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Abstract
This paper is committed to introducing some Bihari type inequalities for scalar
functions of one independent variable under an initial condition associated with an
arbitrary time scale T. The integrals involve the maximum of an unknown function
over a past time interval. We not only solve some new estimated bounds of a specific
class of retarded and nonlinear dynamic inequalities but also derive and unify
continuous inequalities along with the corresponding discrete analogs of some
known results with ‘maxima’ on time scales. We illustrate some applications of the
considered inequalities to represent the advantages of our work. The main results will
be proved by utilizing some examination procedures and the basic technique of
Keller’s chain rule on time scales.
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1 Introduction
Integral and differential inequalities have turned out to be important devices in the investi-
gation of the differential and integral equations that happen in nature or are built by several
mathematicians (see [1–3]). At whatever point there is an exchange about the significance
of research work for boundedness, global existence, the stability of the solutions of dif-
ferential and integral inequalities, the reality cannot be refused, i.e., Gronwall–Bellman
inequality, Bihari inequality, and their different speculations play a critical role in giving
explicit bounds of differential, integral, and also of difference equations. In 1919, Gronwall
[4] found a famous inequality and concluded that

0 ≤ r(v) ≤
∫ v

m

[
lr(u) + k

]
du, v ∈ M, (1)

where r is a continuous function defined on the interval M = [m, m + n] and m, l, k, n are
nonnegative constants. Inequality (1) played a significant part in the study of differential
equations and difference equations. From that point onward, Bellman [5] showed a linear
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version of Gronwall’s inequality (1):

r(v) ≤ b +
∫ v

m
j(u)r(u) du, v ∈ [m, n], (2)

r and j are continuous nonnegative functions defined on [m, n], and b is a nonnegative
constant. Bellman [5], further, gave a generalization of (2) where he replaced a constant b
by a nondecreasing function b(v) as

r(v) ≤ b(v) +
∫ v

0
j(u)r(u) du, v ∈R+, (3)

and r, b, j ∈ C(R+,R+). After the revelation of the fundamental inequality coming about
as a result of Gronwall, numerous mathematicians have discussed the initial kind of this
inequality and its applications, for which we may refer to [6–11] and the references cited
therein. Ferreira et al. [12] studied the following inequality:

χ
(
r(v)

) ≤ b(v) +
∫ v

0

[
j(u, x)ς1

(
r(x)

)
ς2

(
r(x)

)
+ d(u, x)ς1

(
r(x)

)]
dx, v ∈ R+. (4)

Sometimes, the above mentioned inequalities are not directly applicable in the study of
certain nonlinear retarded differential and integral equations. Therefore, it is attractive to
locate some new estimates where non-retarded term v is changed into retarded argument
ρ(v) in certain situations. Closely related to this type, the following new retarded nonlinear
integral inequalities were established by El-Owaidy et al. [13]:

r(v) ≤ b(v) +
∫ v

m
j(u)rα(u) du +

∫ ρ(v)

m
q(u)rα(u) du

and

rα(v) ≤ bα(v) +
∫ v

m
j(u)rα(u) du +

∫ ρ(v)

m
q(u)rβ (u) du.

This century has seen significant and productive inquire about retarded integral inequal-
ities in the field of inequalities and their applications in different parts of science (see [14,
15]).

During the recent years there has been an increasing interest in the investigation of norm
inequalities for evolution equations, boundedness of integral operators in the functional
spaces with variable exponents, and also in the applications of the boundedness properties
of singular integral operators with discontinuous coefficients of new regularity theory of
partial differential equations in [16–18].

Differential equations with maxima are a special kind of differential equations that con-
sists of the maximum of unknown functions. During the last years, a few authors studied
integral inequalities with maxima in order to get the explicit bounds (see [19–22]). Hris-
tova et al. [23] in 2010 mentioned the integral inequality with maxima of the form

⎧⎪⎪⎨
⎪⎪⎩

r(v) ≤ b +
∫ v

v0
[j(u)r(u) + d(u) maxφ∈[u–n,u] r(φ)] du

+
∫ ρ(v)
ρ(v0)[g(u)r(u) + a(u) maxφ∈[u–n,u] r(φ)] du, for v ∈ [v0, T),

r(v) ≤ ψ(v), for v ∈ [ρ(v0) – n, v0],
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v0 > 0, T ≥ v0. T could be equal to ∞, and n = constant > 0, b = constant > 0, with b ≤
maxv∈[ρ(v0)–n,ρ(v0)] ψ(v).

On the opposite side, Hilger [24] was the prime analyst who started the advancement of
calculus of time scales and expanded various theories of both difference and differential
equations in a predictable way. In the course of recent years, many dynamic inequalities
have been studied by different authors (see [25–29] and the references therein). At the
beginning, Bohner et al. [30] unified the continuous form of (3) as follows:

r(v) ≤ b(v) +
∫ v

v0

j(u)r(u)	u, v ∈ T,

provided r, j are right-dense continuous functions, r ≥ 0 is a regressive right-dense con-
tinuous function, and T is a time scale.

Later in 2009, Li [31] obtained the following integral inequality:

r(v) ≤ r0 +
∫ v

v0

[
j(u)r(u) + p(u)

]
	u +

∫ v

v0

f (u)
[
g(u, z)r(z)	z

]
	u,

and g(u, z) ≥ 0, g	(u, z) ≥ 0 for v, z ∈ T and z ≤ v. Recently, Feng et al. [32] discovered
inequality (4) via time scales by

χ
(
r(v)

) ≤ b(v) +
∫ v

0

[
j(u, x)ς1

(
r(x)

)
ς2

(
r(x)

)
+ d(u, x)ς2

(
r(x)

)]
	x

+
∫ v

0

∫ x

0
a(ξ )ς2

(
r(ξ )

)
]	ξ	x.

As far as we could possibly know, there are not large amount of papers in which the non-
linear integral inequalities on time scales with ‘maxima’ have been established. To fill this
gap, and based on the knowledge of the above work, in this article, we will explore the
following nonlinear integral inequalities that have been built up for the solution of the in-
tegral inequalities where maxima of the scalar unknown functions are engaged with the
integral on time scales.

⎧⎪⎪⎨
⎪⎪⎩

ς1(r(v)) ≤ b +
∫ v

v0
j(v, x)ς2(r(x))	x

+
∫ ρ(v)
ρ(v0) d(v, s)ς1(maxφ∈[τx,x]T r(φ)) ◦ ρ–1(x)	̄x, v ∈ T0,

ς1(r(v)) ≤ ψ(v), v ∈ [τμ, v0]T,

(5)

⎧⎪⎪⎨
⎪⎪⎩

r(v) ≤ b(v) +
∫ v

v0
j(v, x)ς1(r(x))

× [rβ (x) +
∫ ρ(v)
ρ(v0) d(s)ς2(maxφ∈[τλ,λ]T r(φ)) ◦ ρ–1(λ)	̄λ]α	x, v ∈ T0,

r(v) ≤ ψ(v), v ∈ [τμ, v0]T,

(6)

⎧⎪⎪⎨
⎪⎪⎩

rα(v) ≤ bα +
∫ v

v0
j(v, x)ς1(r(x))

× [ς2(r(x)) +
∫ ρ(v)
ρ(v0) d(x, s)ς2(maxφ∈[τλ,λ]T r(φ)) ◦ ρ–1(λ)	̄λ]	x, v ∈ T0,

r(v) ≤ ψ(v), v ∈ [τμ, v0]T,

(7)
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ς1(r(v)) ≤ b(v) +
∫ v

v0
ς2(r(x))[j(v, x)ς1(maxφ∈[τx,x]T r(φ)) + p(x)]	x

+
∫ v

v0
ς2(r(x))j(v, x)[

∫ ρ(v)
ρ(v0) d(x, s)ς1(maxφ∈[τλ,λ]T r(φ)) ◦ ρ–1(λ)	̄λ]	x,

v ∈ T0,

ς1(r(v)) ≤ ψ(v), v ∈ [τμ, v0]T.

(8)

These kinds of inequalities have many applications, when one wants to study the exis-
tence and uniqueness of the solutions of a differential equation (see [33–35]). The results
of our research depend on the law that maxima are taken on the intervals [τv, v], where
0 < τ < 1; however, previously in most papers, the maxima on the interval was held on
[v – n, v] and n > 0. Toward the finish of this article, some applications are presented to ex-
amine the uniqueness and global existence of solutions for the following class of boundary
value problems of nonlinear delay dynamic integral equations:

(
rα

)	(v) = G(v, x, r(x),
∫ v

v0

Z
(

v, x, max
φ∈[τx,x]T

r(φ)	x
)

, (9)

provided that

⎧⎨
⎩

r(v0) = k,

r(v) ≤ ψ(v), v ∈ [τμ, v0]T.
(10)

The remaining parts of the paper are organized as follows. In Sect. 2, we narrate funda-
mental facts and preliminary lemmas that are key tools for our main results. The theoret-
ical discussions with some concluding remarks are presented in Sect. 3. The last section
is devoted to illustrating the applications of the abstract results.

2 Basic concepts and lemmas on time scales
A time scale T is a nonempty closed subset of the real line R. For v ∈ T, the forward jump
operator  : T → R is defined by  (v) = inf{n ∈ T : n > v}, the backward jump operator
ς : T → R by ς (v) = sup{n ∈ T : n < v}, and the graininess function ξ : T → [0,∞) by
ξ (v) =  (v) – v. An element v ∈ T is said to be right-dense if  (v) = v and right-scattered
if  (v) > v, left-dense if ς (v) = v, and left-scattered if ς (v) < v. The set Tk is defined to be
T if it has left-scattered maximum g , then T

k = T – {g}; otherwise, Tk = T. � defines the
set of all regressive and rd-continuous functions and �+ = {q ∈ � : 1 + ψ(v)q(v) > 0, v ∈ T}.
It is expected that the reader must be acquainted with the information and fundamental
ideas about the analytics on time scales. For further details on time scale analysis, we refer
the reader to the excellent monograph by Bohner [36] which summarizes and organizes
much of the time scale calculus.

Next, some essential lemmas on time scales, which will be needed in the proofs of the
presented paper, are listed.

Lemma 2.1 ([26]) Let m, n ∈ T and α > 1. Assume that r : T →R is delta differentiable at
v ∈ T

k and nonnegative increasing function on [m, n]T. Then

αrα–1(v)r	(v) ≤ (
rα(v)

)	 ≤ α
(
rσ (v)

)α–1r	(v).
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Lemma 2.2 ([31]) If j ∈ �, v ∈ T, then the exponential function ej(v, v0) is the unique solu-
tion of the following initial value problem:

⎧⎨
⎩

r	(v) = j(v)r(v),

r(v0) = 1.

Lemma 2.3 ([30]) Assume that r : T →R is delta differentiable at v ∈ T
k . Then

rσ (v) = r(v) + ψ(v)r	(v).

Lemma 2.4 ([30]) Assume that r : T →R is delta differentiable at v ∈ T
k . Then

(
rk)	(v) =

{ k–1∑
s=0

rs(v)
[
rσ (v)

]k–1–s
}

r	(v).

Lemma 2.5 ([30] Chain rule) Let r : R → R be continuous differentiable, and suppose
Υ : T →R is delta differentiable. Then r ◦ Υ : T→ R is delta differentiable, and

(r ◦ Υ )	(v) =
{∫ 1

0

[
r′(Υ (v)

)
+ nψ(v)Υ 	(v))

]
dψ

}
Υ 	(v).

Lemma 2.6 ([31]) Let v0 ∈ T
k and Θ : T × T

k → R be continuous at (v, v), where v > v0

and v ∈ T
k . Assume that Θ	(v, ·) is rd-continuous on [v0,σ (v)]T. Suppose that, for every

ε > 0, there exists a neighborhood Ω of v, independent of η ∈ [v0,σ (v)]T, such that

∣∣[Θ(
σ (v),η

)
– Θ(s,η)

]
– Θ	(v,η)

[
σ (v) – s

]∣∣ ≤ ε
∣∣σ (v) – s

∣∣, s ∈ Ω ,

where Θ	 denotes the derivative of Θ with respect to the first variable. Then

r(v) =
∫ v

v0

Θ(v,η)	η

yields

r	(v) =
∫ v

v0

Θ	(v,η)	η + Θ
(
σ (v), v

)
.

Lemma 2.7 ([30]) If r	(v) ≥ 0, then r(v) is nondecreasing.

3 Results and discussion
Without loss of generality, throughout in this work, denote R+ = [0,∞) and v0 ∈ T, v0 ≥ 0,
T0 = [v0,∞) ∩ T and an interval [u, ζ ]T = [u, ζ ] ∩ T. Crd denotes the set of rd-continuous
functions. Moreover, for a strictly increasing function ρ : T →R, T̄ = ρ(T) is a time scale,
where T̄ ⊆ T. For j ∈ Crd(T,R), the composition of two functions on time scales is defined
by

j(u) ◦ ρ–1(λ) = j
(
ρ–1(λ)

)
, u ∈ T,λ ∈ T̄.
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Example 3.1 Let j(s) = 5s2 for s ∈ T: N
1
2
0 = {√n : n ∈ N0} and ρ(s) = s2 for s ∈ T. Therefore

we have ρ–1(s) =
√

s for s ∈ T̄ = N0 and

j(u) ◦ ρ–1(λ) =
(
5u2) ◦ √

λ = 5λ, λ ∈ T̄.

To prove our main results, we first list the following assumptions:
(D1) ψ ∈ Crd([τμ, v0]T,R+), where 0 < τ < 1 and μ = min[v0,ρ(v0)].
(D2) The function ρ ∈ Crd(T0,R+) is strictly increasing.
(D3) ς1,ς2 ∈ Crd(R+,R+) are continuous, nondecreasing functions with ςi(v) > 0 for

v > 0, (i = 1, 2).
(D4) r ∈ Crd([τμ,∞)T,R+).
(D5) The functions j(v, x), j	(v, x), d(v, x), d	(v, x) ∈ Crd(T0 ×T0,R+).
Now, it is time to state and prove our main theorems:

Theorem 3.2 If conditions (D1)–(D5) and relation (5) hold with b ≥ 0, then

r(v) ≤ ς–1
1

{
Λ–1

(
Φ–1

[
Φ

(
Λ

(
ς1(H)

)
+

∫ v

v0

j(v, x)	x
)

+
∫ v

v0

d(v, x)ρ	(x)	x
])}

, (11)

with

Φ

(
Λ

(
ς1(H)

)
+

∫ v

v0

j(v, x)	x
)

+
∫ v

v0

d(v, x)ρ	(x)	x ∈ Dom
(
Φ–1),

H = max
{
ς1(b), max

x∈[τμ,v0]T
ψ(x)

}
, (12)

(Λ ◦ y)	(v) =
y	(v)

ς2(ς–1
1 (y(v)))

, (13)

(Φ ◦ z)	(v) =
ς2(ς–1

1 (Λ–1(z(v))))z	(v)
Λ–1(z(v))

, (14)

where Λ and Φ are increasing bijective functions.

Proof Define a function y : [τμ,∞)T →R+ by

y(v) =

⎧⎪⎪⎨
⎪⎪⎩

ς1(H) +
∫ v

v0
j(v, x)ς2(r(x))	x

+
∫ ρ(v)
ρ(v0) d(v, s)ς1(maxφ∈[τx,x]T r(φ)) ◦ ρ–1(x)	̄x, v ∈ T0,

ς1(H), v ∈ [τμ, v0]T,

where H is as given in (12). Since the function y(v) is nondecreasing, so inequality (5)

ς1
(
r(v)

) ≤ y(v) ⇒ r(v) ≤ ς–1
1

(
y(v)

)
(15)

is satisfied. For v ∈ T0 and x ∈ [ρ(v0),ρ(v)]T, we get

ς1

(
max

φ∈[τx,x]T
r(φ)

)
◦ ρ–1(x) ≤ ς1

(
max

φ∈[τx,x]T
ς–1

1
(
y(φ)

)) ◦ ρ–1(x)

= ς1

(
max

φ∈[τρ–1(x),ρ–1(x)]T
ς–1

1
(
y(φ)

))

= y(s) ◦ ρ–1(x).
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Inequalities (5), (15) and the above analysis yield

y(v) ≤ ς1(H) +
∫ v

v0

j(v, x)ς2
(
ς–1

1
(
y(x)

))
	x

+
∫ ρ(v)

ρ(v0)
d(v, s)ς1

(
max

φ∈[τx,x]T

(
ς–1

1 y(φ)
)) ◦ ρ–1(x)	̄x

= ς1(H) +
∫ v

v0

j(v, x)ς2
(
ς–1

1
(
y(x)

))
	x +

∫ ρ(v)

ρ(v0)
d(v, s)y(s) ◦ ρ–1(x)	̄x

= ς1(H) +
∫ v

v0

j(v, x)ς2
(
ς–1

1
(
y(x)

))
	x +

∫ v

v0

d(v, x)y(x)ρ	(x)	x. (16)

Taking delta derivative (16) with respect to v and by using Lemma 2.6, we deduce

y	(v) ≤
∫ v

v0

j	(v, x)ς2
(
ς–1

1
(
y(v)

))
	x + j

(
σ (v), v

)
ς2

(
ς–1

1
(
y(x)

))

+
∫ v

v0

d	(v, x)y(x)ρ	(x)	x + d
(
σ (v), v

)
y(v)ρ	(v)

≤
{∫ v

v0

j	(v, x)	x + j
(
σ (v), v

)}
ς2

(
ς–1

1
(
y(v)

))

+
{∫ v

v0

d	(v, x)	x + d
(
σ (v), v

)}
y(v)ρ	(v),

which leads to

y	(v)
ς2(ς–1

1 (y(v)))
≤

{∫ v

v0

j(v, x)	x
}	

+
{∫ v

v0
d(v, x)	x}	y(v)ρ	(v)

ς2(ς–1
1 (y(v)))

. (17)

By integrating both sides of (17) from v0 to v, we have

Λ
(
y(v)

)
– Λ

(
y(v0)

) ≤
∫ v

v0

j(v, x)	x +
∫ v

v0

{∫ s

v0

d(s,η)	η

}	 y(s)ρ	(s)
ς2(ς–1

1 (y(s)))
	s.

Since Λ is increasing and using the fact that y(v0) = ς1(H), the last inequality takes the
form

y(v) ≤ Λ–1
[
Λ

(
ς1(H)

)
+

∫ v

v0

j(v, x)	x +
∫ v

v0

{∫ s

v0

d(s,η)	η

}	 y(s)ρ	(s)
ς2(ς–1

1 (y(s)))
	s

]
, (18)

denote

z(v) = Λ
(
ς1(H)

)
+

∫ v

v0

j(v, x)	x +
∫ v

v0

{∫ s

v0

d(s,η)	η

}	 y(s)ρ	(s)
ς2(ς–1

1 (y(s)))
	s. (19)

From (18) and (19), it is easy to observe that

y(v) ≤ Λ–1(z(v)
)

(20)
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and

z(v0) = Λ
(
ς1(H)

)
+

∫ v

v0

j(v, x)	x. (21)

It follows from (20), (21) and delta differentiate (19) with respect to v that

z	(v) =
{∫ v

v0

d	(v, x)	x + d
(
σ (v), v

)} y(v)ρ	(v)
ς2(ς–1

1 (y(v)))

≤
{∫ v

v0

d(v, x)	x
}	

Λ–1(z(v))ρ	(v)
ς2(ς–1

1 (Λ–1(z(v))))
,

which gives

ς2(ς–1
1 (Λ–1(z(v))))z	(v)

Λ–1(z(v))
≤

{∫ v

v0

d(v, x)	x
}	

ρ	(v). (22)

By integration (22) from v0 to v and from (14), (21), we obtain

z(v) ≤ Φ–1
[
Φ

(
Λ

(
ς1(H)

)
+

∫ v

v0

j(v, x)	x
)

+
∫ v

v0

d(v, x)ρ	(x)	x
]

, (23)

the conclusion in (11) follows upon substituting from (23) into (15) and (20). Details are
omitted. �

Some of the important remarks on Theorem 3.2 if τ → 1 without maxima are listed
below:

Remark 3.3 By taking b = a(v), which is nondecreasing, ς1(r) = rp, ς2(r) = ς (r), d(v, s) = 0,
whereas if b = a(v), ς1(r) = rp, ς2(r) = ς (r), d(v, s) = 0, j(v, x) = b(v)f (s), then Theorem 3.2
changes into [32], Theorem 3.1 and Theorem 3.2, respectively.

Remark 3.4 It is quite impressive to know that, as a peculiar case, Theorem 3.2 reduces to
[6], Theorem 3.1 by putting b = r0, ς1(r) = rp, ς2(r) = rq, j(v, x) = h(x), d(v, s) = f (s), ρ(v0) =
0, ρ(v) ≤ v if T = R.

Remark 3.5 If ς1(r) = rp, d(v, s) = 0, b = a(v), v0 = 0, j(v, x) = b(v)f (x), so Theorem 3.2 can
be converted into the inequality proved by Pachpatte [7], Theorem 4(d3) with T = Z and
[12], Theorem 2(b3) with T = R.

Remark 3.6 If T = R, ς1(r) = r, v0 = 0, b = k(v), ς2(r) = ς (r), d(v, s) = 0, then we can easily
get the inequality in [28], Theorem 2.1 from Theorem 3.2.

Theorem 3.7 Suppose that the inequalities of (6) and conditions (D1)–(D4) are fulfilled,
also

(i) b(v) ∈ Crd(T0, (0,∞)) is nondecreasing,
(ii) The functions j(v, x), j	(v, x) ∈ Crd(T0 ×T0,R+), d(v) ∈ Crd(T0,R+),
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(iii) maxv∈[τμ,v0]T Ψ (v) ≤ b(v0), then

r(v) ≤ Λ–1
1

{
Φ–1

1

[
Φ1

(
Λ1

(
b(v)

)
+

∫ v

v0

d(x)ρ	(x)	x
)

+
∫ v

v0

j(v, x)ρ	(x)	x
]}

, (24)

such that α > 0, β ≥ 1, α + β > 1, and

Φ1

(
Λ1

(
b(v)

)
+

∫ v

v0

d(x)ρ	(x)	x
)

+
∫ v

v0

j(v, x)ρ	(x)	x ∈ Dom
(
Φ–1

1
)
,

(Λ1 ◦ Q)	(v) =
Q	(v)

ς2(Q(v))
, (25)

(Φ1 ◦ L)	(v) =
ς2(Λ–1

1 (L(v)))L	(v)

ς1(Λ–1
1 (L(v)))[Λ–1

1 (L(σ (v)))]
β+αβ–1

β

. (26)

Proof Fix arbitrary v∗ ∈ T0 for v ∈ [v0, v∗] ∩T and denote a function y : [τμ,∞)T →R+ in
(6), therefore

y(v) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b(v∗) +
∫ v

v0
j(v, x)ς1(r(x))

× [rβ (x) +
∫ ρ(v)
ρ(v0) d(s)ς2(maxφ∈[τλ,λ]T r(φ)) ◦ ρ–1(λ)	̄λ]α	x,

v ∈ [v0, v∗] ∩T,

b(v0), v ∈ [τμ, v0]T.

Clearly y(v) is nondecreasing, so that (6)

r(v) ≤ y(v) (27)

holds. For v ∈ [v0, v∗] ∩T and x ∈ [ρ(v0),ρ(v)]T, we have

max
φ∈[τλ,λ]T

r(φ) ◦ ρ–1(x) ≤ max
φ∈[τλ,λ]T

y(φ) ◦ ρ–1(x)

= max
φ∈[τρ–1(λ),ρ–1(λ)]T

y(φ)

= y(s) ◦ ρ–1(λ). (28)

The combination of (6), (27), and (28) gives

y(v) ≤ b
(
v∗) +

∫ v

v0

j(v, x)ς1
(
y(x)

)[
yβ (x) +

∫ ρ(v)

ρ(v0)
d(s)ς2

(
y(s)

) ◦ ρ–1(λ)	̄λ

]α

	x

= b
(
v∗) +

∫ v

v0

j(v, x)ς1
(
y(x)

)[
yβ (x) +

∫ x

v0

d(s)ς2
(
y(s)

)
ρ	(s)	s

]α

	x.
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The definition of y(v) and Lemma 2.6 implies that

y	(v) =
{∫ v

v0

j	(v, x)	x + j
(
σ (v), v

)}[
yβ (v) +

∫ v

v0

d(s)ς2
(
y(s)

)
ρ	(s)	s

]α

ς1
(
y(v)

)

=
{∫ v

v0

j(v, x)	x
}	

Qα(v)ς1
(
y(v)

)
, (29)

where

Q(v) = yβ (v) +
∫ v

v0

d(s)ς2
(
y(s)

)
ρ	(s)	s, (30)

and

yβ (v) ≤ Q(v) ⇒ y(v) ≤ Q
1
β (v), (31)

yσ (v) ≤ Q
1
β
(
σ (v)

)
(32)

for all v ∈ [v0, v∗] ∩ T, but β ≥ 1. Delta differentiation (30), utilizing Q(v) ≤ Qσ (v),
Lemma 2.1, Lemma 2.6, (29), (31), (32), we derive that

Q	(v) = β
(
yσ (v)

)β–1y	(v) + d(v)ς2
(
y(v)

)
ρ	(v)

≤ β
(
Qσ (v)

) β–1
β

{∫ v

v0

j(v, x)	x
}	

Qα(v)ς1
(
Q(v)

)
+ d(v)ς2

(
Q(v)

)
ρ	(v)

= β

{∫ v

v0

j(v, x)	x
}	

ς1
(
Q(v)

)(
Qσ (v)

) β+αβ–1
β + d(v)ς2

(
Q(v)

)
ρ	(v).

Since ς2(Q(v)) > 0 for v > 0, hence

Q	(v)
ς2(Q(v))

≤ β

{∫ v

v0

j(v, x)	x
}	

ς1(Q(v))(Qσ (v))
β+αβ–1

β

ς2(Q(v))
+ d(v)ρ	(v). (33)

Taking integral of both sides of (33) from v0 to v, using (25) and Q(v0) = bβ (v∗), we get

Q(v) ≤ Λ–1
1

(
Λ1

(
bβ

(
v∗)) +

∫ v∗

v0

d(x)ρ	(x)	x

+ β

∫ v

v0

{∫ v

v0

j(v, x)	x
}	

ς1(Q(v))(Qσ (v))
β+αβ–1

β

ς2(Q(v))
	x

)

= Λ–1
1

(
L(v)

)
, (34)

where

L(v) = Λ1
(
bβ

(
v∗)) +

∫ v∗

v0

d(x)ρ	(x)	x

+ β

∫ v

v0

{∫ v

v0

j(v, x)	x
}	

ς1(Q(v))(Qσ (v))
β+αβ–1

β

ς2(Q(v))
	x, (35)



Khan Boundary Value Problems        (2019) 2019:146 Page 11 of 17

and L(v) is a positive nondecreasing function with

L
(
v∗) = Λ1

(
bβ

(
v∗)) +

∫ v∗

v0

d(x)ρ	(x)	x, (36)

Qσ (v) ≤ Λ–1
1

(
L
(
σ (v)

))
. (37)

Following the same steps from (29)–(33) with suitable changes and substituting (25), (34),
(36) in (35), we have

L
(
v∗) ≤ Φ–1

1

[
Φ1

(
Λ1

(
b
(
v∗)) +

∫ v∗

v0

d(x)ρ	(x)	x
)

+
∫ v∗

v0

j(v, x)ρ	(x)	x
]

, (38)

v∗ ∈ T0 is chosen, therefore the required estimate in (24) can be obtained by combining
(27), (31), (34), and (38). The proof is completed. �

Remark 3.8 If T = R, τ tends to 1, b(v) = r0 (any constant), α = p, β = q, v0 = ρ(v0) = 0
and j(v, x) = f (v) in Theorem 3.7, then we get the inequality obtained by Abdeldaim and
El-Deeb in [15], Theorem 2.5 without maxima.

Theorem 3.9 If relation (7) under assumptions (D1)–(D5) is satisfied, then

r(v) ≤
[
Θ–1

{
Ω–1

(
Ω

(
Θ

(
H�

))
+

∫ v

v0

j(v, x)
[

1 +
∫ x

v0

d(x,λ)ρ	(λ)	λ

]
	x

)}] 1
α

, (39)

with

Ω
(
Θ

(
H�

))
+

∫ v

v0

j(v, x)
[

1 +
∫ x

v0

d(x,λ)ρ	(λ)	λ

]
	x ∈ Dom

(
Ω–1),

H� = max
{

bα , max
x∈[τμ,v0]T

ψ(x)
}

, (40)

where Θ and Ω are increasing bijective functions defined by

(Θ ◦ q)	(v) =
q	(v)

ς1(q 1
α (v))

, (41)

(Ω ◦ a)	(v) =
a	(v)

ς2(Θ–1(a 1
α (v)))

(42)

for α > 1.

Proof Defining q : [τμ,∞)T →R+ by

q(v) =

⎧⎪⎪⎨
⎪⎪⎩

H� +
∫ v

v0
j(v, x)ς1(r(x))[ς2(r(x))

+
∫ ρ(v)
ρ(v0) d(x, s)ς2(maxφ∈[τλ,λ]T r(φ)) ◦ ρ–1(λ)	̄λ]	x, v ∈ T0,

H�, v ∈ [τμ, v0]T,
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where H� is as mentioned in (40). Obviously q(v) is a nondecreasing function, so (7) is
equivalent to

rα(v) ≤ q(v) ⇒ r(v) ≤ q
1
α (v). (43)

For v ∈ T0 and x ∈ [ρ(v0),ρ(v)]T, we get

max
φ∈[τλ,λ]T

r(φ) ◦ ρ–1(λ) ≤ max
φ∈[τλ,λ]T

q
1
α (φ) ◦ ρ–1(λ)

= max
φ∈[τρ–1(λ),ρ–1(λ)]T

q
1
α (φ)

= q
1
α
(
ρ–1(λ)

)
= q

1
α (s) ◦ ρ–1(λ).

Inequalities (7), (43) and the last verification show

q(v) ≤ H� +
∫ v

v0

j(v, x)ς1
(
q

1
α (x)

)[
ς2

(
q

1
α (x)

)
+

∫ ρ(v)

ρ(v0)
d(x, s)ς2

(
q

1
α (s)

) ◦ ρ–1(λ)	̄λ

]
	x

= H� +
∫ v

v0

j(v, x)ς1
(
q

1
α (x)

)[
ς2

(
q

1
α (x)

)
+

∫ v

v0

d(x, s)ς2
(
q

1
α (s)

)
ρ	(λ)	λ

]
	x. (44)

Delta differentiation of (44) and applying Lemma 2.6, we notice that

q	(v)
ς1(q 1

α (v))
≤

{∫ v

v0

j(v, x)	x
}	[

ς2
(
q

1
α (v)

)
+

∫ v

v0

d(v, s)ς2
(
q

1
α (s)

)
ρ	(λ)	λ

]
,

which, by employing (41), implies the estimate

q(v) ≤ Θ–1
{
Θ

(
H�

)
+

∫ v

v0

j(v, x)
(

ς2
(
q

1
α (v)

)
+

∫ v

v0

d(v, s)ς2
(
q

1
α (s)

)
ρ	(λ)	λ

)
	x

}

≤ Θ–1(a(v)
)

(45)

such that

a(v) ≤ Θ
(
H�

)
+

∫ v

v0

j(v, x)
(

ς2
(
q

1
α (v)

)
+

∫ v

v0

d(v, s)ς2
(
q

1
α (s)

)
ρ	(λ)	λ

)
	x. (46)

Similarly, taking delta derivative of (46), using Lemma 2.6, then integrating the resultant
inequality from v0 to v with a(v0) = Θ(H�), we obtain

Ω–1
(

Ω
(
Θ

(
H�

))
+

∫ v

v0

j(v, x)
[

1 +
∫ x

v0

d(x,λ)ρ	(λ)	λ

]
	x

)
.

The desired bound in (39) can be acquired by putting the above inequality in (43) and (45).
The proof is done. �

Remark 3.10 Inequality (7) of Theorem 3.9 converts into the inequality given in [14],
Theorem 2.1 without maxima, if we take, τ tends to 1, b(v) = r0 (any constant), α = 1,
v0 = ρ(v0) = 0, j(v, x) = f (x), d(x, s) = d(s), ς1 = ς2 = ς , and T = R.
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Theorem 3.11 Assume conditions (D1)–(D5),
(i) of Theorem 3.7,

(ii) p ∈ Crd(T0,R+),
(iii) maxv∈[τμ,v0]T Ψ (v) ≤ ς1(b(v0)), and relation (8) hold. Then

r(v) ≤ ς–1
1

{
Λ–1

(
M–1

[
M

(
Λ

(
ς1

(
b(v)

)
+

∫ v

v0

p(x)	x
))

+
∫ v

v0

j(v, x)
(

1 +
∫ x

v0

d(x,λ)ρ	(λ)	λ

)
	x

])}
,

provided that

M
(

Λ

(
ς1

(
b(v)

)
+

∫ v

v0

p(x)	x
))

+
∫ v

v0

j(v, x)
(

1 +
∫ x

v0

d(x,λ)ρ	(λ)	λ

)
	x ∈ Dom

(
M–1),

Λ is defined as in (13) and

(M ◦ z)	(v) =
z	(v)

Λ–1(z(v))
.

Proof Fixing v∗ ∈ T0 for v ∈ [v0, v∗] ∩T and denoting a function y : [τμ,∞)T →R+ in (8),
we obtain

y(v) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ς1(b(v∗)) +
∫ v

v0
ς2(r(x))[j(v, x)ς1(maxφ∈[τx,x]T r(φ)) + p(x)]	x

+
∫ v

v0
ς2(r(x))j(v, x)[

∫ ρ(v)
ρ(v0) d(x, s)ς1(maxφ∈[τλ,λ]T r(φ)) ◦ ρ–1(λ)	̄λ]	x,

v ∈ [v0, v∗] ∩T,

ς1(b(v0)), v ∈ [τμ, v0]T.

Since y(v) is nondecreasing, then from (8) we have

r(v) ≤ ς–1
1

(
y(v)

)
.

For v ∈ [v0, v∗] ∩T and x ∈ [v0, v]T, we get

ς1 max
φ∈[τx,x]T

r(φ) ≤ ς1 max
φ∈[τx,x]T

ς–1
1

(
r(φ)

)
= r(s).

Similarly, for v ∈ [v0, v∗] ∩T and x ∈ [ρ(v0),ρ(v)]T, we have

max
φ∈[τλ,λ]T

r(φ) ◦ ρ–1(x) ≤ max
φ∈[τλ,λ]T

y(φ) ◦ ρ–1(x)

= max
φ∈[τρ–1(λ),ρ–1(λ)]T

y(φ)

= y(s) ◦ ρ–1(λ).

The remaining proof of Theorem 3.11 follows from a suitable application of Theorem 3.2.
Here, we omit the details. �
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Remark 3.12 As a special case of delta derivative on time scales without maxima, if
ς1(r) = r, ς2 = 1, ρ(v) ≤ v, j(v, x) = f (v), b(v) = r0, τ → 1 in Theorem 3.11, then it reduces
to Theorem 3.1 due to Li [31].

Remark 3.13 In addition to the above remark, ρ(v) = 0 and d(x,λ) = g(λ), Theorem 3.11
transfers into [8] of Theorem 1.

Remark 3.14 We can obtain from Theorem 3.11, the continuous and discrete type of in-
equality studied by Pachpatte [7], Theorem 2.1 (a1), and Theorem 2.3 (c1) if T = R and
T = Z added with Remark 3.12 and ρ(v) = 0 respectively.

4 Application
In this section, we illustrate some applications of Theorem 3.9 to study certain properties
of solutions of differential equations with maxima. Let us consider (9)–(10), where G ∈
Crd(T2

0 ×R
2,R), Z ∈ Crd(T2

0 ×R,R), r ∈ Crd(T0,R+), ψ ∈ ([τv0, v0]T,R), 0 < τ < 1, and k, μ
are constants such that τμ ≤ v0.

The subsequent corollary deals with the global existence on the solutions of (9).

Corollary 4.1 Suppose that:
(i) There exists ρ ∈ Crd(T0,R+) that is strictly increasing, i.e., ρ(T) = T̄ is a time scale

and min[v0,ρ(v0)] = T.
(ii) n(v, x), n	(v, x),ρ	, m(v, x), m	(v, x) ∈ Crd(T0 ×T0,R+) are the functions.

(iii) The continuous and nondecreasing functions ξ1, ξ2 ∈ Crd(R+,R+) with ξj(v) > 0 for
v > 0, (j = 1, 2) and

∣∣G(v, x, y, z)
∣∣ ≤ n(v, x)ξ1|y|

[
ξ2|y| + |z|], (47)

∣∣Z(v, x, y)
∣∣ ≤ m(v, x)ξ2|y|ρ	(x) (48)

for v ∈ T0, y, z ∈R, then r(v) is a solution of (9)–(10) and implies the estimate

∣∣r(v)
∣∣ ≤

[
Θ̄–1

{
Ω̄–1

(
Ω̄

(
Θ̄(Q)

)

+
∫ v

v0

n(u, x)
[

1 +
∫ u

v0

m(u,λ)ρ	(λ)	λ

]
	x

)}] 1
α

, (49)

where α > 1,

Ω̄
(
Θ̄(Q)

)
+

∫ v

v0

n(u, x)
[

1 +
∫ u

v0

m(u,λ)ρ	(λ)	λ

]
	x ∈ Dom

(
Ω̄–1),

Q = max
{

kα , max
x∈[τμ,v0]T

ψ(x)
}

,

(Θ̄ ◦ q)	(v) =
q	(v)

ξ1(q 1
α (v))

,

(Ω̄ ◦ a)	(v) =
a	(v)

ξ2(Θ–1(a 1
α (v)))

.
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Proof Clearly r(v) is a solution of (9) with (10) and can take the form

rα(v) = kα +
∫ v

v0

(G
(

u, x, r(x),
∫ u

v0

Z
(

u, s, max
φ∈[τx,x]T

r(φ)
)
	s

)
	x. (50)

Employing conditions (47) and (48), it follows from (50) that

∣∣rα(v)
∣∣ ≤

∣∣∣∣kα +
∫ v

v0

(G
(

u, x, r(x),
∫ u

v0

Z
(

u, s, max
φ∈[τx,x]T

r(φ)
)
	s

)
	x

∣∣∣∣

≤ ∣∣kα
∣∣ +

∣∣∣∣
∫ v

v0

(G
(

u, x, r(x),
∫ u

v0

Z
(

u, s, max
φ∈[τx,x]T

r(φ)
)
	s

)
	x

∣∣∣∣

≤ ∣∣kα
∣∣ +

∫ v

v0

∣∣∣∣(G
(

u, x, r(x),
∫ u

v0

Z
(

u, s, max
φ∈[τx,x]T

r(φ)
)
	s

)∣∣∣∣	x

≤ ∣∣kα
∣∣ +

∫ v

v0

n(u, x)ξ1
∣∣r(x)

∣∣
[
ξ2

∣∣r(x)
∣∣

+
∫ u

v0

m(u, s)ξ2

(
max

φ∈[τx,x]T

∣∣r(φ)
∣∣)ρ	(s)	s

]
	x.

Applying the same argument as in the proof of Theorem 3.9 to the above inequality
yields

∣∣r(v)
∣∣ ≤

[
Θ̄–1

{
Ω̄–1

(
Ω̄

(
Θ̄(Q)

)
+

∫ v

v0

n(u, x)
[

1 +
∫ u

v0

m(u,λ)ρ	(λ)	λ

]
	x

)}] 1
α

,

which is the desired estimate in (49). This completes the proof. �

Corollary 4.2 Let the following conditions be satisfied:

∣∣G(v, x, y1, z1) – G(v, x, y2, z2)
∣∣ ≤ n(v, x)

(
ξ1|y1| – ξ1|y2|

)

× [(
ξ2|y1| – ξ2|y2|

)
+

(|z1| + |z2|
)]

, (51)
∣∣Z(v, x, y1) – Z(v, x, y2)

∣∣ ≤ m(v, x)
(
ξ2|y1| – ξ2|y2|

)
ρ	(x), (52)

where m, n, ξ1, ξ2, ρ , r are defined as in Corollary 4.1. Then the delay dynamic equation
(9) with (10) has at most one solution.

Proof If r1(v) and r2(v) are solutions of (9), then we obtain

rα
1 (v) – rα

2 (v) =
∫ v

v0

(G
(

u, x, r1(x),
∫ u

v0

Z
(

u, s, max
φ∈[τx,x]T

r1(φ)
)
	s

)
	x

–
∫ v

v0

(G
(

u, x, r2(x),
∫ u

v0

Z
(

u, s, max
φ∈[τx,x]T

r2(φ)
)
	s

)
	x.

Using hypotheses (51) and (52) to the previous equation, we have

∣∣rα
1 (v) – rα

2 (v)
∣∣ ≤

∫ v

v0

n(u, x)
(
ξ1

∣∣r1(x)
∣∣ – ξ1

∣∣r2(x)
∣∣)

[(
ξ2

∣∣r1(x)
∣∣ – ξ2

∣∣r2(x)
∣∣)

+
∫ u

v0

m(u, s)
(
ξ2 max

φ∈[τx,x]T

∣∣r1(φ)
∣∣ – ξ2 max

φ∈[τx,x]T

∣∣r2(φ)
∣∣))ρ	(s)	s

]
	x.
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Applying the same procedure of Theorem 3.9 with suitable changes to the function |rα
1 (v)–

rα
2 (v)| in the last inequality, we get

∣∣rα
1 (v) – rα

2 (v)
∣∣ ≤ 0, v ∈ T0.

Hence r1(v) = r2(v). Thus the delay dynamic equation (9) with (10) has one positive solu-
tion. The proof is completed. �

Now, we will examine the nonlinear delay integral equation (9) with the condition r(v) ≤
Ψ (v), v ∈ [τμ, v0]T, and α = 1.

Example 4.3 Assume that conditions (i) and (ii) of Corollary 4.1 are fulfilled, also

∣∣G(v, x, r, y)
∣∣ ≤ n(v, x)

[√|r| + m(v, x)
√|y|ρ	(x)

]
. (53)

Then the solution r(v) satisfies

∣∣r(v)
∣∣ ≤ 1

4

(
2
√∣∣Ψ (v0)

∣∣ +
∫ v

v0

n(u, x)
[

1 +
∫ u

v0

m(u, s)ρ	(s)	s
]
	

)2

. (54)

Proof It is easy to see that r(v) satisfies the following integral equation:

r(v) = Ψ (r0) +
∫ v

v0

(G
(

u, x, r(x),
∫ u

v0

Z
(

u, s, max
φ∈[τx,x]T

r(φ)
)
	s

)
	x.

From (53) and the above equation, we get

∣∣r(v)
∣∣ ≤ ∣∣Ψ (r0)

∣∣ +
∫ v

v0

∣∣∣∣(G
(

u, x, r(x),
∫ u

v0

Z
(

u, s, max
φ∈[τx,x]T

r(φ)
)
	s

)∣∣∣∣	x

≤ ∣∣Ψ (r0)
∣∣ +

∫ v

v0

n(u, x)
[√∣∣r(x)

∣∣ +
∫ u

v0

m(u, s)
√

max
φ∈[τx,x]T

∣∣r(φ)
∣∣ρ	(s)	s

]
	x.

The required inequality (54) can be obtained by closely looking at the proof of Theorem 3.9
with suitable modifications to the previous inequality. By the comparison of Theorem 3.9
and (54), it is noticed that b = |Ψ (r0)|, α = 1, ς1(r) = 1, ς2(r) =

√
r, Ω(r) = 2

√
r, and Ω–1(r) =

1
4 r2. �
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