
0 (T, ρ̃).

Finally, we will show that φ(·,φ1(·)) ∈ WPDAPε1
0 (T, ρ̃). Note that f = g + φ and g(t, ·)

is uniformly continuous in φ1(RT(τ , ε1)) uniformly in t ∈ RT(τ , ε1). By assumption (ii),
f (t, ·) is uniformly continuous in φ1(RT(τ , ε1)) uniformly in t ∈ RT(τ , ε1), so is φ. Since
φ1(RT(τ , ε1)) is relatively compact in X, for ε2

2 > ε1 > 0, there exists δε2 > 0 such that
φ1(RT(τ , ε1)) ⊂ ⋃m

k=1 Bε2
k , where Bε2

k = {x ∈ X : ‖x – xk‖ < δε2} for some xk ∈ φ1(RT(τ , ε1)),
and

∥∥φ
(
t,φ1(t)

)
– φ(t, xk)

∥∥ <
ε2

2
, φ1(t) ∈ Bε2

k , t ∈ RT(τ , ε1). (3.2)

It is easy to see that the set Uε2
k := {t ∈ RT(τ , ε1) : φ1(t) ∈ Bε2

k } is open and for any r1, r2 ∈
RT(τ , ε1), we have [r1, r2]RT(τ ,ε1) ⊆ ⋃m

k=1 Uε2
k . We define V ε2

1 = Uε2
1 , V ε2

k = Uε2
k \⋃k–1

i=1 Uε2
i ,

2 ≤ k ≤ m. Then, it is clear that V ε2
i ∩ V ε2

j 	= ∅ if i 	= j, 1 ≤ i, j ≤ m. Thus, we have

{
t ∈ [r1, r2]RT(τ ,ε1) :

∥∥φ
(
t,φ1(t)

)∥∥ ≥ ε2

2

}

⊂
m⋃

k=1

{
t ∈ V ε2

k :
∥∥φ

(
t,φ1(t)

)
– φ(t, xk)

∥∥ +
∥∥φ(t, xk)

∥∥ ≥ ε2
}

⊂
m⋃

k=1

({
t ∈ V ε2

k :
∥∥φ

(
t,φ1(t)

)
– φ(t, xk)

∥∥ ≥ ε2

2

}

∪
{

t ∈ V ε2
k :

∥∥φ(t, xk)
∥∥ ≥ ε2

2

})
.

Now, in view of (3.2), it follows that
{

t ∈ V ε2
k :

∥∥φ
(
t,φ1(t)

)
– φ(t, xk)

∥∥ ≥ ε2

2

}
= ∅, k = 1, 2, . . . , m.

Thus, we obtain

1
m(r1, r2, ρ̃)

∫

Mr1,r2, ε2
2

(φ(t,φ1(t)))
ρ̃(t)�t ≤

m∑

k=1

1
m(r1, r2, ρ̃)

∫

Mr1,r2, ε2
2

(φ(t,xk ))
ρ̃(t)�t.

Since φ ∈ WPDAPε1
0 (T×X, ρ̃) and

lim
Dr→∞

1
m(r1, r2, ρ̃)

∫

Mr1,r2, ε2
2

(φ(t,xk ))
ρ̃(t)�t = 0,

from Lemma 3.1 it follows that

lim
Dr→∞

1
m(r1, r2, ρ̃)

∫

Mr1,r2, ε2
2

(φ(t,φ1(t)))
ρ̃(t)�t = 0.

Hence, φ(·,φ1(·)) ∈ WPDAPε1
0 (T, ρ̃). This completes the proof. �
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From Theorem 3.4 the following corollary is immediate:

Corollary 3.2 Let f = g + φ ∈ WPDAPε(T, ρ̃), where ρ ∈ Uε∞. Assume that f and g
are Lipschitz in x ∈ X uniformly in t ∈ RT(τ , ε). Then, f (·, h(·)) ∈ WPDAPε(T, ρ̃) if h ∈
WPDAPε(T, ρ̃).

Next, we prove the following two lemmas which are useful in establishing our main
results.

Lemma 3.7 If ϕ(t) is double-almost-periodic on ACCTS and for any ε > 0, infi tq
ki ,ε = θε > 0,

then {ϕ(tki ,ε)} is a double-almost-periodic sequence for {tki ,ε} ⊂Bε .

Proof For ε1 > 0, we construct a sequence {t′
ki ,ε1

} ⊂ RT(τ , ε1) satisfying the condition

⎧
⎨

⎩
t′
ki ,ε1

= tki ,ε1 , if tki ,ε1 is a left-scattered point in RT(τ , ε1),

t′
ki ,ε1

= tki ,ε1 – 2ε1, if tki ,ε1 is a left-dense point in RT(τ , ε1),
(3.3)

where i ∈ Z. For ε2 > ε1 > 0, we choose numbers r ∈ Πε1 , q ∈ Z such that ‖ϕ(t + r) – ϕ(t)‖ <
ε2 and |tq

ki ,ε1
– r| < ν , 0 < ν < ε2, for all |t – t′

ki ,ε1
| > ε2, t ∈ RT(τ , ε1), i ∈ Z. Since –ν < tki+q ,ε1 –

tki ,ε1 – r < ν in view of (3.3), we find that 0 < 2ε2 –ν ≤ tki+q ,ε1 – t′
ki ,ε1

– r < 2ε2 +ν < 3ε2. Thus,
if t′, t′′ belong to the same interval of continuity with |t′ – t′′| < 3ε2 then ‖ϕ(t′) – ϕ(t′′)‖ <
o(3ε2). Now, assuming that 2o(3ε2) + ε2 < ε′

2 < θε1 , we find

∥∥ϕ(tki+q ,ε1 ) – ϕ(tki ,ε1 )
∥∥ ≤ ∥∥ϕ(tki+q ,ε1 ) – ϕ

(
t′
ki ,ε1 + r

)∥∥ +
∥∥ϕ

(
t′
ki ,ε1 + r

)
– ϕ

(
t′
ki ,ε1

)∥∥

+
∥∥ϕ

(
t′
ki ,ε1

)
– ϕ(tki ,ε1 )

∥∥ < 2o(3ε2) + ε2 < ε′
2.

This completes the proof. �

Lemma 3.8 A necessary and sufficient condition for a bounded sequence {an} to be in
WPDAPε

0(Z, ρ̃) is that there exist a uniformly continuous function f ∈ WPDAPε
0(T, ρ̃) and

a discretization partition {tn} ⊂ RT(τ , ε) such that f (tn) = an, n ∈ Z, ρ̃ ∈ Uε
B.

Proof Necessity. Let r1, r2 ∈ RT(τ , ε), r2 > r1, and we partition the interval [r1, r2]RT(τ ,ε) as
follows:

rn1 := r1 ≤ �r1� := n1 < rn1+1 < · · · < rn2–1 < �r2� := n2 ≤ r2 := rn2 .

Denote ξ = maxj{rj+1 – rj}, and define a function

f (t) = aj + (t – rj)(aj+1 – aj), t ∈ [rj, rj+1]RT(τ ,ε), n1 ≤ j ≤ n2, j ∈ Z.

It is obviously uniformly continuous on RT(τ , ε). To show f ∈ WPDAPε
0(T, ρ̃) it suffice to

note that

1
m(r1, r2, ρ̃)

∫ r2

r1

∥∥f (s)
∥∥ρ̃(s)�s

=
1

m(r1, r2, ρ̃)

n2–1∑

j=n1

∫ rj+1

rj

∥∥aj + (s – rj)(aj+1 – aj)
∥∥ρ̃(s)�s
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≤ 1
m(r1, r2, ρ̃)

n2–1∑

j=n1

(
‖aj‖ ¯̃ρ(tj)ξ + ‖aj+1 – aj‖

∫ rj+1

rj

(s – rj)ρ̃(s)�s
)

≤ 1
m(r1, r2, ρ̃)

n2–1∑

j=n1

ξ‖aj‖ ¯̃ρ(tj) +
(‖an2‖ + ‖an1‖ξ 2

m(r1, r2, ρ̃)
ρ̄

≤ 1
∑

tj∈[r1,r2]RT(τ ,ε)
ρ̃(tj)

n2–1∑

j=n1

ξ
∥∥f (tj)

∥∥ ¯̃ρ(tj) +
‖an2‖ + ‖an1‖

m(r1, r2, ρ̃)
ξ 2ρ̄

=
C2

∑n2–1
j=n1

¯̃ρ(tj)

n2–1∑

j=n1

ξ
∥∥f (tj)

∥∥ ¯̃ρ(tj) +
‖an2‖ + ‖an1‖

m(r1, r2, ρ̃)
ξ 2ρ̄ → 0, as n2 – n1 → +∞,

where ¯̃ρ(tj) = sup{ρ̃(t) : t ∈ [rj, rj+1)RT(τ ,ε)} and ρ̄ = supt∈RT(τ ,ε) ρ̃(t).
Sufficiency. For any tn1 < tn2 , we partition the interval [tn1 , tn2 ]RT(τ ,ε1) as follows:

tn1 ≤ �tn1� := n1 < tn1+1 < · · · < tn2–1 < �tn2� := n2 ≤ tn2 .

Let 1 > ε2 > ε1 > 0, there exists a δε2 > 0 such that for t ∈ (tj – δε2 , tj)RT(τ ,ε1), j ∈ Z and
n1 ≤ j ≤ n2, we have

∥∥f (t)
∥∥ρ̃(t) ≥ (1 – ε2)

∥∥f (tj)
∥∥ρ̃(tj), n1 ≤ j ≤ n2.

Hence,

∫ tn2

tn1

∥∥f (t)
∥∥ρ̃(t)�t

≥
n2∑

j=n1+1

∫ tj

tj–1

∥∥f (t)
∥∥ρ̃(t)�t ≥

n2∑

j=n1+1

∫ tj

tj–δε2

∥∥f (t)
∥∥ρ̃(t)�t

≥
n2∑

j=n1+1

δε2 (1 – ε2)
∥∥f (tj)

∥∥ρ̃(tj) ≥ δε2 (1 – ε2)
n2∑

j=n1+1

∥∥f (tj)
∥∥ρ̃(tj),

which implies that

1
m(tn1 , tn2 , ρ̃)

∫ tn2

tn1

∥∥f (t)
∥∥ρ̃(t)�t

≥ δε2 (1 – ε2)
1

m(tn1 , tn2 , ρ̃)

n2∑

j=n1+1

∥∥f (tj)
∥∥ρ̃(tj)

≥ δε2 (1 – ε2)
1

∑
tj∈[tn1 ,tn2 ]RT(τ ,ε1)

¯̃ρ(tj)

n2∑

j=n1+1

∥∥f (tj)
∥∥ρ̃(tj)

≥ δε2 (1 – ε2)
1

C2
∑

tj∈[tn1 ,tn2 ]RT(τ ,ε1)
ρ̃(tj)

n2∑

j=n1+1

∥∥f (tj)
∥
∥ρ̃(tj). (3.4)

From (3.4) and f ∈ WPDAPε1
0 (T, ρ̃), it follows that f (tn) = an ∈ WPDAPε1

0 (Z, ρ̃). This com-
pletes the proof. �
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From Lemma 3.8, we have the following result directly:

Theorem 3.5 A necessary and sufficient condition for a bounded sequence {an} to be in
WPDAPε(Z, ρ̃) is that there exist a uniformly continuous function f ∈ WPDAPε(T, ρ̃) and
a discretization partition {tn} ⊂ RT(τ , ε) such that f (tn) = an, n ∈ Z, ρ̃ ∈ Uε

B.

Theorem 3.6 Assume that ρ ∈ Uε∞ and the sequence of vector-valued functions {Ik}k∈Z
is weighted pseudo-almost-periodic, i.e., for any x ∈ Ω , {Ik(x), k ∈ Z} is weighted pseudo-
almost-periodic sequence. Suppose that {Ik(x) : k ∈ Z, x ∈ K} is bounded for every bounded
subset K ⊆ Ω , Ik(x) is uniformly continuous in x ∈ Ω uniformly in k ∈ Z. If h ∈
WPDAPε(T, ρ̃) ∩ UPCε(T,X) such that h(RT(τ , ε)) ⊂ Ω , then Ik(h(tki ,ε)) is weighted
pseudo-double-almost-periodic.

Proof Fix h ∈ WPDAPε(T, ρ̃) ∩ UPCε(T,X). First we will show that h(tki ,ε) is weighted
pseudo-double-almost-periodic. Since h = φ1 + φ2, where φ1 ∈ DAPε(T,X) and φ2 ∈
WPDAPε

0(T, ρ̃), it follows from Lemma 3.7 that the sequence φ1(tki ,ε) is double-almost-
periodic. To show h(tki ,ε) is weighted pseudo-double-almost-periodic, we need to show
that φ2(tki ,ε) ∈ WPDAPε

0(Z, ρ̃). From the assumption, h,φ1 ∈ UPCε(T,X), so is φ2.
For any tkn1

, tkn2
∈ Bε1 , we partition the interval [tkn1

, tkn2
]RT(τ ,ε1), and we repeat the same

proof process of Sufficiency for Lemma 3.8, so we have φ2(tki ,ε1 ) ∈ WPDAPε1
0 (Z, ρ̃). Hence,

h(tki ,ε1 ) is weighted pseudo-double-almost-periodic.
Next, we will show that Ik(h(tki ,ε)) is weighted pseudo-double-almost-periodic. Let

I(t, x) = In(x) + (t – rn)
[
In+1(x) – In(x)

]
, t ∈ [rn, rn+1]RT(τ ,ε), kn1 ≤ n ≤ kn2 , n ∈ Z,

Φ0(t) = h(tn) + (t – rn)
[
h(tn+1) – h(tn)

]
, t ∈ [rn, rn+1]RT(τ ,ε), kn1 ≤ n ≤ kn2 , n ∈ Z,

where ξ is as in Lemma 3.8. Since {In} is weighted pseudo-almost-periodic sequence and
{h(tn)} is weighted pseudo-double-almost-periodic sequence, by Lemma 3.8 and Theo-
rem 3.5, it follows that I ∈ WPDAPε(T×Ω , ρ̃), Φ0 ∈ WPDAPε(T, ρ̃). For every t ∈ RT(τ , ε),
there exists a integer kn1 ≤ n ≤ kn2 , n ∈ Z such that |t – rn| ≤ ξ , and hence

∥∥I(t, x)
∥∥ ≤ ∥∥In(x)

∥∥ + |t – rn|
[∥∥In+1(x)

∥∥ +
∥∥In(x)

∥∥]

≤ (1 + ξ )
∥∥In(x)

∥∥ + ξ
∥∥In+1(x)

∥∥.

Since {In(x) : kn1 ≤ n ≤ kn2 , n ∈ Z, x ∈ K} is bounded for every bounded set K ⊆ Ω , {I(t, x) :
t ∈ RT(τ , ε), x ∈ K} is bounded for every bounded set K ⊆ Ω . For every x1, x2 ∈ Ω , we have

∥∥I(t, x1) – I(t, x2)
∥∥ ≤ ∥∥In(x1) – In(x2)

∥∥ + |t – rn|
[∥∥In+1(x1) – In+1(x2)

∥∥

+
∥∥In(x1) – In(x2)

∥∥]

≤ (1 + ξ )
∥∥In(x1) – In(x2)

∥∥ + ξ
∥∥In+1(x1) – In+1(x2)

∥∥.

From the fact that Ik(x) is uniformly continuous in x ∈ Ω uniformly in k ∈ Z, it fol-
lows that I(t, x) is uniformly continuous in x ∈ Ω uniformly in t ∈ RT(τ , ε). Thus, by
Theorem 3.4, I(·,Φ0(·)) ∈ WPDAPε(T,X). Again, using Lemma 3.8 and Theorem 3.5, we
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find that I(tki ,ε ,Φ0(tki ,ε)) is a weighted pseudo-double-almost-periodic sequence, that is,
Ik(h(tki ,ε)) is weighted pseudo-double-almost-periodic. This completes the proof. �

From Theorem 3.6, the following corollary follows:

Corollary 3.3 Assume that the sequence of vector-valued functions {Ik}k∈Z is weighted
pseudo-almost-periodic, ρ ∈ Uε

B, if there is a number L > 0 such that

∥∥Ik(x) – Ik(y)
∥∥ ≤ L‖x – y‖

for all x, y ∈ Ω , k ∈ Z, if h ∈ WPDAPε(T,ρ) ∩ UPCε(T,ρ) such that h(RT(τ , ε)) ⊂ Ω , then
Ik(h(tki ,ε)) is weighted pseudo-double-almost-periodic.

In the following, we show a criterion for a relatively compact set in PCε
rd(T,X).

Let h̃0 : T →R be a continuous function such that h̃0(t) ≥ 1 for all t ∈ T and h̃0(t) → ∞
as |t| → ∞. Then, the space

PCε
h0 (T,X) =

{
φ ∈ PCε

rd(T,X) : lim|t|→∞
‖φ(t)‖
h0(t)

= 0
}

endowed with the norm ‖φ‖ε
h0

= supt∈RT(τ ,ε)
‖φ(t)‖
h0(t) is a Banach space, where h0(t) =

h̃0|RT(τ ,ε).

Theorem 3.7 A set B ⊆ PCε
h0 (T,X) is relatively compact if and only if

(1) lim|t|→∞ ‖φ(t)‖
h0(t) = 0 uniformly for φ ∈ B.

(2) Bt = {φ(t) : φ ∈ B} is relatively compact in X for every t ∈ RT(τ , ε).
(3) The set B is equicontinuous on each interval (tki ,ε , tki+1,ε)RT(τ ,ε), i ∈ Z.

Proof Let PC0,ε
rd (T,X) = {φ ∈ PCε

rd(T,X) : lim|t|→∞ ‖φ(t)‖ = 0}. It is clear that PC0,ε
rd (T,X) is

isometrically isomorphic with the space PCε
h0 (T,X). In order to prove Lemma 3.7, we only

need to show that B∗ ⊆ PC0,ε
rd (T,X) is a relatively compact set if and only if

(a) lim|t|→∞ ‖f (t)‖ = 0 uniformly for f ∈ B
∗.

(b) B
∗
t = {f (t) : f ∈ B

∗} is relatively compact in X for every t ∈ RT(τ , ε).
(c) The set B∗ is equicontinuous on each interval (tki ,ε , tki+1,ε)RT(τ ,ε), i ∈ Z.
Sufficiency. By (a), for any ε2 > ε1 > 0, there exists δ

ε2
1 > 0 such that

∥∥f (t)
∥∥ < ε2, |t| > δ

ε2
1 , f ∈ B

∗. (3.5)

By (c), for the above ε2, there exists δ : 0 < δε2 < δ
ε2
1 , such that t′, t′′ ∈ (tki ,ε1 , tki+1,ε1 )RT(τ ,ε1),

i ∈ Z, |t′ – t′′| < δε2 implies

∥∥f
(
t′) – f

(
t′′)∥∥ < ε2, ∀f ∈ B

∗.

For the interval [–δ
ε2
1 , δε2

1 ]RT(τ ,ε1), there exists a set

S = {s1, s2, . . . , sq} ⊂ [
–δ

ε2
1 , δε2

1
]
RT(τ ,ε1), sj 	= tki ,ε1 , j = 1, 2, . . . , q
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such that |t – sj| < δε2 and

∥∥f (t) – f (sj)
∥∥ < ε2, j = 1, 2, . . . , q, f ∈ B

∗. (3.6)

For any sequence {fk : k ≥ 1} ⊆ B
∗, by (b), we can extract a subsequence that converges at

each point t ∈ RT(τ , ε1). Since S is finite, for the above ε2 > ε1 > 0, there exists n0 ∈N such
that for all m, n ≥ n0,

∥∥fm(t) – fn(t)
∥∥ < ε2, t ∈ S. (3.7)

Hence, for t ∈ [–δ
ε2
1 , δε2

1 ]RT(τ ,ε1), by (3.6) and (3.7), it follows that

∥∥fm(t) – fn(t)
∥∥ ≤ ∥∥fm(t) – fm(sj)

∥∥ +
∥∥fm(sj) – fn(sj)

∥∥ +
∥∥fn(sj) – fn(t)

∥∥ < 3ε2.

For |t| > δ
ε2
1 , by (3.5), we have

∥∥fm(t) – fn(t)
∥∥ < 2ε2.

Thus, {fk : k ≥ 1} is almost-uniformly convergent on RT(τ , ε1), and hence B
∗ ⊆ PC0,ε1

rd (T,
X) is a relatively compact set.

Necessity. Since B
∗ ⊆ PC0,ε1

rd (T,X) is relatively compact, for any ε2 > ε1 > 0, there exist a
finite number of functions f1, f2, . . . , fm of B∗ such that

‖f – fj‖ε1 < ε2, j = 1, 2, . . . , m, f ∈ B
∗. (3.8)

This finite set of functions f1, f2, . . . , fm is equicontinuous, that is, for the above ε2 > ε1 > 0,
there exists a number δ

ε2
2 > 0 such that for any t′, t′′ ∈ (tki ,ε1 , tki+1,ε1 )RT(τ ,ε1), i ∈ Z, |t′ – t′′| <

δ
ε2
2 implies that ‖fj(t′) – fj(t′′)‖ < ε2. Now, using (3.8), for any f ∈ B

∗, we have

∥
∥f

(
t′) – f

(
t′′)∥∥ ≤ ∥∥f

(
t′) – fj

(
t′)∥∥ +

∥∥fj
(
t′) – fj

(
t′′)∥∥ +

∥∥fj
(
t′′) – f

(
t′′)∥∥ < 3ε2,

which shows (c). Since fj ∈ B
∗, for the above ε2 > ε1 > 0, there exist numbers ν

ε2
j > 0 such

that

∥∥fj(t)
∥∥ < ε2, |t| > ν

ε2
j , j = 1, 2, . . . , m. (3.9)

Let δ
ε2
3 = max{νε2

1 , . . . ,νε2
m }. Then by (3.8) and (3.9), for any f ∈ B

∗, it follows that

∥∥f (t)
∥∥ ≤ ∥∥f (t) – fj(t)

∥∥ +
∥∥fj(t)

∥∥ < 2ε2, |t| > δ
ε2
3 ,

which shows (a). Since B
∗ is relatively compact, for any sequence {fk : k ≥ 1} ⊆ B

∗, there
exists a subsequence that converges almost-uniformly on RT(τ , ε1). Fix t ∈ RT(τ , ε1), in
the sequence {fk(t) : k ≥ 1} ⊆ X, there exists a convergent subsequence. Therefore, for
fixed t ∈ RT(τ , ε1), the set {f (t) : f ∈ B

∗} is relatively compact, which shows (b). This com-
pletes the proof. �
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Remark 3.2 The applications of weighted piecewise double-almost-periodic functions on
impulsive evolution equations were investigated in the literature [33]. Moreover, the first
results of some biological dynamic models, economic dynamic models, and neural net-
works with double-almost-periodicity were established in Sect. 4 of [33] and also in [34].

4 Conclusion
This paper introduces the concept of ACCTS and establishes a type of functions with
double-almost-periodicity. Then, by introducing the concept of almost-uniform conver-
gence for piecewise functions on ACCTS and using measure theory on time scales, some
composition theorems of WPDAP and the completeness of the function space are ob-
tained. The basic results established in this paper can be applied to study weighted pseudo-
double-almost-periodic solutions for impulsive dynamic equations or other types of math-
ematical dynamic models in the real world.
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