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Abstract
In this paper, a class of second order stochastic evolution equations with memory

utt(t, x) –�u(t, x) +
∫ t

0
g(t – s)�u(s, x)ds + f (u) = σ (u)

∂W(x, t)
∂ t

, x ∈ D ⊂ R
n,

is considered, where f is a continuous function with polynomial growth of order less
than or equal to n/(n – 2) and σ is Lipschitz with σ (0) = 0. By Tartar’s energy method,
we prove that for any solution to the equation the propagate speed is finite.
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1 Introduction
In this paper, we consider the stochastic viscoelastic wave equations

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

utt(t, x) – �u(t, x) +
∫ t

0 g(t – s)�u(s, x) ds + f (u) = σ (u) ∂W (x,t)
∂t ,

x ∈ D, t ∈ (0, T),

u(x, t) = 0, x ∈ ∂D, t ∈ (0, T),

u(x, 0) = u0(x), ut(x, 0) = v0(x), x ∈ D,

(1.1)

where D is a bounded domain in R
n with a smooth boundary ∂D, g is the relaxation func-

tion satisfying the hyperbolicity and the existence condition, i.e.
(G1) g ≥ 0 ∈ C1[0,∞) is a non-increasing function satisfying

∫ ∞

0
g(s) ds = 1 – l > 0.

f : R→ R satisfies
(A1) f is a continuous function, f (s)s ≥ 0, ∀s ∈R and

∣∣f (s)
∣∣ ≤ C

(
1 + |s|p+1), ∀s ∈R, (1.2)
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where p satisfies

⎧⎨
⎩

0 ≤ p ≤ 2
n–2 , if n > 2,

p ≥ 0, if n = 1, 2.
(1.3)

{W (t, x) : t ≥ 0} is a H-valued R-Wiener process on the probability space with the variance
operator R satisfying Tr R < ∞.

When g(t) = 0, (1.1) becomes a nonlinear wave equation. Marinelli and Quer-Sarsanyons
[1] proved existence of weak solutions in the probabilistic sense for a general class of
stochastic semilinear wave equations on bounded domains of Rn driven by a possibly dis-
continuous square integrable martingale. Under a more restrictive condition on f , Barbu
and Röckner [2] found that the propagation speed of the solutions of (1.1) with dissipa-
tive damping is finite by Tartar’s energy method. The result is similar to the classical finite
speed of propagation result for the solution to the Klein–Gordon equation.

When g(t) 	= 0, for the current equation (1.1), the memory part makes it difficult to es-
timate the energy by using these methods. Hence, Wei and Jiang [3] studied (1.1) with
σ ≡ 1 in another way. They showed the existence and uniqueness of solution for (1.1) and
obtained the decay estimate of the energy function of the solution. In [4], Liang and Guo
obtained asymptotic stability and extend the decay estimate of [3] for the general equation
(1.1) with multiplicative noise. Moreover, Liang and Gao [5] also obtained the existence
and uniqueness of global mild solutions for (1.1) driven by Lévy noise.

In this paper, we prove that, for any solution to (1.1) with probability one, the speed of
propagation is with velocity less than or equal to 1. This localization result is new for the
case of the second order stochastic evolution equations with memory we consider here.
The standard strategy to prove this property for the deterministic Klein–Gordon equation
is based on the Paley–Wiener theorem combined with point arguments [6]. However, for
the current equation (1.1), the memory part makes it difficult to use these methods. So we
shall use a different approach, inspired by Tartar’s energy method [7].

This paper is organized as follows. In Sect. 2 we present some assumptions needed for
our work and give the existence theorem for a unique global weak solution. Section 3 is
devoted to the proof of the finite propagate speed.

2 Preliminaries
Set H = L2(D) and V = H1

0 (D) with norm denoted by ‖ · ‖ and ‖∇ · ‖, respectively. In
addition, both H and V are Hilbert spaces if we endow them with the usual inner products
(·, ·) and 〈·, ·〉, respectively. Let H = V × H with the norm ‖U‖H = (‖∇u‖2 + ‖v‖2) 1

2 for
any U = (u, v) ∈ H .

Let (Ω , P,F ) be a complete probability space for which a {Ft , t ≥ 0} filtration of sub-σ -
fields of F is given. A point of Ω will be denoted by ω and E(·) stands for the expectation
with respect to probability measure P. Suppose that {W (t, x) : t ≥ 0} is a H-valued Q-
Wiener process on the probability space with the covariance operator Q satisfying Tr Q <
∞. It has mean EW (x, t) = 0 and satisfies

E
[(

W (t),ϕ
) ∧ (

W (s),ψ
)]

= (t ∧ s)(Qϕ,ψ)
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for any ϕ,ψ ∈ H . Moreover, we can assume that Q has the following form:

Qei = λiei, i = 1, 2, . . . ,

where λi are eigenvalues of Q satisfying
∑∞

i=1 λi < ∞ and {ei} are the corresponding eigen-
functions with c0 := supi≥1 ‖ei‖∞ < ∞ (where ‖ · ‖∞ denotes the super-norm). In this case,

W (t, x) =
∞∑
i=1

√
λiBi(t)ei,

where {Bi(t)} is a sequence of independent copies of standard Brownian motions in one
dimension.

Now, we give the definition of solution to (1.1); see [8, 9] for details. For the definition
of a solution, we assume that

(u0, u1) ∈ H1
0 (D) × L2(D). (2.1)

Definition 2.1 ([8, 9]) Under the assumption (2.1), u is said to be a solution of (1.1) on
the interval [0, T] if

(u, ut) is H1
0 (D) × L2(D)-valued progressively measurable, (2.2)

(u, ut) ∈ L2(Ω ; C
(
[0, T]; H1

0 (D) × L2(D)
))

, for almost all ω, (2.3)

u(0) = u0, ut(0) = u1, (2.4)

utt – �u +
∫ t

0
g(t – τ )�u(τ ) dτ + f (u) = σ (u)∂tW (t, x) (2.5)

hold in the sense of distributions over (0, T) × D for almost all ω.

Remark 2.1 Equations (2.3) and (2.5) imply that

(
ut(t),φ

)
= (u1,φ) –

∫ t

0
(∇u,∇φ) ds +

∫ t

0

(
f (u),φ

)
ds

+
∫ t

0

(∫ s

0
g(s – τ )∇u(τ ) dτ ,∇φ(s)

)
ds +

∫ t

0

(
φ,σ (u) dWs

)
, (2.6)

for all t ∈ [0, T] and all φ ∈ H1
0 (D). In fact, (2.6) is a conventional form for the definition of

solution to stochastic differential equations. Here we say u is a strong solution of Eq. (1.1).

As regards the existence equation (1.1), moreover, we assume f also satisfies:
(A2) Assume that, for every N > 0, there exists constant Lf (N) such that, for all t ≥ 0

and all u, v ∈ V with ‖∇u‖ ≤ N and ‖∇v‖ ≤ N ,

∥∥f (u) – f (v)
∥∥2 ≤ Lf (N)

∥∥∇(u – v)
∥∥2. (2.7)

Remark 2.2 ([8, 9]) It is clear that f (u) = |u|pu satisfies conditions (A1) and (A2), where p
satisfies (1.3).
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Under our hypotheses on g and f , we can derive an unique maximal local mild solution
to (1.1) by following the arguments of [9] almost step by step.

Theorem 2.1 Assume that (G1), (A1) and (A2) are satisfied and (u0(x), u1(x)) : Ω → H

be F0-measurable. Then (1.1) admits a unique local mild solution u ∈ C1([0, τ∞)×D; H)∩
C([0, τ∞); V ) satisfying

lim
t→τ∞

sup‖∇u‖ = +∞

and

u(t ∧ τk) = S(t ∧ τk)u0 +
∫ t∧τk

0
S(τ )u1 dτ –

∫ t∧τk

0
1 ∗ S(t ∧ τk – τ )f (u) dτ + Iτk (σ )(t ∧ τk)

for all t > 0 and k ∈ N, where τ∞ is a stopping time defined by

τ∞ = lim
k→∞

τk with τk = inf
{

t ≥ 0;‖∇u‖ ≥ k
}

,

Iτk (σ )(t) =
∫ t

0
1[0,τk )(τ )1 ∗ S(t – τ )σ

(
u(τ ∧ τk), ut(τ ∧ τk)

)
dW (τ ),

and S(t) is the resolvent operator for the equation

utt – �u +
∫ t

0
g(t – τ )�u(τ ) dτ = 0.

Moreover, if u0 ∈ H2(D) ∩ V and u1 ∈ V , then the mild solution of (1.1) is a strong solution
and belongs to C1([0, τ∞) × D; H2(D) ∩ V ).

Define the energy functional E(t) associated with our system (1.1)

E
(
u(t)

)
=

∥∥ut(t)
∥∥2 +

(
1 –

∫ t

0
g(s) ds

)∥∥∇u(t)
∥∥2 + (g ◦ ∇u)(t),

where

(g ◦ w)(t) =
∫ t

0
g(t – s)

∥∥w(t) – w(s)
∥∥2 ds.

Theorem 2.2 Assume that (G1), (A1) and (A2) are satisfied and u(0) = (u0(x), u1(x)) :
Ω → H be F0-measurable. Let u be the unique local mild solution to problem (1.1) with
life span τ∞, then τ∞ = ∞ P-a.s.

Proof First, we consider the case of E(u(0)) < ∞. Let u(t), 0 ≤ t < τ∞, be a maximal local
mild solution to problem (1.1). Define a sequence of stopping times by

τk = inf
{

t ≥ 0 : ‖∇u‖ ≥ k
}

, k ≥ 1.

By Theorem 2.1, then limk→∞ τk = τ∞. For any t ≥ 0, we will show that u(t ∧ τk) → u(t)
a.s. as k → ∞, so that the local solution becomes a global one. To this end, it suffices to
show that τk → ∞ as k → ∞ with probability one.
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Now one of the main obstacles is that the solution u to problem (1.1) may have only
a finite lifespan, i.e., τ∞ < ∞. For this purpose, we fix k ∈ N and introduce the following
function:

f̃ (t) = 1[0,τk )(t)f
(
u(t ∧ τk)

)
, σ̃ (t) = 1[0,τk )(t)σ

(
u(t ∧ τk)

)
, t ≥ 0.

One can see that the processes f̃ and σ̃ are bounded. We consider the following linear
nonhomogeneous stochastic equation:

⎧⎨
⎩

vtt = �v –
∫ t

0 g(t – s)�v(s) ds – f̃ (t) + σ̃ (t) ∂W (x,t)
∂t , t > 0,

v(x, 0) = u0(x), vt(x, 0) = u1(x).
(2.8)

By Theorem 3.1 of [3], there exists a unique global mild solution of (2.8) with the form

v(t) = S(t)u0 +
∫ t

0
S(τ )u1 dτ –

∫ t

0
1 ∗ S(t – τ )f̃ (τ ) dτ

+
∫ t

0
1 ∗ S(t – τ )σ̃ (τ ) dW (τ ), t ≥ 0.

Hence the stopped process v(· ∧ τk) satisfies

v(t ∧ τk) = S(t ∧ τk)u0 +
∫ t∧τk

0
S(s)u1 ds –

∫ t∧τk

0
1 ∗ S(t ∧ τk – s)f̃ (s) ds

+ Iτk (σ̃ )(t ∧ τk), t ≥ 0,

where

Iτk (σ̃ )(t) =
∫ t

0
1[0,τk )(s)1 ∗ S(t – s)σ̃ (s) dW (s, x).

One can observe that (see [10])

Iτk (σ̃ )(t) =
∫ t

0
1[0,τk )(s)1 ∗ S(t – s)σ̃ (s) dW (s, x)

=
∫ t

0
1[0,τk )(s)1 ∗ S(t – s)σ

(
u(t ∧ τk)

)
dW (s, x) = Iτk (σ )(t), t ≥ 0.

Therefore, for every k ≥ 1, from Theorem 2.1, we have

v(t ∧ τk) = S(t ∧ τk)u0 +
∫ t∧τk

0
S(s)u1 ds –

∫ t∧τk

0
1 ∗ S(t ∧ τk – s)f̃ (s) ds + Iτk (σ̃ )(t ∧ τk)

= S(t ∧ τk)u0 +
∫ t∧τk

0
S(s)u1 ds –

∫ t∧τk

0
1 ∗ S(t ∧ τk – s)f̃ (s) ds + Iτk (σ )(t ∧ τk)

= S(t ∧ τn)u0 +
∫ t∧τn

0
S(s)u1 ds + Iτk (σ )(t ∧ τk)

–
∫ t∧τk

0
1 ∗ S(t ∧ τk – s)1[0,τk )(s)f

(
u(s ∧ τk)

)
ds
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= S(t ∧ τk)u0 +
∫ t∧τk

0
S(τ )u1 dτ

–
∫ t∧τk

0
1 ∗ S(t ∧ τk – τ )f (u) dτ + Iτk (σ )(t ∧ τk)

= u(t ∧ τk), P-a.s. t ≥ 0.

By virtue of the Itô rule for ‖vt(t ∧ τk)‖2, we have

∥∥vt(t ∧ τk)
∥∥2 = ‖u1‖2 + ‖∇u0‖2 –

∥∥∇v(t ∧ τk)
∥∥2

+ 2
∫ t∧τk

0

〈∫ s

0
g(s – r)v(r) dr, vt(s)

〉
ds – 2

∫ t∧τk

0

(
vt , f̃ (s)

)
ds

+
∫ t∧τk

0

(
vt(s), σ̃ (s) dW (x, s)

)
+

∫ t∧τk

0
Tr

(
Q1/2σ̃ ∗(s)σ̃ (s)Q1/2)ds. (2.9)

(Note that we could only use the Itô formula on a strong solution, we can approximate
the energy function of a mild solution v by a sequence of energy functions such that the
corresponding strong solution sequence {vm} converges to v; see Theorem 3.1 for details.)
Using the condition (G1), we have

〈∫ s

0
g(s – r)v(r) dr, vt(s)

〉

=
∫ s

0
g(s – r)

∫
D

∇vt(s) · ∇v(r) dr dx

=
∫ s

0
g(s – r)

∫
D

∇vt(s)
(∇v(r) – ∇v(s)

)
dx dr +

∫ s

0
g(s – r)

∫
D

∇vt(s)∇v(s) dx dr

= –
1
2

∫ s

0
g(s – r)

d
ds

∫
D

∣∣∇v(r) – ∇v(s)
∣∣2 dx dr +

1
2

∫ s

0
g(r)

d
ds

∫
D

∣∣∇v(s)
∣∣2 dx dr

=
1
2

d
ds

(∫ s

0
g(r) dr

∥∥∇v(s)
∥∥2 – (g ◦ ∇v)(s)

)
+

1
2
(
g ′ ◦ ∇v

)
(s) –

1
2

g(s)
∥∥∇v(s)

∥∥2

≤ 1
2

d
ds

(∫ s

0
g(r) dr

∥∥∇v(s)
∥∥2 – (g ◦ ∇v)(s)

)
, (2.10)

which implies that

2
∫ t∧τk

0

〈∫ s

0
g(s – r)v(r) dr, vt(s)

〉
ds

≤
∫ t∧τk

0
g(r) dr

∥∥∇v(t ∧ τk)
∥∥2 – (g ◦ ∇v)(t ∧ τk). (2.11)

By the definition of f̃ and σ̃ , we have

2
∫ t∧τk

0

(
vt , f̃ (s)

)
ds = 2

∫ t∧τk

0

(
vt(s), 1[0,τk )(s)f

(
u(s ∧ τk)

))
ds

= 2
∫ t∧τk

0

(
vt(s), f

(
u(s)

))
ds (2.12)
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and

∫ t∧τk

0
Tr

(
Q1/2σ̃ ∗(s)σ̃ (s)Q1/2)ds

=
∫ t∧τk

0

∑
i∈I

(
σ̃ ∗(s)σ̃ (s)Q1/2ei, Q1/2ei

)

=
∫ t∧τk

0

∑
i∈I

∥∥σ̃ ∗(s)Q1/2ei
∥∥2 ds ≤ c2

0 Tr Q
∫ t∧τk

0

∥∥σ
(
u(s)

)∥∥2 ds. (2.13)

Substituting (2.11), (2.12) and (2.13) into (2.9) and taking the expectation to both sides,
we obtain

EE
(
v(t ∧ τk)

) ≤ EE
(
v(0)

)
– 2E

∫ t∧τk

0

(
vt(s), f

(
u(s)

))
ds

+ c2
0 Tr QE

∫ t∧τk

0

∥∥σ
(
u(s)

)∥∥2 ds, (2.14)

where we also use the definition of E(t). Recalling v(t) = u(t) for t ≤ τk , from (2.14) we get

EE
(
u(t ∧ τk)

)

≤ EE
(
u(0)

)
– 2E

∫ t∧τk

0

(
ut(s), f

(
u(s)

))
ds + c2

0 Tr QE

∫ t∧τk

0

∥∥σ
(
u(s)

)∥∥2 ds

≤ EE
(
u(0)

)
– 2

∫ t

0

(
ut(s ∧ τk), f

(
u(s ∧ τk)

))
ds + c2

0 Tr QE

∫ t

0

∥∥σ
(
u(s ∧ τk)

)∥∥2 ds

≤ EE
(
u(0)

)
– 2E

∫
D

F
(
u(t ∧ τk)

)
dx + 2E

∫
D

F(u0) dx

+ C
∫ t

0
E

((∥∥∇u(s ∧ τn)
∥∥2 +

∥∥ut(s ∧ τn)
∥∥2))ds

≤ EE
(
u(0)

)
– 2E

∫
D

F
(
u(t ∧ τk)

)
dx + 2E

∫
D

F(u0) dx

+ Lσ

∫ t

0
EE

(
u(s ∧ τn)

)
) ds, (2.15)

where F(s) =
∫ s

0 f (τ ) dτ and C is a positive constant. From (A1), we have F(s) ≥ 0 for s ∈R.
So using the Gronwall inequality to (2.15), we have

EE
(
u(t ∧ τk)

) ≤ (
C1 + EE

(
u(0)

))
eCt , (2.16)

for any k ≥ 1 and t ≥ 0, where C1 = 2E
∫

D F(u0) dx. It follows that

P
({τk < t}) = E1{τk <t} =

∫
Ω

‖∇u(τk)‖2

‖∇u(τk)‖2 1{τk <t} dP

≤ 1
l‖∇u(τk)‖2

∫
Ω

E
(
u(t ∧ τk)

)
1{τk <t} dP

≤ 1
lk2 EE

(
u(t ∧ τk)

) ≤ 1
lk2

(
C1 + EE

(
u(0)

))
eCt ,
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where l is defined in (G1). Since E(u(0)) < ∞, the above inequality gives P({τk < t}) ≤ Ct
k2 ,

which, with the aid of the Borel–Cantelli lemma implies that P({τ∞ < t}) = 0 or τ∞ = ∞,
P-a.s.

Therefore, Theorem 2.2 holds under the additional condition E(u(0)) < ∞. In fact,
we can get a unique global mild solution to (1.1) for the deterministic initial condition
u(0) = (u0(x), u1(x)) ∈ H. Consequently, for any Borel probability measure μ on H there
exists a martingale solution to (1.1) with the initial condition μ by [11]. Using pathwise
uniqueness and a suitable version of the Yamada–Watanabe theory (see [12], Theorem 2)
we find a unique global mild solution to (1.1) for every F0-measurable initial condition
u(0) : Ω →H. �

3 The finite speed of propagation
In this section, we will apply Tartar’s energy method to show that for any solution to
Eq. (1.1) the propagate speed is finite. Let K is a closed subset of D and denote by dK (x)
the distance from x ∈ D to K , i.e.

dK (x) = inf
{|x – y|d; y ∈ K

}
.

For any r > 0, we set

Kr =
{

x ∈ K ; dK (x) ≤ r
}

.

For a given function ϕ : D → R, let the support {ϕ} denote the closure of the set {x ∈
D;ϕ(x) 	= 0}. Then we have the following.

Theorem 3.1 Assume that (G1) and (A1) hold. Let 1 ≤ d < ∞ and K be a closed subset
of D. Let u(t) be any solution to (1.1) with initial data u0(x) ∈ V and v0(x) ∈ H . If

support
{

u0(x)
} ⊂ K , support

{
v0(x)

} ⊂ K , (3.1)

then P-a.s.

support
{

u(x, t)
} ⊂ Kt , ∀t ≥ 0. (3.2)

Proof Define a C1 function ρ such that

ρ(0) = 0, ∀s ≤ 0, ρ(s) > 0, ∀s > 0, (3.3)

ρ ′(s) ≥ 0, ∀s ≤ 0, (3.4)

sup
s≥0

(
ρ(s) + ρ ′(s)

)
< ∞. (3.5)

We consider the local energy function φ : [0,∞) × V × H →R defined by

φ(t, u, v) =
1
2

∫
D

ρ
(
dK (x) – t

)

×
[(

1 –
∫ t

0
g(s) ds

)
|∇u|2 + |v|2 +

∫ t

0
g(t – s)

∣∣∇u(s) – ∇u(t)
∣∣2 ds

]
dx.
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From (3.1) and (3.3), we have

φ(0, u, v) = φ(0, u0, v0) = 0. (3.6)

Note that we could only use the Itô formula on a strong solution to Eq. (1.1), we can ap-
proximate the energy function of a mild solution u by a sequence of energy functions such
that the corresponding strong solution sequence {um} converges to u. Set

A = –�, R(m; A) = (mI – A)–1,

then D(A) = H2(D) ∩ H1
0 (D) and R(m; A) is bounded by 1/m. Let

um(t) = R(m; A)u(t), vm = R(m; A)v(t), m ≥ 1.

From (1.1), (um(t), vm(t)) satisfies

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dum(t) = vm(t) dt,

dvm(t) = –Aum dt +
∫ t

0 g(t – τ )Aum(τ ) dτ dt – R(m; A)f (u(t)) dt

+ R(m; A)σ (u) ∂W (x,t)
∂t ,

um0(x) = R(m; A)u0(x), vm0(x) = R(m; A)v0(x).

(3.7)

Since u(t) is a solution to (1.1), from Definition 2.1, we have

um(t) ∈ C
(
[0, T]; L2(Ω , D(A)

))
, vm(t) ∈ C

(
[0, T]; L2(Ω , V )

)
. (3.8)

In addition, by the Sobolev embedding theorem and condition (A1), we have f (u) ∈
L2([0, T]; L2(Ω × D)), which implies

R(m; A)f (u) ∈ L2([0, T]; L2(Ω , D(A)
))

, ∀m ≥ 1.

Applying the Itô formula to φ(t, um, vm), we get

dφ(t, um, vm) = φ′
t(t, um, vm) dt +

〈
φ′

um (t, um, vm), vm
〉
dt +

(
φ′

vm (t, um, vm), v′
m(t)

)
dt

+
1
2

∞∑
i=1

λi
(
φ′′

vmvm (t, um, vm)R(m; A)σ (u)ei, R(m; A)σ (u)ei
)

dt, t ≥ 0,

which implies from (3.6) and (3.7)

φ(t, um, vm) = –
1
2

∫ t

0

∫
D

ρ ′(dK (x) – s
)[(

1 –
∫ s

0
g(τ ) dτ

)∣∣∇um(s)
∣∣2 +

∣∣vm(s)
∣∣2

+
∫ s

0
g(s – τ )

∣∣∇um(τ ) – ∇um(s)
∣∣2 dτ

]
dx ds

–
1
2

∫ t

0

∫
D

g(s)ρ
(
dK (x) – s

)∣∣∇um(s)
∣∣2 dx ds

+
1
2

∫ t

0

∫
D

ρ
(
dK (x) – s

)∫ s

0
g ′(s – τ )

∣∣∇um(τ ) – ∇um(s)
∣∣2 dτ dx ds
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+
∫ t

0

∫
D

ρ
(
dK (x) – s

)(
1 –

∫ s

0
g(τ ) dτ

)
∇um(s) · ∇vm(s) dx ds

–
∫ t

0

∫
D

ρ
(
dK (x) – s

)∫ s

0
g(s – τ )

(∇um(τ ) – ∇um(s)
) · ∇vm(s) dτ dx ds

–
∫ t

0

∫
D

ρ
(
dK (x) – s

)
R(m; A)f

(
u(s)

)
vm(s) dx ds

+ I1 + I2 +
∫ t

0

(
ρ
(
dK (x) – s

)
vm, R(m; A)σ (u) dW (s)

)

+
1
2

∞∑
i=1

λi

∫ t

0

∫
D

ρ
(
dK (x) – s

)∣∣R(m; A)σ (u)ei
∣∣2 dx ds, (3.9)

where

I1 =
∫ t

0

∫
D

ρ
(
dK (x) – s

)
�um(s)vm(s) dx ds,

I2 = –
∫ t

0

∫
D

ρ
(
dK (x) – s

)
vm(s)

∫ s

0
g(s – τ )�um(τ ) dτ dx ds.

Taking into account that

∣∣dK (x) – dK (y)
∣∣ ≤ |x – y|d for all x, y ∈R

d,

we infer that dK ∈ W 1,∞(Rd) and

∣∣∇dK (x)
∣∣ ≤ 1, a.e. x ∈R

d. (3.10)

By Green’s formula we have

I1 = –
∫ t

0

∫
D

ρ
(
dK (x) – s

)∇um(s) · ∇vm(s) dx ds

–
∫ t

0

∫
D

ρ ′(dK (x) – s
)
vm(s)∇um(s) · ∇dK (s) dx ds, (3.11)

I2 =
∫ t

0

∫
D

ρ
(
dK (x) – s

)∫ s

0
g(s – τ )∇um(τ ) · ∇vm(s) dτ dx ds

+
∫ t

0

∫
D

ρ ′(dK (x) – s
)
vm(s)

∫ s

0
g(s – τ )∇um(τ )∇ dK (x) dτ dx ds

=
∫ t

0

∫
D

ρ
(
dK (x) – s

)∇um(s) · ∇vm(s)d
∫ s

0
g(τ ) dτ dx ds

+
∫ t

0

∫
D

ρ
(
dK (x) – s

)∫ s

0
g(s – τ )

(∇um(τ ) – ∇um(s)
) · ∇vm(s) dτ dx ds

+
∫ t

0

∫
D

ρ ′(dK (x) – s
)
vm(s)

∫ s

0
g(s – τ )∇um(τ )∇ dK (x) dτ dx ds. (3.12)
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Substituting (3.11) and (3.12) into (3.9), we get

φ(t, um, vm) = –
1
2

∫ t

0

∫
D

ρ ′(dK (x) – s
)[(

1 –
∫ s

0
g(τ ) dτ

)∣∣∇um(s)
∣∣2 +

∣∣vm(s)
∣∣2

+ 2vm(s)∇um(s) · ∇dK (s) +
∫ s

0
g(s – τ )

∣∣∇um(τ ) – ∇um(s)
∣∣2 dτ

– 2vm(s)
∫ s

0
g(s – τ )∇um(τ )∇dK (x) dτ

]
dx ds

–
1
2

∫ t

0

∫
D

g(s)ρ
(
dK (x) – s

)∣∣∇um(s)
∣∣2 dx ds

+
1
2

∫ t

0

∫
D

ρ
(
dK (x) – s

)∫ s

0
g ′(s – τ )

∣∣∇um(τ ) – ∇um(s)
∣∣2 dτ dx ds

–
∫ t

0

∫
D

ρ
(
dK (x) – s

) ∂

∂s
R(m; A)F

(
u(s)

)
dx ds

+
∫ t

0

(
ρ
(
dK (x) – s

)
v, R(m; A)σ

(
u(s)

)
dW (s)

)

+
1
2

∞∑
i=1

λi

∫ t

0

∫
D

ρ
(
dK (x) – s

)∣∣R(m; A)σ (u)ei
∣∣2 dx ds. (3.13)

In virtue of (G1) and (3.13), it follows that

φ(t, um, vm) = –
1
2

∫ t

0

∫
D

ρ ′(dK (x) – s
)[(

1 –
∫ s

0
g(τ ) dτ

)∣∣∇um(s)
∣∣2 +

∣∣vm(s)
∣∣2

+ 2vm(s)∇um(s) · ∇dK (s) +
∫ s

0
g(s – τ )

∣∣∇um(τ ) – ∇um(s)
∣∣2 dτ

– 2vm(s)
∫ s

0
g(s – τ )∇um(τ )∇dK (x) dτ

]
dx ds

–
∫ t

0

∫
D

ρ
(
dK (x) – s

) ∂

∂s
R(m; A)F

(
u(s)

)
dx ds

+
∫ t

0

(
ρ
(
dK (x) – s

)
v, R(m; A)σ

(
u(s)

)
dW (s)

)

+
1
2

∞∑
i=1

λi

∫ t

0

∫
D

ρ
(
dK (x) – s

)∣∣R(m; A)σ (u)ei
∣∣2 dx ds. (3.14)

On the other hand, from (3.10) and (G1), we have

(
1 –

∫ s

0
g(τ ) dτ

)[∣∣∇um(s)
∣∣2 +

∣∣vm(s)
∣∣2 + 2vm(s)∇um(s) · ∇dK (s)

] ≥ 0 (3.15)

and

∫ s

0
g(s–τ )

[∣∣∇um(τ )–∇um(s)
∣∣2 +

∣∣vm(s)
∣∣2 –2vm(s)

(∇um(τ )–∇um(s)
) ·∇dK (s)

]
dτ ≥ 0,

(3.16)
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for a.e. x ∈ D, s ≥ 0. Combining (3.14)–(3.16) and taking the expectation to (3.14), we have

Eφ(t, um, vm) ≤ 1
2
E

∞∑
i=1

λi

∫ t

0

∫
D

ρ
(
dK (x) – s

)∣∣R(m; A)σ (u)ei
∣∣2 dx ds

– E

∫ t

0

∫
D

ρ
(
dK (x) – s

) ∂

∂s
R(m; A)F

(
u(s)

)
dx ds. (3.17)

Note that

um(t) → u(t) in C
(
[0, T]; L2(Ω ; V )

)
,

vm(t) → v in C
(
[0, T]; L2(Ω ; H)

)
,

R(m; A)f (u) → f (u) in L2([0, T]; L2(Ω ; H)
)
.

Then, letting m → ∞ in (3.17), we obtain

Eφ(t, u, v) ≤ 1
2
E

∞∑
i=1

λi

∫ t

0

∫
D

ρ
(
dK (x) – s

)∣∣σ (u)ei
∣∣2 dx ds

– E

∫ t

0

∫
D

ρ
(
dK (x) – s

) ∂

∂s
F
(
u(s)

)
dx ds. (3.18)

By condition (A1), we have F(s) ≥ 0 on R. Moreover, using (3.1), we have also ρ(dK (x)) ×
F(u0) ≡ 0, ∀x ∈ D. Then integrating (3.18) by parts, we have

Eφ(t, u, v) ≤ 1
2
E

∞∑
i=1

λi

∫ t

0

∫
D

ρ
(
dK (x) – s

)∣∣σ (u)ei
∣∣2 dx ds. (3.19)

Recalling Tr Q < ∞ and c0 := supi≥1 ‖ei‖∞ < ∞, it follows from (3.19) that

Eφ(t, u, v) ≤ C
∫ t

0
Eφ

(
s, u(s), v(s)

)
ds, ∀t ≥ 0.

Since t �→ φ(t, u, v) is continuous P-a.s, the Gronwall inequality implies that

φ(t, u, v) = 0, t ≥ 0,P-a.s.

Therefore, for any t ≥ 0, P-a.s.

ρ
(
dK (x) – t

)[(
1 –

∫ t

0
g(s) ds

)
|∇u|2 + |v|2 +

∫ t

0
g(t – s)

∣∣∇u(s) – ∇u(t)
∣∣2 ds

]
= 0 (3.20)

for dx-a.e. x ∈ D. Noting that (3.3) and u(t) ∈ V , we obtain u(t, x) = 0 on {t < dK (x)} for
dx-a.e. x ∈ D, which implies (3.2). �

Remark 3.1 Note that Theorem 3.1 does not assert the existence of a solution to (1.1) with
properties (3.1). It simply refers to the finite speed propagation property of solutions to
(1.1). In other word, (3.2) implies that the wave front of the solution at time t is in the



Liang and Hu Boundary Value Problems        (2019) 2019:121 Page 13 of 14

neighborhood Kt of the set K P-a.s. This amounts to saying that any solution u(t) of (1.1)
propagates with finite velocity less than or equal 1 with probability 1. The solution u(t) to
(1.1) has its support in the space-time cone {(t, x) ∈ (0,∞) × D; dK (x) ≤ t}.

Remark 3.2 From (3.8), we see that Theorem 3.1 remains true for the stochastic viscoelas-
tic wave equation (1.1) with nonlinear dissipative damping, i.e.

utt – �u +
∫ t

0
g(t – s)�u(s) + f (u) + h(ut) = σ (u)

∂W (x, t)
∂t

, (3.21)

where h is a monotonically nondecreasing C1 function satisfying a polynomial growth
condition. Leaving aside the existence problem for (3.21), we note that in this case there
arises one more term

–
∫ t

0

∫
D

ρ
(
dK (x) – s

)
vmh(vm) ds dx

in the energy equation (3.13), which is nonpositive and so we conclude the proof as in the
previous case.
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