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1 Introduction
In this article, we investigate a class of nonlinear problems in the Orlicz–Sobolev setting:

⎧
⎨

⎩

– div(a(|∇u|)|∇u|) = λg(u) + f (x, u), in Ω ,

u = 0, on ∂Ω ,
(1.1)

where Ω is a bounded domain with smooth boundary ∂Ω , λ is a positive constant. a(t) is
such that

ϕ(t) :=

⎧
⎨

⎩

a(|t|)t, t �= 0,

0, t = 0

is an odd, increasing homeomorphism from R to R. g is an odd, increasing homeomor-
phism from R to R with (ϕ0 – 1) sublinear (see condition (g1)), f ∈ C(Ω ×R,R), f (x, 0) = 0
with (ϕ0 – 1) superlinear near infinity (see condition (f3)).

When a(|t|)t = |t|2t with 1 < p < ∞, problem (1.1) reads as follows:

⎧
⎨

⎩

–�pu = f (x, u), in Ω ,

u = 0, on ∂Ω .
(1.2)
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The key hypothesis imposed on f is the well-known Ambrosetti–Rabinowitz type con-
dition (AR-condition for short) [1]: there exist τ > p, t0 > 0 such that

0 < τF(x, t) =
∫ t

0
f (x, s) ds ≤ tf (x, t), ∀x ∈ Ω , |t| ≥ t0. (1.3)

It is noted that the AR-condition ensures that f is (p – 1) superlinear at infinity.
However, the AR-condition is restrictive for many nonlinearities. Consequently, there

have been many efforts to remove (1.3). In the case of p = 2, Miyagaki and Souto [2] intro-
duced the following monotone condition: there is s0 > 0 such that

f (x, s)
s

is increasing in s ≥ s0 and decreasing in s ≤ –s0, ∀x ∈ Ω . (1.4)

Li and Yang [3] developed (1.4) to the case of p > 1. Meanwhile, Li and Yang [3] proved
that (1.4) implied the following weaker condition: there is C∗ > 0 such that, for all s ∈ [0, 1],

F(x, st) ≤ F(x, t) + C∗, ∀(x, t) ∈ Ω ×R, F(x, t) = tf (x, t) – pF(x, t), (1.5)

which is due to Jeanjean [4] and is used in [5, 6] and so on.
Ambrosetti, Brezis, and Cerami [7] initiated the study of semilinear elliptic problems

with concave and convex nonlinearities. They investigated (1.1) with nonlinearities of the
type λ

p
u + uq, 0 < q < 1 < p and obtained the existence of two positive solutions for small

λ > 0 by using sub- and super-solutions. Wu [8] studied problem (1.1) in the case when
nonlinear terms exhibit up + λf (x)uq with 0 < q < 1 < p < 2∗ and obtained two positive so-
lutions by Nehari manifold. Later, Wu [9] considered semilinear problems (1.1) in H1(RN )
and established existence results. Papageorgiou and Rocha [10] considered a p-Laplacian
problem with nonlinearities of the form m(x)|u|r–2u + f (x, u) with 1 < r < p < ∞ when f
is (p – 1) superlinear near infinity but does not satisfy the AR-condition. They employed
variational approach and the Ekeland variational principle [11] to show the existence of
two nontrivial solutions.

Divergence operators – div(a(|∇u|)|∇u|) involved in problem (1.1) are more general
than p-Laplacian operators, please see [12–22]. Such operators have been intensively
studied due to numerous and relevant applications in many fields such as plasticity [23],
eletrorheological fluids [24], image processing [25]. When the nonlinear terms satisfy the
AR-condition, problems of type (1.1) have been considered in [23, 26].

In the case of λ = 0, Chung [27], Carvalho et al. [28] studied problem (1.1) when f is
(ϕ0 –1) superlinear near infinity without the AR-condition. By variational methods, Chung
[27], Carvalho et al. [28] established existence results under different assumptions im-
posed on f .

In this paper, motivated by [12–14, 16–18], we investigate a class of quasilinear el-
liptic problems (1.1) with concave and convex nonlinearities which do not satisfy the
AR-condition in Orlicz–Sobolev spaces. Using functional techniques and variational ap-
proach, combined with the Ekeland variational principle, we establish existence results of
at least two nontrivial solutions for λ > 0 small enough. We emphasize that the extension
from p-Laplacian operators to – div(a(|∇u|)∇u) is interesting and nontrivial, since the di-
vergence operators – div(a(|∇u|)∇u) involved in (1.1) have a more complicated structure,
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for example, they are non-homogeneous. In the case of λ = 0, problem (1.1) is studied
in [27, 28], but their hypotheses do not apply when the concave terms are present. Fur-
thermore, multiplicity results are given in this paper, while [27, 28] are concerned with
existence of a nontrivial weak solution under our assumptions. Summarily, our results
complement and extend previous studies such as [10, 27, 28].

2 Preliminaries
Φ : R → [0,∞) is called an N -function [29–31] provided that Φ is even, continuous, and
convex with Φ(t) > 0 for t > 0, Φ(t)

t → 0 as t → 0, and Φ(t)
t → ∞ as t → ∞. Its comple-

mentary function Φ̃ is defined as

Φ̃(s) := sup
t>0

{
t|s| – Φ(t)

}
, ∀s ∈R,

then Φ̃ is also an N -function.
Young’s inequality holds true:

st ≤ Φ(t) + Φ̃(s), s, t ∈R.

If Φ1, Φ2 are twoN -functions, we say that Φ1 increases more slowly than Φ2 near infinity
(in short, Φ1 ≺ Φ2(∞)) if there exist two positive constants K , t0 such that Φ1(t) ≤ Φ2(Kt),
∀t ≥ t0. We say that Φ1 increases essentially more slowly than Φ2 near infinity (in short,
Φ1 ≺≺ Φ2(∞)) provided limt→∞ Φ1(kt)

Φ2(t) = 0, ∀k > 0.
Φ is said to satisfy �2-condition near infinity (in short, Φ ∈ �2(∞)) provided that there

exist positive constants K , t0 such that

Φ(2t) ≤ KΦ(t) ∀t ≥ t0.

Φ ∈ ∇2(∞) provided that Φ̃ ∈ �2(∞).
For a measurable function u : Ω → R, denoted as u ∈ L̃, we define Orlicz space LΦ (Ω)

by

LΦ (Ω) =
{

u ∈ L̃ :
∫

Ω

Φ
(
λu(x)

)
dx < ∞ for some λ > 0

}

endowed with Luxemburg norm

‖u‖(Φ) = inf

{

λ > 0 :
∫

Ω

Φ

(
u(x)
λ

)

dx ≤ 1
}

.

Then (LΦ (Ω),‖ · ‖(Φ)) forms a Banach space.
In the sequel, we always assume that [30]

∫ 1

0

Φ–1(t)

t
N+1

N
dt < ∞,

∫ ∞

1

Φ–1(t)

t
N+1

N
dt = ∞.

The Sobolev conjugate Φ∗ of Φ is defined by

Φ–1
∗ (t) =

∫ t

0

Φ–1(s)

s
N+1

N
ds, t ≥ 0.

Let Φ∗(–t) = Φ∗(t) for all t < 0. Then Φ∗ is an N -function and Φ ≺≺ Φ∗(∞) (see [30, 32]).
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An Orlicz–Sobolev space W 1,Φ(Ω) is defined by

W 1,Φ(Ω) =
{

u ∈ LΦ (Ω) : Dαu ∈ LΦ (Ω), |α| ≤ 1
}

endowed with

‖u‖W 1,Φ = ‖u‖(Φ) + ‖∇u‖(Φ).

Then (W 1,Φ(Ω),‖ · ‖W 1,Φ ) forms a Banach space.
Let W 1,Φ

0 (Ω) be the closure of C∞
c (Ω) in W 1,Φ(Ω). By Lemma 5.7 in [33], there exists a

best positive constant λ1 such that

λ1

∫

Ω

Φ
(
u(x)

)
dx ≤

∫

Ω

Φ
(∣
∣∇u(x)

∣
∣
)

dx, ∀u ∈ W 1,Φ
0 (Ω). (2.1)

Therefore, W 1,Φ
0 (Ω) can be reformed by an equivalent norm ‖u‖ := ‖∇u‖(Φ). If Φ ∈

�2(∞) ∩ ∇2(∞), then LΦ (Ω)), W 1,Φ(Ω), W 1,Φ
0 (Ω) are separable and reflexive Banach

spaces (refer [30]).
In this paper, we always assume Φ(t) =

∫ t
0 ϕ(s) ds, ∀t ∈R, and

1 < ϕ0 := inf
t>0

tϕ(t)
Φ(t)

≤ ϕ0 := sup
t>0

tϕ(t)
Φ(t)

< N < ∞. (Φ1)

We note that (Φ1) yields Φ ∈ �2(∞) ∩ ∇2(∞) (see [29]).

Lemma 2.1 ([23]) For an N -function Φ satisfying 1 ≤ ϕ0 ≤ ϕ0 < ∞ for all t > 0 and for
some ϕ0, ϕ0. Then

(1) ‖u‖ϕ0
(Φ) ≤ ∫

Ω
Φ(u) dx ≤ ‖u‖ϕ0

(Φ) (‖u‖(Φ) > 1).

(2) ‖u‖ϕ0

(Φ) ≤ ∫

Ω
Φ(u) dx ≤ ‖u‖ϕ0

(Φ) (0 ≤ ‖u‖(Φ) ≤ 1).

Lemma 2.2 ([30]) Let Ω be an arbitrary domain. Then W 1,Φ
0 (Ω) ↪→ LΦ∗ (Ω). Moreover,

if Ω0 is a bounded subdomain of Ω , then the imbedding W 1,Φ
0 (Ω) ↪→ LB(Ω0) exists and is

compact for any N -function B with B ≺≺ Φ∗(∞).

Definition 2.1 ([34]) Let (X,‖ · ‖) be a real Banach space, J ∈ C1(X,R). We say J satisfies
the Cc condition if any sequence {un} ⊂ X such that J(un) → c and ‖J ′(un)‖∗(1 +‖un‖) → 0
as n → ∞ has a convergent subsequence. {un} is called a Cerami sequence at the level
c ∈ R.

Lemma 2.3 ([35]) Let (X,‖ · ‖) be a real Banach space, J ∈ C1(X,R) satisfies the Cc condi-
tion for any c > 0, J(θ ) = 0, and the following conditions hold:

(1) There exist two positive constants ρ , η such that J(u) ≥ η for any u ∈ X with ‖u‖ = ρ .
(2) There exists a function φ ∈ X such that ‖φ‖ > ρ and J(φ) < 0.

Then the functional J has a critical value c ≥ η, i.e., there exists u ∈ X such that J ′(u) = θ

and J(u) = c.

We call u ∈ W 1,Φ
0 (Ω) a weak solution of problem (1.1) if, for all v ∈ W 1,Φ

0 (Ω),
∫

Ω

a
(|∇u|)∇u · ∇v dx – λ

∫

Ω

g(u)v dx –
∫

Ω

f (x, u)v dx = 0.
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Let (X,‖ · ‖X), (Y ,‖ · ‖Y ) be Banach spaces. X ↪→ Y means (X,‖ · ‖X) is continuously
imbedded in (Y ,‖ · ‖Y ). X ↪→↪→ Y means (X,‖ · ‖X) is compactly imbedded in (Y ,‖ · ‖Y ).

3 Main results
For convenience, we give some conditions.

(g1) G ≺ Φ(∞), limt→0
Φ(t)
G(t) = 0, where G(t) :=

∫ t
0 g(s) ds, ∀t ∈R.

(f1) |f (x, t)| ≤ C(1 + h(|t|)), ∀(x, t) ∈ Ω ×R,
where C is a positive constant, h : R → R is an odd, increasing homeomorphism from R

to R, H(t) :=
∫ t

0 h(s) ds satisfies H ≺≺ Φ∗(∞) and h0 := inft>0
th(t)
H(t) > ϕ0.

(f2) lim supt→0
f (x,t)
|ϕ(t)| < λ1 uniformly for almost all x ∈ Ω , where λ1 is defined in (2.1).

(f3) lim|t|→∞ f (x,t)
|t|ϕ0–2t

= +∞ uniformly for almost all x ∈ Ω .
(f4) There exist D1 ≥ 1 and α(x) ∈ L1(Ω) such that, for all s ∈ [0, 1],

F(x, st) ≤ D1F(x, t) + α(x), ∀(x, t) ∈ Ω ×R,

where F(x, t) := tf (x, t) – ϕ0F(x, t), F(x, t) =
∫ t

0 f (x, s) ds.
(Φ2) There exists β(x) ∈ L1(Ω) such that, for all s ∈ [0, 1],

Φ(st) ≤ D1Φ(t) + β(x), ∀(x, t) ∈ Ω ×R,

where Φ(t) = ϕ0Φ(t) – tϕ(t).
The main result of this paper is given by the following theorem.

Theorem 3.1 Given Φ satisfies (Φ1) and (Φ2), g satisfies (g1), f satisfies (f1)–(f4). Then
there exists λ∗ > 0 such that, for each λ ∈ (0,λ∗), problem (1.1) has two nontrivial weak
solutions.

Remark 3.1 From (g1) and (f4), it follows that W 1,Φ
0 (Ω) ↪→↪→ L1(Ω), W 1,Φ

0 (Ω) ↪→↪→
LG(Ω), and W 1,Φ

0 (Ω) ↪→↪→ LH (Ω).

For any λ > 0, we define Jλ : W 1,Φ
0 (Ω) →R by

Jλ(u) =
∫

Ω

Φ
(|∇u|)dx – λ

∫

Ω

G(u) dx –
∫

Ω

F(x, u) dx.

Analogous to that in [32], we can deduce that Jλ ∈ C1(W 1,Φ
0 (Ω),R), J ′

λ : W 1,Φ
0 (Ω) →

(W 1,Φ
0 (Ω)∗ and the derivative is given by, for all u, v ∈ W 1,Φ

0 (Ω),

〈
J ′

λ(u), v
〉
=

∫

Ω

a
(|∇u|)∇u · ∇v dx – λ

∫

Ω

g(u)v dx –
∫

Ω

f (x, u)v dx.

So, critical points of the functional Jλ are weak solutions of problem (1.1).

Lemma 3.2 Given that (Φ1), (g1), (f1), and (f2) hold, then there exist positive constants λ∗,
ρ , η such that, for each λ ∈ (0,λ∗), Jλ(u) ≥ η for any u ∈ W 1,Φ

0 (Ω) with ‖u‖ = ρ .

Proof By conditions (f1), (g1) and Remark 3.1, there exists a positive constant C1 such that

‖u‖(G) ≤ C1‖u‖, ‖u‖(H) ≤ C1‖u‖, ∀u ∈ W 1,Φ
0 (Ω). (3.1)
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Let ρ ∈ (0, min{1, 1/C1}) for each u ∈ Sρ := {u ∈ W 1,Φ
0 (Ω) : ‖u‖ = ρ}, (3.1) implies that

‖u‖(G) < 1,
∫

Ω
G(u(x)) dx < 1, and ‖u‖(H) < 1.

From condition (f2), we deduce that there exist ε0 ∈ (0,λ1), δ > 0 such that

∣
∣F(x, t)

∣
∣ ≤ (λ1 – ε0)Φ(t) ∀x ∈ Ω , |t| < δ. (3.2)

By (f1), one has |F(x, t)| ≤ C|t| + CH(t) for all x ∈ Ω , |t| ≥ δ. Since H(t)
t is increasing on

[δ, +∞), we conclude H(t)
|t| ≥ H(δ)

δ
for |t| ≥ δ. Combined with (3.2), we get

∣
∣F(x, t)

∣
∣ ≤ (λ1 – ε0)Φ(t) + C2H(t), ∀x ∈ Ω , t ∈R. (3.3)

By Lemma 2.1 and (3.3), for all u ∈ Sρ ,

Jλ(u) =
∫

Ω

Φ
(|∇u|)dx – λ

∫

Ω

G(u) dx –
∫

Ω

F(x, u) dx

≥
∫

Ω

Φ
(|∇u|)dx – λ

∫

Ω

G(u) dx

– (λ1 – ε0)
∫

Ω

Φ(u) dx – C2

∫

Ω

H(u) dx

≥
(

1 –
(λ1 – ε0)

λ1

)∫

Ω

Φ
(|∇u|)dx – λ – C2‖u‖h0

(H)

≥ ε0

λ1
‖u‖ϕ0

– λ – C3‖u‖h0 . (3.4)

Denote m(ρ) = ε0
λ1

– C3ρ
h0–ϕ0 , by h0 > ϕ0, we have m(ρ) → ε0

λ1
> 0 as ρ → 0+. Therefore,

we can choose ρ > 0 small enough such that m(ρ) > ε0
2λ1

. Set λ∗ := ε0ρϕ0

4λ1
> 0, η =: ε0ρϕ0

4λ1
> 0.

For all λ ∈ (0,λ∗) and u ∈ Sρ , applying (3.4), we obtain

Jλ(u) ≥ ε0ρ
ϕ0

4λ1
= η > 0. �

Lemma 3.3 Given that (Φ1), (g1), and (f3) hold. Then, for any λ > 0, ρ > 0, there exists a
function uλ ∈ W 1,Φ

0 (Ω) such that ‖uλ‖ > ρ and Jλ(uλ) < 0.

Proof Take a compact set S ⊂ Ω with positive measure, we can define u0 ∈ C∞
c (Ω) such

that u0(x) = 1 for x ∈ S, 0 ≤ u0(x) ≤ 1 for x ∈ Ω (please see [30]). Then u0 ∈ W 1,Φ
0 (Ω).

By condition (f3), we deduce that for M0 := 2‖u0‖ϕ0

μS > 0 there exists C1 > 0 such that

F(x, t) ≥ M0|t|ϕ0
– C1, ∀x ∈ Ω , t ∈R.

Let t > 1 large enough such that ‖tu0‖ > 1, by Lemma 2.1,

Jλ(tu0) =
∫

Ω

Φ
(|∇tu0|

)
dx – λ

∫

Ω

G(tu0) dx –
∫

Ω

F(x, tu0) dx

≤ tϕ0‖u0‖ϕ0 – M0tϕ0
∫

Ω

|u0|ϕ0
dx + C1μΩ
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≤ tϕ0
(

‖u0‖ϕ0
–

2‖u0‖ϕ0

μS

∫

S
|u0|ϕ0

dx
)

+ C1μΩ

= –tϕ0‖u0‖ϕ0
+ C1μΩ .

Due to ‖u0‖ > 0, we see Jλ(tu0) → –∞ as t → +∞.
Taking t large enough such that t > max{1, ρ+1

‖u0‖ }, set uλ = tu0, which completes the
proof. �

Lemma 3.4 Given that (Φ1), (g1), and (f2) hold. Then, for any λ > 0, ρ > 0, there exists a
function ũλ ∈ W 1,Φ

0 (Ω) such that ‖ũλ‖ < ρ and Jλ(ũλ) < 0.

Proof Take a compact set S̃ ⊂ Ω with positive measure, we can define ũ0 ∈ C∞
c (Ω) such

that ũ0(x) = 1 for x ∈ S̃, 0 ≤ ũ0(x) ≤ 1 for x ∈ Ω (please see [30]). Then ũ0 ∈ W 1,Φ
0 (Ω).

We take t ∈ (0, δ) (where δ is defined in (3.2)) such that ‖tũ0‖ < 1 and ‖tũ0‖(G) < 1. By
(3.2), we have |F(x, tũ0(x))| ≤ (λ1 – ε0)Φ(tũ0(x)) for all x ∈ Ω . From Lemma 2.1 and (2.1),
it follows

Jλ(tũ0) =
∫

Ω

Φ
(|∇tũ0|

)
dx – λ

∫

Ω

G(tũ0) dx –
∫

Ω

F(x, tũ0) dx

≤
∫

Ω

Φ
(|∇tũ0|

)
dx – λ

∫

Ω

G(tũ0) dx – (λ1 – ε0)
∫

Ω

Φ(tũ0) dx

≤
(

1 +
(λ1 – ε0)

λ1

)∫

Ω

Φ
(|∇tũ0|

)
dx – λ

∫

Ω

G(tũ0) dx

≤
(

2 –
ε0

λ1

)∫

Ω

Φ(C1t) dx – λ

∫

S̃
G(t) dx

≤ C2Φ(t) – λG(t)μS̃

= G(t)
[

C2
Φ(t)
G(t)

– λμS̃
]

.

Due to (g1), we can find t > 0 small enough such that for ‖ũλ‖ = ‖tũ0‖ < ρ and
Jλ(tũ0) < 0. �

Lemma 3.5 Given that (Φ1), (Φ2), (g1), and (f1)–(f4) hold. Then, for each λ > 0, the func-
tional Jλ satisfies Cc condition for any c > 0.

Proof Given λ > 0, c > 0. Let {un} ⊂ W 1,Φ
0 (Ω) be a Cerami sequence at the level c of Jλ,

i.e.,

Jλ(un) → c and
∥
∥J ′

λ(un)
∥
∥∗

(
1 + ‖un‖

) → 0, n → ∞. (3.5)

First, we shall show that {un} is bounded.
Otherwise, there is a subsequence, still denoted by {un}, such that limn→∞ ‖un‖ = ∞ and

‖un‖ > 1 (∀n ∈N).
We denote wn(x) := un(x)

‖un‖ , x ∈ Ω , n = 1, 2, . . . . Then {wn} ⊂ W 1,Φ
0 (Ω) and ‖wn‖ = 1 for

every n ∈ N. Applying the Eberlein–Smulian theorem, we may assume that there exists
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w ∈ W 1,Φ
0 (Ω) such that wn converges weakly to w. From Remark 3.1, it follows that

‖wn – w‖L1(Ω) → 0, ‖wn – w‖(G) → 0, ‖wn – w‖(H) → 0, n → ∞, (3.6)

wn(x) → w(x) a.e. x ∈ Ω , n → ∞. (3.7)

Claim: w(x) = 0 a.e. x ∈ Ω .
We suppose μΩ0 := μ{x ∈ Ω : w(x) �= 0} > 0. Given x ∈ Ω0, (3.7) implies that |un(x)| =

|wn(x)| · ‖un‖ → ∞ as n → ∞. Furthermore, by (f3) we obtain that, for given x ∈ Ω0,

F(x, un(x))
‖un‖ϕ0 =

F(x, un(x))
|un(x)|ϕ0

∣
∣wn(x)

∣
∣ϕ

0 → ∞, n → ∞. (3.8)

From (f3) and the continuity of F on Ω ×R, there exists a constant C1 such that

F(x, t) ≥ C1, ∀(x, t) ∈ Ω ×R,

which implies that

F(x, un(x)) – C1

‖un‖ϕ0 =
F(x, un(x)) – C1

|un(x)|ϕ0

∣
∣wn(x)

∣
∣ϕ

0 ≥ 0, ∀x ∈ Ω ,∀t ∈ R. (3.9)

From (3.5), it follows that

c + o(1) = Jλ(un) =
∫

Ω

Φ
(|∇un|

)
dx – λ

∫

Ω

G(un) dx –
∫

Ω

F(x, un) dx.

Dividing the above equality by ‖un‖ϕ0 , by Lemma 2.1 and ‖un‖ > 1,

lim inf
n→∞

∫

Ω

F(x, un(x))
‖un‖ϕ0 dx

=
lim infn→∞

∫

Ω
F(x, un(x)) dx

‖un‖ϕ0

= lim inf
n→∞

(∫

Ω
Φ(|∇un|) dx
‖un‖ϕ0 –

λ
∫

Ω
G(un) dx

‖un‖ϕ0 –
c + o(1)
‖un‖ϕ0

)

≤ lim inf
n→∞

(∫

Ω
Φ(|∇un|) dx
‖un‖ϕ0 –

c + o(1)
‖un‖ϕ0

)

≤ 1. (3.10)

By Fatou’s lemma and (3.7)–(3.10),

∞ =
∫

Ω0

lim
n→∞

F(x, un(x)) – C1

‖un‖ϕ0 dx

≤ lim inf
n→∞

∫

Ω0

F(x, un(x)) – C1

‖un‖ϕ0 dx

≤ lim inf
n→∞

∫

Ω

F(x, un(x)) – C1

‖un‖ϕ0 dx
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= lim inf
n→∞

∫

Ω
F(x, un(x)) dx
‖un‖ϕ0 – lim sup

n→∞

∫

Ω
C1 dx

‖un‖ϕ0

= lim inf
n→∞

∫

Ω
F(x, un(x)) dx
‖un‖ϕ0 ≤ 1.

Consequently, we get a contradiction, which implies that w(x) = 0 a.e. x ∈ Ω .
Since Jλ(tun) is continuous on [0, 1] for each n ∈ N, there exists tn ∈ [0, 1] such that

Jλ(tnun) = maxt∈[0,1] Jλ(tun). Due to ‖J ′
λ(un)‖∗(1 + ‖un‖) → 0, we deduce

〈
J ′

λ(tnun), tnun
〉 → 0, n → ∞. (3.11)

Take {sk}∞k=1 ⊂ (1,∞) with sk → +∞ as k → ∞. Then, for each n, k ∈N, one has ‖skwn‖ =
sk > 1. From (3.6) and the claim, combining conditions (g1) and (f1), we deduce

∫

Ω

F
(
x, skwn(x)

)
dx ≤ C

∫

Ω

[|skwn| + H(skwn)
]

dx

≤ C
(‖skwn‖L1(Ω) + ‖skwn‖(H)

) → 0, n → ∞, (3.12)

and
∫

Ω

G
(
skwn(x)

)
dx ≤ ‖skwn‖(G) → 0, n → ∞. (3.13)

Due to limn→∞ ‖un‖ = ∞, given k ∈ N, there exists nk ≥ k. For all n ≥ nk ≥ k, one has
‖un‖ > sk , i.e., 0 < sk

‖un‖ < 1.
From ‖skwn‖ > 1, Lemma 2.1 and (3.12), (3.13), for large n ∈N,

Jλ(tnun) = max
t∈[0,1]

Jλ(tun) ≥ Jλ

(
sk

‖un‖un

)

= Jλ(skwn)

=
∫

Ω

Φ
(|∇skwn|

)
dx – λ

∫

Ω

G(skwn) dx –
∫

Ω

F(x, skwn) dx

≥ ‖skwn‖ϕ0 – λ

∫

Ω

G(skwn) dx –
∫

Ω

F(x, skwn) dx

≥ 1
2
‖skwn‖ϕ0 =

1
2

sϕ0
k .

Let sk = ‖uk‖γ > 1, where γ ∈ ( ϕ0

ϕ0
, +∞) is a constant. For all n ≥ nk ≥ k, one has

Jλ(tnun) ≥ 1
2
‖uk‖γ ϕ0 . (3.14)

Applying (3.11), (f3), (f4), and (Φ2), for large n∈ N,

Jλ(tnun) = Jλ(tnun) –
1
ϕ0

〈
J ′

λ(tnun), tnun
〉
+ o(1)

=
∫

Ω

Φ
(|∇tnun|

)
dx – λ

∫

Ω

G(tnun) dx –
∫

Ω

F(x, tnun) dx

–
1
ϕ0

∫

Ω

ϕ
(|∇tnun|

)|∇tnun|dx +
λ

ϕ0

∫

Ω

tnung(tnun) dx
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+
1
ϕ0

∫

Ω

tnunf (x, tnun) dx + o(1)

=
1
ϕ0

∫

Ω

Φ
(
tn|∇un|

)
dx +

1
ϕ0

∫

Ω

F(x, tnun) dx

+
λ

ϕ0

∫

Ω

[
tnung(tnun) – ϕ0G(tnun)

]
dx + o(1)

≤ 1
ϕ0

∫

Ω

[
D1Φ

(|∇un|
)

+ β(x)
]

dx +
1
ϕ0

∫

Ω

[
D1F(x, un) + α(x)

]
dx + o(1)

=
D1

ϕ0

∫

Ω

[
Φ

(|∇un|
)

+ F(x, un)
]

dx + C2 + o(1)

= D1Jλ(un) –
D1

ϕ0

〈
J ′

λ(un), un
〉

+ D1λ

∫

Ω

[

G(un) –
1
ϕ0 ung(un)

]

dx + C2 + o(1)

≤ D1c + D1λ

(

1 –
1
ϕ0

)∫

Ω

G(2un) dx + C2 + o(1)

≤ C3 + C3

∫

Ω

Φ(2un) dx ≤ C3 + C3‖un‖ϕ0 .

Combined with (3.14), we have 1
2‖uk‖γ ϕ0 – C3‖un‖ϕ0 ≤ C3. Letting k → ∞, then n ≥

nk ≥ k → ∞. From γ ϕ0 > ϕ0, we get ∞ ≤ C3. This contradiction shows that {‖un‖} is
bounded, that is, supn∈N ‖un‖ := K0 < ∞.

Taking into account the reflexivity of W 1,Φ
0 (Ω) and the Eberlein–Smulian theorem, we

may assume that un converges weakly to u ∈ W 1,Φ
0 (Ω). By using Remark 3.1, we obtain

‖un – u‖L1(Ω) → 0, ‖un – u‖(G) → 0, ‖un – u‖(H) → 0, n → ∞. (3.15)

Using (f1) and Hölder’s inequality, we have

∣
∣
∣
∣λ

∫

Ω

g(un)(un – u) dx +
∫

Ω

f (x, un)(un – u) dx
∣
∣
∣
∣

≤ λ

∫

Ω

∣
∣g(un)(un – u)

∣
∣dx +

∫

Ω

[
C|un – u| + C

∣
∣h(x, un)(un – u)

∣
∣
]

dx

≤ 2λ
∥
∥g(un)

∥
∥

(G̃)‖un – u‖(G) + C‖un – u‖L1(Ω)

+ 2C
∥
∥h(un)

∥
∥

(H̃)‖un – u‖(H). (3.16)

Now, we will show that both ‖g(un)‖(G̃) and ‖h(un)‖(H̃) are bounded.
Applying Lemma 2.1,

∫

Ω

G̃
(
g(un)

)
dx ≤

∫

Ω

ung(un) dx ≤
∫

Ω

G(2un) dx ≤ C4 +
∫

Ω

Φ(2un) dx

≤ C4 + C4‖un‖ϕ0
< ∞.

The definition of ‖ · ‖(G̃) yields that ‖g(un)‖(G̃) ≤ C4 + C4Kϕ0

0 , n = 1, 2, . . . . On the other
hand, due to limt→∞ H(2t)

Φ∗(t) = 0, there exists t0 > 0 such that H(2t) ≤ Φ∗(t) for all t ≥ t0. By
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Lemma 2.4 in [23], we have d0 := supt>0
tΦ ′∗(t)
Φ∗(t) ≤ Nϕ0

N–ϕ0 < ∞. Since W 1,Φ
0 (Ω) ↪→ LΦ∗ (Ω),

∫

Ω

H̃
(
h(un)

)
dx ≤

∫

Ω

H(2un) dx ≤ H4(2t0)μΩ +
∫

Ω

Φ∗(un) dx

≤ C5 + C5‖un‖d0
(Φ∗) ≤ C6 + C6Kd0

0 < ∞, n = 1, 2, . . . .

Hence, ‖h(un)‖(H̃) ≤ C6 + C6Kd0
0 < ∞, n = 1, 2, . . . .

Combining (3.15) and (3.16), we have

∫

Ω

g(un)(un – u) dx +
∫

Ω

f (x, un)(un – u) dx → 0, n → ∞. (3.17)

From (3.5), it follows that
∫

Ω
a(|∇un|)∇un ·∇(un –u) dx → 0 as n → ∞. Since un converges

weakly to u, Theorem 4 in [36] implies that limn→∞ ‖un – u‖ = 0. Therefore, Jλ satisfies
Cc condition. �

Next, we give the proof of our main result Theorem 3.1.

Proof λ∗ > 0, η > 0, ρ > 0 are constants defined in Lemma 3.2. For all λ ∈ (0,λ∗),
Lemma 3.2, Lemma 3.3, and Lemma 3.5 show that the functional Jλ satisfies all the as-
sumptions of Lemma 2.3. Then Jλ has a critical value c ≥ η > 0. This shows that problem
(1.1) has a nontrivial weak solution u with Jλ(u) = c.

In the following, we prove there exists a second weak solution ũ �= u.
Let Bρ := {u ∈ W 1,Φ

0 (Ω) : ‖u‖ ≤ ρ}, Uρ := {u ∈ W 1,Φ
0 (Ω) : ‖u‖ < ρ}. Applying Lemma 3.4,

we deduce that

–∞ < c̃ := inf
Bρ

Jλ(u) < 0.

For each σ ∈ (0, infSρ Jλ(u)– infUρ Jλ(u)), by the Ekeland variational principle [11], there
exists uσ ∈ Bρ such that

Jλ(uσ ) ≤ inf
Bρ

Jλ(u) + σ

and

Jλ(uσ ) < Jλ(u) + σ‖uσ – u‖, ∀u �= uσ . (3.18)

Therefore,

Jλ(uσ ) ≤ inf
Bρ

Jλ(u) + σ < inf
Uρ

Jλ(u) + inf
Sρ

Jλ(u) – inf
Uρ

Jλ(u) = inf
Sρ

Jλ(u),

which implies uσ ∈ Uρ .
∀v ∈ B1, take h ∈ (0,ρ – ‖uσ ‖), then uσ + hv ∈ Bρ . By (3.18), we have

Jλ(uσ ) – Jλ(uσ + hv) ≤ σh‖v‖.
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Dividing the above inequality by h and letting h → 0+, one has

〈
J ′

λ(uσ ), v
〉 ≥ –σ‖v‖.

Replacing v with –v in the above inequality, we deduce 〈J ′
λ(uσ ), v〉 ≤ σ‖v‖. Therefore,

‖J ′
λ(uσ )‖ ≤ σ .

Summarily, there exist {ũn}∞n=1 ⊂ Uρ such that Jλ(ũn) → c̃ and ‖J ′
λ(ũn)‖ ≤ 1

n → 0 as
n → ∞. From the Eberlein–Smulian theorem, we may assume ũn converges to ũ ∈ Bρ .
(3.17) and Theorem 4 in [36] imply that limn→∞ ‖ũn – ũ‖ = 0. Since Jλ ∈ C1(W 1,Φ

0 (Ω),R)
and ‖J ′

λ(ũn)‖ → 0, one has J ′
λ(ũ) = limn→∞ J ′

λ(ũn) = θ and J ′
λ(ũ) = c̃, so ũ �= θ and ũ �= u,

which completes the proof. �

By Lemma 3.2, Lemma 3.3, and Lemma 3.5, we can get the following corollary.

Corollary 3.6 ([27]) Given that Φ satisfies (Φ1) and (Φ2), f satisfies (f1)–(f4). Then

⎧
⎨

⎩

– div(a(|∇u|)∇u) = f (x, u), in Ω ,

u = 0, on ∂Ω ,

has a nontrivial weak solution.

4 Conclusions
Using variational arguments, we establish the existence of two nontrivial solutions for
quasilinear elliptic problems in Orlicz–Sobolev spaces, where the nonlinear terms exhibit
the combined effects of concave and convex without the Ambrosetti–Rabinowitz type
condition.
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