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Abstract
By using the method of mixed monotone operator, a unique positive solution is
obtained for a singular p-Laplacian boundary value system with infinite-point
boundary conditions in this paper. Green’s function is derived and some useful
properties of the Green’s function are obtained. Based upon these new properties
and by using mixed monotone operator, the existence results of the positive
solutions for the boundary value problem are established. Moreover, the unique
positive solution that we obtained in this paper is dependent on λ,μ, and an iterative
sequence and convergence rate, which are important for practical application, are
given. An example is given to demonstrate the application of our main results.
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1 Introduction
Fractional calculus has been shown to be more accurate and realistic than integer order
models, and it also provides an excellent tool to describe the hereditary properties of ma-
terials and processes, particularly in viscoelasticity, electrochemistry, porous media, and
so on. Fractional differentials arise in a variety of different areas such as physics, chemistry,
electrical networks, economics, rheology, biology chemical, image processing, and so on.
There has been a significant development in the study of fractional differential equations
in recent years, for an extensive collection of such literature, readers can refer to [2, 4, 6–11,
13, 16–18, 21–23, 26, 28, 32–43, 45–49], and there are many types of fractional differential
equations, such as values at infinite points are involved in the boundary conditions that
we refer the reader to [6, 7, 34, 38, 39]. For some differential equations in which fractional
derivatives are involved in the nonlinear terms the reader can refer to [6–10, 23]. In order
to meet the needs, the p-Laplacian equation is introduced in some boundary value prob-
lems, fractional differential equation system of p-Laplacian, and we refer the reader to [3,
9–12, 15, 17, 22, 24, 28, 30, 31, 35–37, 41] for some relevant work. Besides, there are a lot
of methods to study fractional differential equations such as mixed monotone operator
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(see [8, 10, 18, 21, 26, 32]), degree theory (see [20, 48]), spectral analysis (see [2, 20, 29, 41,
42, 49]), bifurcation method (see [19, 20, 29, 31]), and so on. Motivated by the excellent
results above, in this paper, we consider the following infinite-point singular p-Laplacian
fractional differential equation boundary value system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dα
0+ (ϕp1 (Dγ

0+u))(t) + λ
1

q1–1 f (t, u(t), Dμ1
0+ u(t), Dμ2

0+ u(t), . . . , Dμn–2
0+ u(t), v(t)) = 0,

0 < t < 1,

Dβ

0+ (ϕp2 (Dδ
0+v))(t) + λ

1
q2–1 g(t, u(t), Dμ1

0+ u(t), Dμ2
0+ u(t), . . . , Dμm–2

0+ u(t)) = 0,

0 < t < 1,

u(j)(0) = 0, j = 0, 1, 2, . . . , n – 2;

Dγ
0+u(0) = 0, Dr1

0+ u(1) =
∑∞

j=1 ηjDr2
0+ u(ξj),

v(j)(0) = 0, j = 0, 1, 2, . . . , m – 2;

Dδ
0+v(0) = 0, Dr1

0+ v(1) =
∑∞

j=1 ηjD
r2
0+ v(ξ j),

(1.1)

where 1
2 < α,β ≤ 1, n – 1 < γ ≤ n(n ≥ 3), m – 1 < δ ≤ m(m ≥ 3), m ≤ n, r1, r2 ∈ [2, n –

2], r1, r2 ∈ [2, m – 2], r2 ≤ r1, r2 ≤ r1, p-Laplacian operator ϕpi is defined as ϕpi (s) =
|s|pi–2s, pi, qi > 1, 1

pi
+ 1

qi
= 1 (i = 1, 2), i – 1 < μi ≤ i (i = 1, 2, . . . , n – 2), k – 1 < μi ≤ k(k =

1, 2, . . . , m – 2), and ηj,ηj ≥ 0, 0 < ξ1 < ξ2 < · · · < ξj–1 < ξj < · · · < 1, 0 < ξ 1 < ξ 2 < · · · <
ξ j–1 < ξ j < · · · < 1 (j = 1, 2 · · · ) are parameters, f ∈ C((0, 1) × (0, +∞)n,R1

+))(R1
+ = [0, +∞)

and f (t, x1, x2, . . . , xn) has singularity at xi = 0 (i = 1, 2, . . . , n) and t = 0, 1, g ∈ C((0, 1) ×
(0, +∞)m–1,R1

+)), Dα
0+ u, Dγ

0+ u, Dμ

0+ u, Dβ

0+ u, Dδ
0+ u, Dμ

0+ u, Dri
0+ u, Dri

0+ u (i = 1, 2) are the standard
Riemann–Liouville derivatives.

In this paper, we investigate the existence of positive solutions for a singular infinite-
point p-Laplacian boundary value system. Compared with our papers [8, 10], values at
infinite points are involved in the boundary conditions of BVP (1.1), but integral bound-
ary conditions are involved in the boundary value conditions in [8, 10], p1 �= p2 in the
p-Laplacian system of (1.1), but p1 = p2 in the p-Laplacian system in [8, 10]. Moreover,
the method that we used in [8, 10] is reducing order, but the method that we use in this
paper is introducing an order relation without reducing order; and at last we still get an
iterative solution for infinite-point fractional differential equation system. Compared with
[38], fractional derivatives are involved in the nonlinear terms and boundary conditions
for BVP (1.1), and we get a more precise result, that is, the positive solution is obtained
by iterative sequences which begin with a simple function. Compared with [6, 39], the
equation in this paper is a p-Laplacian boundary value system which is a great extension
from the general fractional differential equation, and at the same time we get an iterative
solution. Compared with [39], the equation in our paper is an equation system and the
uniqueness of an iterative positive solution of equation (1.1) that we obtained is depen-
dent on λ,μ.

For convenience of presentation, we here list some conditions to be used throughout the
paper.

(S1) f (t, x1, x2, . . . , xn) = φ(t, x1, x2, . . . , xn) + ψ(t, x1, x2, . . . , xn), where φ : (0, 1) × (0,
+∞)n →R

1
+ is continuous, φ(t, x1, x2, . . . , xn) may be singular at t = 0, 1, and is nondecreas-

ing on xi > 0 (i = 1, 2, . . . , n). ψ : (0, 1) × (0, +∞)n → R
1
+ is continuous, ψ(t, x1, x2, . . . , xn)

may be singular at t = 0, 1, xi = 0 (i = 1, 2, . . . , n) and is nonincreasing on xi > 0 (i =
1, 2, . . . , n).
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(S2) There exists 0 < σ < 1 such that, for all xi > 0 (i = 1, 2, . . . , n) and t, l ∈ (0, 1),

φ(t, lx1, lx2, . . . , lxn) ≥ lσ
1

q1–1
φ(t, x1, x2, . . . , xn),

ψ
(
t, l–1x1, l–1x2, . . . , l–1xn

) ≥ lσ
1

q1–1
ψ(t, x1, x2, . . . , xn),

where q1 is defined by (1.1).
(S3) g ∈ C((0, 1) × R

m–1
+ ,R1

+), g(t, x1, x2, . . . , xm–1) is nondecreasing on xi > 0 (i = 1, 2, . . . ,
m – 1) and g(t, 1, 1, . . . , 1) �= 0, t ∈ (0, 1). Moreover, there exists ς ∈ (0, 1) such that, for all
xi > 0 (i = 1, 2, . . . , m – 1) and t, l ∈ (0, 1),

g(t, lx1, lx2, . . . , lxm–1) ≥ lς
1

q2–1 g(t, x1, x2, . . . , xm–1),

where q2 is defined by (1.1).
(S4)

0 <
∫ 1

0
φ2(τ , 1, 1, . . . , 1) dτ < +∞,

0 <
∫ 1

0
τ–2(γ –1)σ

1
q1–1

ψ2(τ , 1, 1, . . . , 1) dτ < +∞,

0 <
∫ 1

0
g2(τ , 1, . . . , 1) dτ < +∞.

Remark 1.1 According to (S2) and (S3), for all xi > 0 (i = 1, 2, . . . , n), σ , t ∈ (0, 1), and l ≥ 1,
we have

φ(t, lx1, lx2, . . . , lxn) ≤ lσ
1

q1–1
φ(t, x1, x2, . . . , xn),

ψ
(
t, l–1x1, l–1x2, . . . , l–1xn

) ≤ lσ
1

q1–1
ψ(t, x1, x2, . . . , xn),

g(t, lx1, . . . , lxm–1) ≤ lς
1

q2–1 g(t, x1, . . . , xm–1),

where qi (i = 1, 2) is defined by (1.1).

2 Preliminaries and lemmas
For some basic definitions and lemmas about the theory of fractional calculus, which are
useful for the following research, the reader can refer to the recent literature such as [14,
25, 27], we omit some definitions and properties of fractional calculus here.

Lemma 2.1 Let y, y ∈ L1(0, 1) ∩ C(0, 1), then the equation of the BVPs

⎧
⎨

⎩

–Dγ
0+u(t) = y(t), 0 < t < 1,

u(j)(0) = 0, j = 0, 1, 2, . . . , n – 2; Dr1
0+ u(1) =

∑∞
j=1 ηjDr2

0+ u(ξj),
(2.1)

⎧
⎨

⎩

–Dδ
0+v(t) = y(t), 0 < t < 1,

v(j)(0) = 0, j = 0, 1, 2, . . . , m – 2; Dr1
0+ v(1) =

∑∞
j=1 ηjD

r2
0+ v(ξ j)

(2.2)
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has integral representation

u(t) =
∫ 1

0
G(t, s)y(s) ds,

v(t) =
∫ 1

0
H(t, s)y(s) ds,

(2.3)

respectively, where

G(t, s) =
1

�Γ (γ )

⎧
⎨

⎩

Γ (γ )tγ –1P(s)(1 – s)γ –r1–1 – �(t – s)γ –1, 0 ≤ s ≤ t ≤ 1,

Γ (γ )tγ –1P(s)(1 – s)γ –r1–1, 0 ≤ t ≤ s ≤ 1,
(2.4)

H(t, s) =
1

�Γ (δ)

⎧
⎨

⎩

Γ (δ)tδ–1P(s)(1 – s)δ–r1–1 – �(t – s)δ–1, 0 ≤ s ≤ t ≤ 1,

Γ (δ)tδ–1P(s)(1 – s)δ–r1–1, 0 ≤ t ≤ s ≤ 1,
(2.5)

in which

P(s) =
1

Γ (γ – r1)
–

1
Γ (γ – r2)

∑

s≤ξj

ηj

(
ξj – s
1 – s

)γ –r2–1

(1 – s)r1–r2 ,

P(s) =
1

Γ (δ – r1)
–

1
Γ (δ – r2)

∑

s≤ξ j

ηj

(
ξ j – s
1 – s

)δ–r1–1

(1 – s)r1–r2 ,

� =
Γ (γ )

Γ (γ – r1)
–

Γ (γ )
Γ (γ – r2)

∞∑

j=1

ηjξ
γ –r2–1
j �= 0,

� =
Γ (δ)

Γ (δ – r1)
–

Γ (δ)
Γ (δ – r2)

∞∑

j=1

ηjξ
δ–r2–1
j �= 0.

Proof We only need to prove (2.4), the proof of (2.5) is similar to the proof of (2.4). By
means of the definition of fractional differential integral, we can reduce (2.1) to an equiv-
alent integral equation

u(t) = –Iγ

0+ y(t) + C1tγ –1 + C2tγ –2 + · · · + Cntγ –n

for Ci ∈ R (i = 1, 2, . . . , n). From u(j)(0) = 0 (j = 0, 1, 2, . . . , n – 2), we have Ci = 0 (i =
2, 3, . . . , n). Consequently, we get

u(t) = C1tγ –1 – Iγ

0+ y(t).

By some properties of the fractional integrals and fractional derivatives, we have

Dr1
0+ u(t) = C1

Γ (γ )
Γ (γ – r1)

tγ –r1–1 – Iγ –r1
0+ y(t),

Dr2
0+ u(t) = C1

Γ (γ )
Γ (γ – r2)

tγ –r2–1 – Iγ –r2
0+ y(t).

(2.6)
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On the other hand, Dr1
0+ u(1) =

∑∞
j=1 ηjDr2

0+ u(ξj) combining with (2.6), we get

C1 =
∫ 1

0

(1 – s)γ –r1–1

Γ (γ – p1)�
y(s) ds –

∞∑

j=1

ηj

∫ ξj

0

(ξj – s)γ –r2–1

Γ (γ – r2)�
y(s) ds

=
∫ 1

0

(1 – s)γ –r1–1P(s)
�

y(s) ds,

where

P(s) =
1

Γ (γ – r1)
–

1
Γ (γ – r2)

∑

s≤ξj

ηj

(
ξj – s
1 – s

)γ –r2–1

(1 – s)r1–r2 ,

� =
Γ (γ )

Γ (γ – r1)
–

Γ (γ )
Γ (γ – r2)

∞∑

j=1

ηjξ
γ –r2–1
j .

Hence,

u(t) = C1tγ –1 – Iγ

0+ y(t)

= –
∫ t

0

�(t – s)γ –1

Γ (γ )�
y(s) ds +

∫ 1

0

(1 – s)γ –r1–1tγ –1P(s)
�

y(s) ds.

Therefore, we get (2.4), similarly, we get (2.5).
Moreover, by (2.4), for i = 1, 2, . . . , n – 2, we have

Dμi
0+ G(t, s) =

1
�Γ (γ – μi)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Γ (γ )tγ –μi–1P(s)(1 – s)γ –r1–1 – �(t – s)γ –μi–1,

0 ≤ s ≤ t ≤ 1,

Γ (γ )tγ –μi–1P(s)(1 – s)γ –r1–1,

0 ≤ t ≤ s ≤ 1.

(∗)

�

Lemma 2.2 Let �,� > 0, then the Green function defined by (2.3) satisfies:
(1) G, H : [0, 1] × [0, 1] → R

1
+ are continuous and G(t, s), H(t, s) > 0, for all t, s ∈ (0, 1);

(2)

1
Γ (γ )

tγ –1j(s) ≤ G(t, s) ≤ a�tγ –1, t, s ∈ [0, 1], (2.7)

1
Γ (δ)

tδ–1j(s) ≤ H(t, s) ≤ a�tδ–1, t, s ∈ [0, 1], (2.8)

where

j(s) = (1 – s)γ –r1–1[1 – (1 – s)r1
]
, j(s) = (1 – s)δ–r1–1[1 – (1 – s)r1

]
,

a� =
1

�Γ (γ – r1)
, a� =

1
�Γ (δ – r1)

,

in which �,� are defined as in Lemma 2.1.
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Proof Let

G�(t, s) =
1

Γ (γ )

⎧
⎨

⎩

tγ –1(1 – s)γ –r1–1 – (t – s)γ –1, 0 ≤ s ≤ t ≤ 1,

tγ –1(1 – s)γ –r1–1, 0 ≤ t ≤ s ≤ 1.

From [13], for r1 ∈ [2, n – 2], we have

0 ≤ tγ –1(1 – s)γ –r1–1[1 – (1 – s)r1
] ≤ Γ (α)G�(t, s) ≤ tγ –1(1 – s)γ –r1–1. (2.9)

By direct calculation, we get P′(s) ≥ 0, s ∈ [0, 1], and so P(s) is nondecreasing with respect
to s. For r2 ≤ r1, r1, r2 ∈ [2, n – 2], s ∈ [0, 1], we get

Γ (α)P(s) =
Γ (γ )

Γ (γ – r1)
–

Γ (γ )
Γ (γ – r2)

∑

s≤ξj

ηj

(
ξj – s
1 – s

)γ –r2–1

(1 – s)r1–r2

≥ Γ (γ )P(0) =
Γ (γ )

Γ (γ – r1)
–

Γ (γ )
Γ (γ – r2)

∑
ηjξ

γ –r2–1
j = �. (2.10)

By (2.4) and (2.10), we have

�Γ (γ )G(t, s) ≥
⎧
⎨

⎩

�tγ –1(1 – s)γ –r1–1 – �(t – s)γ –1, 0 ≤ s ≤ t ≤ 1,

�tγ –1(1 – s)γ –r1–1, 0 ≤ t ≤ s ≤ 1.
(2.11)

So, by (2.9) and (2.11), we have

�Γ (γ )G(t, s) ≥ �Γ (γ )G�(t, s)

≥ �tγ –1(1 – s)γ –r1–1[1 – (1 – s)r1
]
, (2.12)

hence,

G(t, s) ≥ 1
Γ (γ )

tγ –1j(s).

On the other hand,

P(s) =
1

Γ (γ – r1)
–

1
Γ (γ – r2)

∑

s≤ξj

ηj

(
ξj – s
1 – s

)γ –r2–1

(1 – s)r1–r2 ≤ 1
Γ (γ – r1)

,

clearly,

�Γ (γ )G(t, s) ≤ Γ (γ )tγ –1P(s)(1 – s)γ –r1–1,

hence,

G(t, s) ≤ a�tγ –1.

So the proof of (2.7) is completed. Similarly, (2.8) also holds. �
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To study PFDE (1.1), in what follows we consider the associated linear PFDEs:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ (ϕp1 (Dγ

0+u))(t) + ρ(t) = 0, 0 < t < 1,

u(j)(0) = 0, j = 0, 1, 2, . . . , n – 2;

Dγ
0+u(0) = 0, Dr1

0+ u(1) =
∑∞

j=1 ηjDr2
0+ u(ξj),

(2.13)

and
⎧
⎪⎪⎨

⎪⎪⎩

Dβ

0+ (ϕp2 (Dδ
0+v))(t) + ρ(t) = 0, 0 < t < 1,

v(j)(0) = 0, j = 0, 1, 2, . . . , m – 2; Dδ
0+v(0) = 0,

Dr1
0+ v(1) =

∑∞
j=1 ηjD

r2
0+ v(ξ j),

(2.14)

where ρ(t),ρ(t) ∈ L1((0, 1),R1
+) ∩ C((0, 1),R1

+).

Lemma 2.3 PFDEs (2.13), (2.14) have the unique positive solution

u(t) =
∫ 1

0
G(t, s)

(∫ s

0
a(s – τ )α–1ρ(τ ) dτ

)q1–1

ds, t ∈ [0, 1], (2.15)

v(t) =
∫ 1

0
H(t, s)

(∫ s

0
b(s – τ )β–1ρ(τ ) dτ

)q2–1

ds, t ∈ [0, 1], (2.16)

respectively, in which a = 1
Γ (α) , b = 1

Γ (β) .

Proof Let h = Dγ

0+ u, k = ϕp1 (h), then the solution of the initial value problem
⎧
⎨

⎩

Dα
0+ k(t) + ρ(t) = 0, 0 < t < 1,

k(0) = 0,
(2.17)

is given by k(t) = C1tα–1 – Iα
0+ρ(t), t ∈ [0, 1]. By the relations k(0) = 0, we have C1 = 0, and

hence,

k(t) = –Iα
0+ρ(t), t ∈ [0, 1]. (2.18)

By Dγ

0+ u = h, h = ϕ–1
p1 (k), we have from (2.17) that the solution of (2.13) satisfies

⎧
⎨

⎩

Dγ

0+ u(t) = ϕ–1
p1 (–Iα

0+ρ(t)), 0 < t < 1,

u(j)(0) = 0, j = 0, 1, 2, . . . , n – 2; Dr1
0+ u(1) =

∑∞
j=1 ηjDr2

0+ u(ξj).
(2.19)

By (2.3), the solution of Eq. (2.19) can be written as

u(t) = –
∫ 1

0
G(t, s)ϕ–1

p1

(
–Iα

0+ρ(s)
)

ds, t ∈ [0, 1].

Since ρ(s) ≥ 0, s ∈ [0, 1], we have ϕ–1
p1 (–Iα

0+ρ(s)) = –(Iα
0+ρ(s))q1–1, s ∈ [0, 1], which implies

that the solution of Eq. (2.13) is

u(t) =
∫ 1

0
G(t, s)

(∫ s

0
a(s – τ )α–1ρ(τ ) dτ

)q1–1

ds, t ∈ [0, 1].
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Similarly, the solution of Eq. (2.14) is

v(t) =
∫ 1

0
H(t, s)

(∫ s

0
b(s – τ )β–1ρ(τ ) dτ

)q2–1

ds, t ∈ [0, 1],

where a, b is defined as Lemma 2.3. �

The vector (u, v) is a solution of system (1.1) if and only if (u, v) ∈ E × E (E is defined as
(2.23)) is a solution of the following nonlinear integral equation system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t) = λ
∫ 1

0 G(t, s)(
∫ s

0 a(s – τ )α–1f (τ , u(τ ), Dμ1
0+ u(τ ), . . . ,

Dμn–2
0+ u(τ ), v(τ )) dτ )q1–1 ds,

v(τ ) = λ
∫ 1

0 H(t, s)(
∫ s

0 b(s – τ )β–1g(τ , u(τ ), Dμ1
0+ u(τ ), . . . ,

Dμm–1
0+ u(τ )) dτ )q2–1 ds,

t ∈ [0, 1].

(2.20)

By Lemma 2.1, we know that the unique solution for problem (1.1) has the following inte-
gral formulation:

u(t) = λ

∫ 1

0
G(t, s)(

∫ s

0
a(s – τ )α–1f

(

τ , u(τ ), Dμ1
0+ u(τ ), . . . , Dμn–2

0+ u(τ ),
[

λ

∫ 1

0
H(τ , s)

×
(∫ s

0
b(s – w)β–1g

(
τ , u(τ ), Dμ1

0+ u(τ ), . . . , Dμm–1
0+ u(τ )

)
dw

)q2–1

ds
]

dτ

)q1–1

ds,

t ∈ [0, 1]. (2.21)

Let P be a normal cone of a Banach space E, and e ∈ P, e > θ , where θ is a zero element
of E. Define a component of P by Qe = {u ∈ P| there exists a constant C > 0 such that 1

C e �
u � Ce}. A : Qe × Qe → P is said to be mixed monotone if A(u, y) is nondecreasing in u
and nonincreasing in y, i.e., u1 � u2(u1, u2 ∈ Qe) implies A(u1, y) � A(u2, y) for any y ∈ Qe,
and y1 � y2(y1, y2 ∈ Qe) implies A(u, y1) � A(u, y2) for any u ∈ Qe. The element u� ∈ Qe is
called a fixed point of A if A(u�, u�) = u�.

Lemma 2.4 ([1, 5, 21, 44]) Let E be a Banach space and P be a normal cone of the Banach
space E. Suppose that A : Qe × Qe → Qe is a mixed monotone operator and there exists a
constant σ , 0 < σ < 1, such that

A
(

lx,
1
l

y
)

� lσ A(x, y), x, y ∈ Qe, 0 < l < 1, (2.22)

then A has a unique fixed point x� ∈ Qe, and for any x0 ∈ Qe, we have

lim
k→∞

xk = x�,

where

xk = A(xk–1, xk–1), k = 1, 2, . . . ,
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and the convergence rate is

∥
∥xk – x�

∥
∥ = o

(
1 – rσ k )

,

where r is a constant, 0 < r < 1, dependent on x0.

Lemma 2.5 ([1, 5, 21, 44]) Let E be a Banach space and P be a normal cone of the Banach
space E. Suppose that A : Qe × Qe → Qe is a mixed monotone operator and there exists a
constant σ ∈ (0, 1) such that (2.22) holds. If x�

λ is a unique solution of the equation

λA(x, x) = x, λ > 0,

in Qe, then
(1) For any λ0 ∈ (0, +∞), ‖x�

λ – x�
λ0

‖ → 0,λ → λ0;
(2) If 0 < σ < 1

2 , then 0 < λ1 < λ2 implies x�
λ1

� x�
λ2

, x�
λ1

�= x�
λ2

, and

lim
λ→0

∥
∥u�

λ

∥
∥ = 0, lim

λ→+∞
∥
∥u�

λ

∥
∥ = +∞.

Let

E =
{

u|u ∈ C[0, 1], Dμi
0+ u, D

μj
0+ u ∈ C[0, 1], i = 1, 2, . . . , n – 2; j = 1, 2, . . . , m – 2

}
(2.23)

be a Banach space with the norm

‖u‖ = max
{

max
t∈[0,1]

∣
∣u(t)

∣
∣, max

t∈[0,1]

∣
∣Dμi

0+ u(t)
∣
∣, max

t∈[0,1]

∣
∣D

μj
0+ u(t)

∣
∣,

i = 1, 2, . . . , n – 2; j = 1, 2, . . . , m – 2
}

.

Moreover, we define a cone of E by

P =
{

u ∈ E : u(t) ≥ 0, Dμi
0+ u(t) ≥ 0, D

μj
0+ u(t) ≥ 0,

t ∈ [0, 1], i = 1, 2, . . . , n – 2; j = 1, 2, . . . , m – 2
}

.

Clearly, P is a normal cone, and E is endowed with an order relation u � v if and only
if u(t) ≤ v(t), Dμi

0+ u(t) ≤ Dμi
0+ v(t), D

μj
0+ u(t) ≤ D

μj
0+ v(t) (i = 1, 2, . . . , n – 2; j = 1, 2, . . . , m – 2), t ∈

[0, 1]. Let e(t) = tγ –1 for t ∈ [0, 1], also define a component of P by

Qe =
{

u ∈ P : there exists M ≥ 1,
1
M

e(t) ≤ u(t) ≤ Me(t), t ∈ [0, 1]
}

.

3 Main results
Theorem 3.1 Suppose that (S1)–(S4) hold. Then PFDE (1.1) has a unique positive solution
(u�

λ, v�
μ) which satisfies

1
M

tγ –1 ≤ u�
λ(t) ≤ Mtγ –1, t ∈ [0, 1],
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λ

Γ (δ)
tδ–1bq2–1

(
ρ

M

)ς ∫ 1

0
j(s)

[∫ s

0
(s – w)β–1w(γ –1)ς

1
q2–1 g(w, 1, . . . , 1) dw

]q2–1

ds ≤ v�
μ(t)

≤ λa�tδ–1bq2–1(Mρ + 1)ς
∫ 1

0

[∫ s

0
(s – w)β–1g(w, 1, . . . , 1) dw

]q2–1

ds,

t ∈ [0, 1], (3.1)

and v�

λ
is dependent on u�

λ,

v�

λ
(t) = λ

∫ 1

0
H(t, s)

(∫ s

0
b(s – τ )β–1g

(
τ , u�

λ(τ ), Dμ1
0+ u�

λ(τ ), . . . , Dμm–2
0+ u�

λ(τ )
)

dτ

)q2–1

ds,

t ∈ [0, 1]. (�)

Moreover, u�
λ satisfies

(1) For λ0 ∈ (0,∞), ‖u�
λ – u�

λ0
‖ → 0,λ → λ0;

(2) If 0 < σ < 1
2 , then 0 < λ1 < λ2 implies u�

λ1
� u�

λ2
, u�

λ1
�= u�

λ2
, and

lim
λ→0

∥
∥u�

λ

∥
∥ = 0, lim

λ→+∞
∥
∥u�

λ

∥
∥ = +∞.

Moreover, for any u0(t) ∈ Qe, constructing a successive sequence:

uk+1(t) = λ

∫ 1

0
G(t, s)

[∫ s

0
a(s – τ )α–1(φ

(
τ , uk(τ ), Dμ1

0+ uk(τ ), . . . ,

Dμn–2
0+ uk(τ ), Auk(τ )

)

+ ψ
(
τ , uk(τ ), Dμ1

0+ uk(τ ), . . . , Dμn–2
0+ uk(τ ), Auk(τ )

)
dτ

]q1–1

ds,

k = 1, 2, . . . , t ∈ [0, 1],

and we have ‖uk – u�
λ‖ → 0 as k → ∞, the convergence rate is

∥
∥uk – u�

λ

∥
∥ = o

(
1 – rσ k )

,

where r is a constant, 0 < r < 1, dependent on u0 (A is defined by (3.2)).

Proof We now consider the existence of a positive solution to problem (1.1). From the
discussion in Sect. 2, we only need to consider the existence of a positive solution to PFDE
(2.21). In order to realize this purpose, define the operator A : Qe → P by

Au(τ ) =λ

∫ 1

0
H(τ , s)

[∫ s

0
b(s – w)β–1g

(
w, u(w), Dμ1

0+ u(w), . . . , Dμm–2
0+ u(w)

)
dw

]q2–1

ds,

τ ∈ [0, 1], (3.2)

define the operator Tλ : Qe × Qe → P by

Tλ(u, z)(t) = λ

∫ 1

0
G(t, s)

[∫ s

0
a(s – τ )α–1(φ

(
τ , u(τ ), Dμ1

0+ u(τ ), . . . , Dμn–2
0+ u(τ ), Au(τ )

)
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+ ψ
(
τ , z(τ ), Dμ1

0+ z(τ ), . . . , Dμn–2
0+ z(τ ), Au(τ )

))
dτ

]q1–1

ds,

t ∈ [0, 1]. (3.3)

Now we prove that Tλ : Qe × Qe → P is well defined. For any u ∈ Qe, that is, there exists
M ≥ 1 such that 1

M e(w) ≤ u(w) ≤ Me(w), by (3.2), (S3), and Remark 1.1, for all τ ∈ [0, 1],
we have

Au(τ )

= λ

∫ 1

0
H(τ , s)

[∫ s

0
b(s – w)β–1g

(
w, u(w), Dμ1

0+ u(w), . . . , Dμm–2
0+ u(w)

)
dw

]q2–1

ds

≤ λa�τ δ–1
∫ 1

0

[∫ s

0
b(s – w)β–1g

(

w, Mwγ –1,
MΓ (γ )

Γ (γ – μ1)
wγ –1–μ1 , . . . ,

MΓ (γ )
Γ (γ – μm–2)

wγ –1–μm–2

)

dw
]q2–1

ds

≤ λa�τ δ–1
∫ 1

0

[∫ s

0
b(s – w)β–1g

(

w, Mwγ –1 + 1,
MΓ (γ )

Γ (γ – μ)
wγ –1–μ1 + 1, . . . ,

MΓ (γ )
Γ (γ – μ)

wγ –1–μm–2 + 1
)

dw
]q2–1

ds

≤ λa�τ δ–1
∫ 1

0

[∫ s

0
b(s – w)β–1g

(

w, M + 1,
MΓ (γ )

Γ (γ – μ1)
+ 1, . . . ,

MΓ (γ )
Γ (γ – μm–2)

+ 1
)

dw
]q2–1

ds

≤ λa�τ δ–1
∫ 1

0

[∫ s

0
b(s – w)β–1g(w, Mρ + 1, . . . , Mρ + 1, ) dw

]q2–1

ds

≤ λa�τ δ–1
∫ 1

0

[∫ s

0
(Mρ + 1)ς

1
q2–1 b(s – w)β–1g(w, 1, . . . , 1) dw

]q2–1

ds

≤ λa�τ δ–1bq2–1(Mρ + 1)ς
∫ 1

0

[∫ s

0
(s – w)β–1g(w, 1, . . . , 1) dw

]q2–1

ds, (3.4)

where ρ = max{1, Γ (γ )
Γ (γ –μm–2) }, and

Au(τ )

= λ

∫ 1

0
H(τ , s)

[∫ s

0
b(s – w)β–1g

(
w, u(w), Dμ1

0+ u(w), . . . , Dμm–2
0+ u(w)

)
dw

]q2–1

ds

≥ λ
1

Γ (δ)
τ δ–1

∫ 1

0
j(s)

[∫ s

0
b(s – w)β–1g

(

w,
1
M

wγ –1,
Γ (γ )

MΓ (γ – μ1)
wγ –1–μ1 , . . . ,

Γ (γ )
MΓ (γ – μn–2)

wγ –1–μn–2

)

dw
]q2–1

ds

≥ λ
1

Γ (δ)
τ δ–1

∫ 1

0
j(s)

[∫ s

0
b(s – w)β–1g

(

w,
ρ

M
wγ –1, . . . ,

ρ

M
wγ –1

)

dw
]q2–1

ds
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≥ λ
1

Γ (δ)
τ δ–1

∫ 1

0
j(s)

[∫ s

0
b(s – w)β–1w(γ –1)ς

1
q2–1

(
ρ

M

)ς
1

q2–1

g(w, 1, . . . , 1) dw
]q2–1

ds

≥ λ
1

Γ (δ)
τ δ–1bq2–1

(
ρ

M

)ς

×
∫ 1

0
j(s)

[∫ s

0
(s – w)β–1w(γ –1)ς

1
q2–1 g(w, 1, . . . , 1) dw

]q2–1

ds, (3.5)

where ρ = min{1, Γ (γ )
Γ (γ –μ1) }. By (S4), we get that A : Pe → P is well defined. From (3.4), (S1),

and Remark 1.1, we have

φ
(
τ , u(τ ), Dμ1

0+ u(τ ), . . . , Dμn–2
0+ u(τ ), Au(τ )

)

≤ φ

(

τ , Me(τ ), Dμ1
0+ Me(τ ), . . . , Dμn–2

0+ Me(τ ),μa�τ δ–1bq2–1(Mρ + 1)ς

×
∫ 1

0

[∫ s

0
(s – w)β–1g(w, 1, 1) dw

]q2–1

ds
)

≤ φ
(
τ , . . . , Mb + 1, Mb + 1, Mς b + 1

)

≤ (Mb + 1)σ
1

q2–1
φ(τ , 1, . . . , 1)

≤ 2σ
1

q1–1 bσ
1

q1–1 Mσ
1

q1–1
φ(τ , 1, . . . , 1), τ ∈ (0, 1), (3.6)

where

M > max

{{

λa�aq1–1 1

(2α – 1)
q1–1

2

∫ 1

0

[

2σ
1

q1–1 bσ
1

q1–1
(∫ s

0
φ2(τ , 1, . . . , 1)

) 1
2

+ c–σ
1

q1–1

×
(∫ s

0
τ–2(γ –1)σ

1
q1–1

ψ2(τ , 1, 1, . . . , 1) dτ

) 1
2
]q1–1

ds
} 1

1–σ

, 1, 2c, b–1,

{

λ
1

Γ (γ )

∫ 1

0
j(s)

[∫ s

0
a(s – τ )α–1(c–σ

1
q1–1

τ (γ –1)σ
1

q1–1
φ(τ , 1, . . . , 1) + 2–σ

1
q1–1 b–σ

1
q1–1

ψ(τ , 1, 1, . . . , 1)
)

dτ

]q1–1

ds
}– 1

1–σ
}

,

in which

b = max

{
Γ (γ )

Γ (γ – μn–2)
, 1,λa�τ δ–1bq2–1(ρ + 1)ς

×
∫ 1

0

[∫ s

0
(s – w)β–1g(w, 1, . . . , 1) dw

]q2–1

ds
}

.

By (3.4), (S1), and (S2), we also have

ψ
(
τ , u(τ ), Dμ1

0+ u(τ ), . . . , Dμn–2
0+ u(τ ), Au(τ )

)

≤ ψ

(

τ ,
1
M

τ γ –1,
Γ (γ )

MΓ (γ – μ1)
τ γ –1–μ1 , . . . ,
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Γ (γ )
MΓ (γ – μn–2)

τ γ –1–μn–2 ,
λ

Γ (δ)
τ δ–1bq2–1

(
ρ

M

)ς

×
∫ 1

0
j(s)

(∫ s

0
(s – w)β–1w(γ –1)ς

1
q2–1 g(w, 1, 1) dw

)q2–1

ds
)

≤ ψ

(

τ ,
c

M
τ γ –1, . . . ,

c
M

τ γ –1
)

≤
(

c
M

τ γ –1
)–σ

1
q1–1

ψ(τ , 1, . . . , 1)

= c–σ
1

q1–1 Mσ
1

q1–1
τ–(γ –1)σ

1
q1–1

ψ(τ , 1, . . . , 1), τ ∈ (0, 1), (3.7)

where

c = min

{
Γ (γ )

Γ (γ – μ1)
, 1,

λ

Γ (δ)
τ δ–1bq2–1

ρς

×
∫ 1

0
j(s)

[∫ s

0
(s – w)β–1w(γ –1)ς

1
q2–1 g(w, 1, 1) dw

]q2–1

ds
}

.

Noting c
Dτ γ –1 < 1, and by (3.4), (S1), and (S2), we have

φ
(
τ , u(τ ), Dμ1

0+ u(τ ), . . . , Dμn–2
0+ u(τ ), Au(τ )

)

≥ φ

(

τ ,
1
M

τ γ –1,
Γ (γ )

MΓ (γ – μ1)
τ γ –1–μ1 , . . . ,

Γ (γ )
MΓ (γ – μn–2)

τ γ –1–μn–2 ,
μ

Γ (δ)
τ δ–1bq2–1

(
ρ

M

)ς

×
∫ 1

0
j(s)

[∫ s

0
(s – w)β–1w(γ –1)ς

1
q2–1 g(w, 1, 1) dw

]q2–1

ds
)

≥ φ

(

τ ,
c

M
τ γ –1, . . . ,

c
M

τ γ –1
)

≥
(

c
M

τ γ –1
)σ

1
q1–1

φ(τ , 1, . . . , 1)

= cσ
1

q1–1 M–σ

1
q1–1

τ (γ –1)σ
1

q1–1
φ(τ , 1, . . . , 1), τ ∈ (0, 1). (3.8)

By (3.4), (S1), and Remark 1.1, we also get

ψ
(
τ , u(τ ), Dμ1

0+ u(τ ), . . . , Dμn–2
0+ u(τ ), Au(τ )

)

≥ ψ

(

τ , Me(τ ), Dμ1
0+ Me(τ ), . . . , Dμn–2

0+ Me(τ ),

λa�τ δ–1bq2–1(Mρ + 1)ς
∫ 1

0

[∫ s

0
(s – w)β–1g(w, 1, . . . , 1) dw

]q2–1

ds
)

≥ ψ
(
τ , Mbτ γ –1 + 1, Mbτ γ –μ1–1 + 1, . . . , Mbτ γ –μn–2–1 + 1, Mbτ δ–1 + 1

)

≥ ψ(τ , Mb + 1, Mb + 1, . . . , Mb + 1)
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≥ (Mb + 1)–σ
1

q1–1
ψ(τ , 1, . . . , 1)

≥ 2–σ
1

q1–1 b–σ
1

q1–1 M–σ
1

q1–1
ψ(τ , 1, . . . , 1), τ ∈ (0, 1). (3.9)

For x, z ∈ Qe, by (3.6), (3.7), we have

Tλ(u, z)(t)

= λ

∫ 1

0
G(t, s)

[∫ s

0
a(s – τ )α–1(φ

(
τ , u(τ ), Dμ1

0+ u(τ ), . . . , Dμn–2
0+ u(τ ), v(τ )

)

+ ψ
(
τ , z(τ ), Dμ1

0+ z(τ ), . . . , Dμn–2
0+ z(τ ), v(τ )

))
dτ

]q1–1

ds

≤ λ

∫ 1

0
G(t, s)

[∫ s

0
a(s – τ )α–1(2σ

1
q1–1 bσ

1
q1–1 Mσ

1
q1–1 × φ(τ , 1, . . . , 1)

+ c–σ
1

q1–1 Mσ
1

q1–1
τ–(γ –1)σ

1
q1–1

ψ(τ , 1, . . . , 1)
)

dτ

]q1–1

ds

≤ λa�tγ –1Mσ aq1–1
∫ 1

0

[∫ s

0
(s – τ )α–1(2σ

1
q1–1 bσ

1
q1–1 × φ(τ , 1, . . . , 1)

+ c–σ
1

q1–1
τ–(γ –1)σ

1
q1–1

ψ(τ , 1, . . . , 1)
)

dτ

]q1–1

ds

≤ λa�tγ –1Mσ aq–1
∫ 1

0

[

2σ
1

q1–1 bσ
1

q1–1
∫ s

0
(s – τ )α–1φ(τ , 1, . . . , 1) dτ

+ c–σ

∫ s

0
(s – τ )α–1τ–(γ –1)σ

1
q1–1

ψ(τ , 1, . . . , 1)) dτ

]q1–1

ds

≤ λa�tγ –1Mσ aq1–1
∫ 1

0

[

2σ
1

q1–1 bσ
1

q1–1 1
(2α – 1) 1

2
s

2α–1
2

(∫ s

0
φ2(τ , 1, . . . , 1) dτ

) 1
2

+ c–σ ‖(s – τ )α–1‖2‖–(γ –1)σ
1

q1–1
ψ(τ , 1, . . . , 1)‖2

]q1–1

ds

≤ λa�tγ –1Mσ aq1–1
∫ 1

0

[

2σ
1

q1–1 bσ
1

q1–1 1
(2α – 1) 1

2
s

2α–1
2

(∫ s

0
φ2(τ , 1, . . . , 1) dτ

) 1
2

+ c–σ 1
(2α – 1) 1

2
s

2α–1
2

(∫ s

0
τ–(γ –1)σ

1
q1–1

ψ2(τ , 1, . . . , 1) dτ

) 1
2
]q1–1

ds

≤ λa�tγ –1Mσ aq1–1 1

(2α – 1)
q1–1

2

∫ 1

0

[

2σ
1

q–1 bσ
1

q1–1
(∫ s

0
φ2(τ , 1, . . . , 1) dτ

) 1
2

+ c–σ

(∫ s

0
τ–(γ –1)σ

1
q1–1

ψ2(τ , 1, . . . , 1) dτ

) 1
2
]q1–1

ds

< +∞, t ∈ [0, 1], (3.10)

where ‖ · ‖2 is the norm in space L2[0, 1]. By (S4), (3.10), we have that Tλ : Qe × Qe → P is
well defined. Next, we will prove Tλ : Qe × Qe → Qe.
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Formula (3.10) implies that

Tλ(u, z)(t) ≤ Mtγ –1 = Me(t), t ∈ [0, 1]. (3.11)

At the same time, by (3.8) and (3.9), we have

Tλ(u, z)(t)

= λ

∫ 1

0
G(t, s)

[∫ s

0
a(s – τ )α–1(φ

(
τ , u(τ ), Dμ1

0+ u(τ ), . . . , Dμn–2
0+ u(τ ), Au(τ )

)

+ ψ
(
τ , z(τ ), Dμ1

0+ z(τ ), . . . , Dμn–2
0+ z(τ ), Az(τ )

))
dτ

]q1–1

ds

≥ λ

∫ 1

0
G(t, s)

[∫ s

0
a(s – τ )α–1(cσ

1
q1–1 M–σ

1
q1–1

τ (α–1)σ
1

q1–1

× φ(τ , 1, . . . , 1) + 2–σ
1

q1–1 b–σ
1

q1–1 Mσ
1

q1–1
ψ(τ , 1, . . . , 1)

)
dτ

]q1–1

ds

≥ λ

Γ (γ )
tγ –1M–σ aq1–1

∫ 1

0
j(s)

[∫ s

0
(s – τ )α–1(cσ

1
q1–1

τ (α–1)σ
1

q1–1

× φ(τ , 1, . . . , 1) + 2–σ
1

q1–1 b–σ
1

q1–1
ψ(τ , 1, . . . , 1)

)
dτ

]q1–1

ds, t ∈ [0, 1]. (3.12)

Formula (3.12) implies that

Tλ(u, z)(t) ≥ 1
M

tγ –1 =
1
M

e(t), t ∈ [0, 1]. (3.13)

Hence, Tλ : Qe × Qe → Qe. Next, we shall prove that Tλ : Qe × Qe → Qe is a mixed mono-
tone operator. In fact, for any u1, u2, z ∈ Qe and u1 � u2, that is, u1(t) ≤ u2(t), Dμi

0+ u1(t) ≤
Dμi

0+ u2(t) (i = 1, 2, . . . , n – 2), D
μj
0+ u1(t) ≤ D

μj
0+ u2(t) (j = 1, 2, . . . , m – 2), t ∈ [0, 1], by the mono-

tonicity of A and φ, and from (S1), for all t ∈ [0, 1], we have

λ

∫ 1

0
G(t, s)

[∫ s

0
a(s – τ )α–1(φ

(
τ , u1(τ ), Dμ1

0+ u1(τ ), . . . , Dμn–2
0+ u1(τ ), Au1(τ )

)

+ ψ
(
τ , z(τ ), Dμ1

0+ z(τ ), . . . , Dμn–2
0+ z(τ ), Az(τ )

)
dτ

]q1–1

ds

≤ λ

∫ 1

0
G(t, s)

[∫ s

0
a(s – τ )α–1(φ

(
τ , u2(τ ), Dμ1

0+ u2(τ ), . . . , Dμn–2
0+ u2(τ ), Au2(τ )

)

+ ψ
(
τ , z(τ ), Dμ1

0+ z(τ ), . . . , Dμn–2
0+ z(τ ), Az(τ )

)
dτ

]q1–1

ds, (3.14)

λ

∫ 1

0
Dμi

0+ G(t, s)
[∫ s

0
a(s – τ )α–1(φ

(
τ , u1(τ ), Dμ1

0+ u1(τ ), . . . , Dμn–2
0+ u1(τ ), Au1(τ )

)

+ ψ
(
τ , z(τ ), Dμ1

0+ z(τ ), . . . , Dμn–2
0+ z(τ ), Az(τ )

)
dτ

]q1–1

ds

≤ λ

∫ 1

0
Dμi

0+ G(t, s)
[∫ s

0
a(s – τ )α–1(φ

(
τ , u2(τ ), Dμ1

0+ u2(τ ), . . . , Dμn–2
0+ u2(τ ), Au2(τ )

)
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+ ψ
(
τ , z(τ ), Dμ1

0+ z(τ ), . . . , Dμn–2
0+ z(τ ), Az(τ )

)
dτ

]q1–1

ds,

i = 1, 2, . . . , m – 2. (3.15)

Hence, by (3.14),(3.15), we have

Tλ(u1, z) � Tλ(u2, z), z ∈ Qe, (3.16)

that is, Tλ(u, z) is nondecreasing on u for any z ∈ Qe. Similarly, for all u, z1, z2 ∈ Qe,
z1 � z2, that is, z1(t) ≥ z2(t), Dμi

0+ z1(t) ≥ Dμi
0+ z2(t) (i = 1, 2, . . . , n – 2), D

μj
0+ z1(t) ≥ D

μj
0+ z2(t) (j =

1, 2, . . . , m – 2), t ∈ [0, 1], from (S1), for all t ∈ [0, 1], we have

λ

∫ 1

0
G(t, s)

[∫ s

0
a(s – τ )α–1(φ

(
τ , u(τ ), Dμ1

0+ u(τ ), . . . , Dμn–2
0+ u(τ ), Au(τ )

)

+ ψ
(
τ , z1(τ ), Dμ1

0+ z1(τ ), . . . , Dμn–2
0+ z1(τ ), Az1(τ )

))
dτ

]q1–1

ds

≤ λ

∫ 1

0
G(t, s)

[∫ s

0
a(s – τ )α–1(φ

(
τ , u(τ ), Dμ1

0+ u(τ ), . . . , Dμn–2
0+ u(τ ), Au(τ )

)

+ ψ
(
τ , z2(τ ), Dμ1

0+ z2(τ ), . . . , Dμn–2
0+ z2(τ ), Az2(τ )

))
dτ

]q1–1

ds, (3.17)

λ

∫ 1

0
Dμi

0+ G(t, s)
[∫ s

0
a(s – τ )α–1(φ

(
τ , u(τ ), Dμ1

0+ u(τ ), . . . , Dμn–2
0+ u(τ ), Au(τ )

)

+ ψ
(
τ , z1(τ ), Dμ1

0+ z1(τ ), . . . , Dμn–2
0+ z1(τ ), Az1(τ )

))
dτ

]q1–1

ds

≤ λ

∫ 1

0
Dμ1

0+ G(t, s)
[∫ s

0
a(s – τ )α–1(φ

(
τ , u(τ ), Dμ1

0+ u(τ ), . . . , Dμn–2
0+ u(τ ), Au(τ )

)

+ ψ
(
τ , z2(τ ), Dμ1

0+ z2(τ ), . . . , Dμn–2
0+ z2(τ ), Az2(τ )

))
dτ

]q1–1

ds,

i = 1, 2, . . . , m – 2. (3.18)

Hence, by (3.17), (3.18), we have

Tλ(u, z1) � Tλ(u, z2), u ∈ Qe, (3.19)

i.e., Tλ(u, z) is nonincreasing on z for any u ∈ Qe. Hence, by (3.16) and (3.19), we have that
Tλ : Qe × Qe → Qe is a mixed monotone operator.

Finally, we show that the operator Tλ satisfies (2.22). For any u, z ∈ Qe and l ∈ (0, 1), by
(S2) and Remark 1.1, for all t ∈ [0, 1], we have

λ

∫ 1

0
G(t, s)

[∫ s

0
a(s – τ )α–1

(

φ
(
τ , lu(τ ), Dμ1

0+ lu(τ ), . . . , Dμn–2
0+ lu(τ ), Alu(τ )

)

+ ψ

(

τ ,
1
l

z(τ ), Dμ1
0+

1
l

z(τ ), . . . , Dμn–2
0+

1
l

z(τ ), A
1
l

z(τ )
))

dτ

]q1–1

ds

≥ λ

∫ 1

0
G(t, s)

[∫ s

0
a(s – τ )α–1lσ

1
q1–1 (

φ
(
τ , u(τ ), Dμ1

0+ u(τ ), . . . , Dμn–2
0+ u(τ ), Au(τ )

)
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+ ψ
(
τ , z(τ ), Dμ1

0+ z(τ ), . . . , Dμn–2
0+ z(τ ), Az(τ )

))
dτ

]q1–1

ds

≥ lσ
∫ 1

0
G(t, s)

[∫ s

0
a(s – τ )α–1(φ

(
τ , u(τ ), Dμ1

0+ u(τ ), . . . , Dμn–2
0+ u(τ ), Au(τ )

)

+ ψ
(
τ , z(τ ), Dμ1

0+ z(τ ), . . . , Dμn–2
0+ z(τ ), Az(τ )

))
dτ

]q1–1

ds, (3.20)

λ

∫ 1

0
Dμi

0+ G(t, s)
[∫ s

0
a(s – τ )α–1

(

φ
(
τ , lu(τ ), Dμ1

0+ lu(τ ), . . . , Dμn–2
0+ lu(τ ), Alu(τ )

)

+ ψ

(

τ ,
1
l

z(τ ), Dμ1
0+

1
l

z(τ ), . . . , Dμn–2
0+

1
l

z(τ ), A
1
l

z(τ )
))

dτ

]q1–1

ds

≥ λ

∫ 1

0
Dμi

0+ G(t, s)
[∫ s

0
a(s – τ )α–1lσ

1
q1–1 (

φ
(
τ , u(τ ), Dμ1

0+ u(τ ), . . . , Dμn–2
0+ u(τ ), Au(τ )

)

+ ψ
(
τ , z(τ ), Dμ1

0+ z(τ ), . . . , Dμn–2
0+ z(τ ), Az(τ )

))
dτ

]q1–1

ds

≥ lσ
∫ 1

0
Dμi

0+ G(t, s)
[∫ s

0
a(s – τ )α–1(φ

(
τ , u(τ ), Dμ1

0+ u(τ ), . . . , Dμn–2
0+ u(τ ), Au(τ )

)

+ ψ
(
τ , z(τ ), Dμ1

0+ z(τ ), . . . , Dμn–2
0+ z(τ ), Az(τ )

))
dτ

]q1–1

ds. (3.21)

Formulas (3.20),(3.21) imply that

Tλ

(

lu,
1
l

z
)

� lσ Tλ(u, z), u, z ∈ Qe. (3.22)

Hence, Lemma 2.4 assumes that there exists a unique positive solution u�
λ ∈ Qe such that

Tλ(u�
λ, u�

λ) = u�
λ. It is easy to check that u�

λ is a unique positive solution of (2.10) for any
given λ > 0. Moreover, by Lemma 2.5, we have

(1) For any λ0 ∈ (0, +∞), ‖u�
λ – u�

λ0
‖ → 0,λ → λ0;

(2) If 0 < σ < 1
2 , then 0 < λ1 < λ2 implies u�

λ1
� u�

λ2
, u�

λ1
�= u�

λ2
, and

lim
λ→0

∥
∥u�

λ

∥
∥ = 0, lim

λ→+∞
∥
∥u�

λ

∥
∥ = +∞.

Moreover, for any u0(t) ∈ Qe, by Lemma 2.4, for any t ∈ [0, 1], constructing a successive
sequence

uk+1(t) = λ

∫ 1

0
G(t, s)

[∫ s

0
a(s – τ )α–1(φ

(
τ , uk(τ ), Dμ1

0+ uk(τ ), . . . , Dμn–2
0+ uk(τ ), Auk(τ )

)

+ ψ
(
τ , uk(τ ), Dμ1

0+ uk(τ ), . . . , Dμn–2
0+ uk(τ ), Auk(τ )

)
dτ

]q1–1

ds,

k = 1, 2, . . . , t ∈ [0, 1],

and we have ‖uk – u�
λ‖ → 0 as k → ∞, the convergence rate is

∥
∥uk – u�

λ

∥
∥ = o

(
1 – rσm)

,

where r is a constant, 0 < r < 1, dependent on u0. By (2.20), we easily get (�).
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By (3.4), (3.5), and u�
λ ∈ Qe, we get (3.1). Therefore, the proof of Theorem 3.1 is com-

pleted. �

4 Example
Example 4.1 Consider the following boundary value problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D
3
4
0+ (ϕ3(D

5
2
0+u))(t) + λ2f (t, u(t), D

1
2
0+ u(t), v(t)) = 0, 0 < t < 1,

D
3
4
0+ (ϕ2(D

3
2
0+v))(t) + μg(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = 0, Dγ
0+u(0) = 0, Dr1

0+ u(1) =
∑∞

j=1 ηjDr2
0+ u(ξj),

v(0) = v′(0) = 0, Dδ
0+v(0) = 0, Dr1

0+ v(1) =
∑∞

j=1 ηjD
r2
0+ u(ξ j),

(4.1)

where γ = 5
2 , δ = 3

2 ,α = β = 3
4 , r1 = r2 = 1

2 , r1 = r2 = 1
2 , ηj = ηj = 1

2j5 , ξj = ξ j = 1
j2 , p1 = 3, q1 =

3
2 , p2 = 2, q2 = 2, and

φ(t, x1, x2, x3) =
(
t– 1

4 + cost
)
x

1
9
1 + 2tx

1
8
2 + 2x

1
16
3 ,

ψ(t, x1, x2, x3) = t– 1
16 x– 1

8
1 + x– 1

16
2 + (2 – t)x– 1

15
3 ,

g(t, u) =
(
3t + t2)u

3
5 + (tsint + t)u

2
3 .

Hence,

Γ (γ )
Γ (γ – r2)

∞∑

j=1

ηjξ
γ –r2–1
j =

Γ ( 5
2 )

Γ ( 3
2 )

∞∑

j=1

ηj(ξj)– 1
2 = 0.5412 <

Γ (γ )
Γ (γ – r1)

=
Γ ( 5

2 )
Γ ( 3

2 )
,

Γ (δ)
Γ (δ – r2)

∞∑

j=1

ηjξ
α–r2–1
j =

Γ ( 3
2 )

Γ ( 1
2 )

∞∑

j=1

ηj(ξ j)– 1
2 = 0.5412 <

Γ (δ)
Γ (δ – r1)

=
Γ ( 3

2 )
Γ ( 1

2 )
.

Moreover, for any (t, x1, x2, x3) ∈ (0, 1) × (0,∞)3 and 0 < l < 1, we have

φ(t, lx1, lx2, lx3)

=
(
t– 1

4 + cost
)
(lx1)

1
9 + 2t(lx2)

1
8 + 2(lx3)

1
16

≥ l
1
8
((

t– 1
4 + cost

)
x

1
9
1 + 2tx

1
8
2 + 2x

1
16
3

)

= l
1
8 φ(t, x1, x2, x3) = lσ

1
q1–1

φ(t, x1, x2, x3),

ψ
(
t, l–1x1, l–1x2, l–1x3

)

= t– 1
16

(
l–1x1

)– 1
8 +

(
l–1x2

)– 1
16 + (2 – t)

(
l–1x3

)– 1
15

≥ l
1
8
(
t– 1

16 x– 1
8

1 + x– 1
16

2 + (2 – t)x– 1
15

3
)

= l
1
8 ψ(t, x1, x2, x3) = lσ

1
q1–1

ψ(t, x1, x2, x3),

g(t, lu)

=
(
3t + t2)(lu)

3
5 + (tsint + t)(lu)

2
3
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≥ l
2
3
((

3t + t2)u
3
5 + (tsint + t)u

2
3
)

= l
2
3 g(t, u) = lς

1
q2–1 g(t, u).

Noting σ = 1
2
√

2 < 1,ς = 2
3 ,ψ(τ , 1, 1, 1) = τ– 1

16 + 3 – τ , φ(τ , 1, 1, 1) = τ– 1
4 + cosτ + 2τ + 2,

g(τ , 1) = 3τ + τ 2 + τ sin τ + τ , we have

0 <
∫ 1

0
φ2(τ , 1, 1, 1) dτ

=
∫ 1

0

(
τ– 1

4 + cos τ + 2τ + τ
)2 dτ

≤ 19 + 8 +
16
7

< +∞,

0 <
∫ 1

0
τ–2(γ –1)σ

1
q–1

ψ2(τ , 1, 1, 1) dτ

=
∫ 1

0
τ– 3

8
(
τ– 1

16 + 3 – τ
)2 dτ

≤
∫ 1

0
τ– 3

8
(
τ– 1

16 + 3
)2 dτ

= 2 +
96
9

+ 9 < +∞,

0 <
∫ 1

0
g2(τ , 1, 1, 1) dτ

≤
∫ 1

0

(
3τ + τ 2 + τ sin τ + τ

)2 dτ

≤ 17 × 1
3

+ 6 × 1
4

+
1
5

+ 12 + 16 < +∞.

Thus, assumptions (S1)–(S4) of Theorem 3.1 hold. Then Theorem 3.1 implies that problem
(4.1) has a unique solution. Furthermore, when λ → λ0, λ0 ∈ (0, +∞), we have

∥
∥u�

λ – u�
λ0

∥
∥ → 0,

and 0 < λ1 < λ2 implies

u�
λ1 (t) ≤ u�

λ2 (t), u�
λ1 (t) �= u�

λ2 (t), t ∈ [0, 1].

Since σ = 1
2
√

2 ∈ (0, 1
2 ), then

lim
λ→0

∥
∥u�

λ

∥
∥ = 0, lim

λ→+∞
∥
∥u�

λ

∥
∥ = +∞.

In addition, for any initial u0 ∈ Qe, we construct a successive sequence:

uk+1(t) =
∫ 1

0
λG(t, s)

[∫ s

0
a(s – τ )α–1(φ

(
t, uk(t), D

1
2
0+ uk(t), Au′

k(t)
)

+ ψ
(
t, uk(t), D

1
2
0+ uk(t), Au′

k(t)
))

dτ

]q1–1

ds, t ∈ [0, 1], k = 1, 2, . . . ,
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and we have ‖uk – u�
λ‖ → 0 as k → ∞, the convergence rate is

∥
∥uk – u�

λ

∥
∥ = o

(
1 – rσ k )

,

where r is a constant, 0 < r < 1, dependent on u0.

5 Conclusions
In this paper, we study the existence of positive solutions for a singular p-Laplacian frac-
tional order differential equation boundary value system. By using the method of mixed
monotone operator, some existence results are obtained for the case where the nonlinear-
ity is allowed to be singular in regard to not only time variable but also space variable and
the fractional orders are involved in the nonlinearity of the boundary value problem (1.1).
Moreover, our equation system contains many types of equation system because there are
many parameters in our p-Laplacian equation system, and also the uniqueness of positive
solution of equation (1.1) is dependent on λ,μ. An iterative sequence and convergence
rate, which are important for practical application, are given.
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