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Abstract
In this article, we consider a class of singular fractional differential equations with
nonlocal boundary value conditions. The existence and multiplicity of positive
solutions are derived by the fixed point index theory, and the nonlinearity f (t, x) may
be singular at t = 0, 1 and x = 0. The interesting point is that the existence results are
closely associated with the relationship between 1 and the spectral radii
corresponding to the relevant linear operators. An example is also given to
demonstrate the validity of the main results.
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1 Introduction
In this paper, we consider the existence and multiplicity of positive solutions for the fol-
lowing fractional differential equation (FDE):

Dα
0+u(t) + f

(
t, u(t)

)
= 0, 0 < t < 1, n – 1 < α ≤ n, (1.1)

with conjugate type integral boundary conditions

u(0) = u′(0) = · · · = u(n–2)(0) = 0, Dβ
0+u(1) =

∫ η

0
a(t)Dγ

0+u(t) dV (t), (1.2)

where Dα
0+ is the standard Riemann–Liouville derivative, n ≥ 3, 0 < β < 1, 0 ≤ γ < α – 1,

η ∈ (0, 1], f (t, x) may be singular at t = 0, 1 and x = 0, a(t) ∈ L1[0, 1] ∩ C(0, 1) is nonnega-
tive,

∫ η

0 a(t)tα–γ –1 dV (t) denotes the Riemann–Stieltjes integral, in which V has bounded
variation.

During the last few decades, FDE have drawn more and more attention due to their
numerous applications in various fields of science. Recently, many results were obtained
dealing with the fractional differential equations boundary value problems (FBVP) by the
use of techniques of nonlinear analysis; see [1–24] and the references therein. The nonlo-
cal boundary value problems of fractional differential equation have particularly attracted
a great deal of attention (see [25–33]). For example, a number of papers have been devoted
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to considering (1.1) under boundary value conditions (BC) as follows:

u(0) = u′(0) = · · · = u(n–2)(0) = 0, Dp
0+u(1) =

m∑

i=1

ηiD
q
0+u(ξi), (1.3)

u(0) = u′(0) = · · · = u(n–2)(0) = 0, Dβ
0+u(1) =

∞∑

i=1

ηiDβ
0+u(ξi), (1.4)

u(0) = u′(0) = · · · = u(n–2)(0) = 0, u(1) =
∫ 1

0
u(t) dV (t), (1.5)

u(0) = u′(0) = · · · = u(n–2)(0) = 0, Dβ
0+u(1) =

∫ η

0
a(t)Dγ

0+u(t) dt. (1.6)

In [12], Henderson and Luca considered the existence of positive solutions for a fractional
differential equation subject to BC (1.3), where p ∈ [1, n – 2], q ∈ [0, p]. In [28], Wang
and Liu considered a fractional differential equation with infinite-point boundary value
conditions (1.4). In [29], by means of the fixed point index theory in cones, Wang et al.
established the existence and multiplicity results of positive solutions to (1.1) with BC
(1.5). When 1 ≤ β < α–1, Zhang and Zhong [32] established the existence of triple positive
solutions for (1.1) with BC (1.6) by using the Leggett–Williams and Krasnosel’skii fixed
point theorems. When 1 ≤ β < α – 1 and f is continuous on [0, 1] × (–∞, +∞), Zhang and
Zhong [33] established the uniqueness results of solution to (1.1) with BC (1.6) by using
the Banach contraction map principle.

For the case that α is an integer, Webb [34] considered the nth-order conjugate type BC
(1.5). Some existence results of positive solutions have been obtained by using the fixed
point index theory under the following conditions:

(C1) lim inf
x→0+

min
t∈[0,1]

f (t, x)
x

> λ1; lim sup
x→+∞

max
t∈[0,1]

f (t, x)
x

< λ1;

(C2) lim sup
x→0+

max
t∈[0,1]

f (t, x)
x

< λ1; lim inf
x→+∞ min

t∈[0,1]

f (t, x)
x

> λ1,

where λ1 is the first eigenvalue of a linear operator.
Motivated by the above works, in this article we aim to establish the existence and mul-

tiplicity of positive solutions to problem (1.1)–(1.2). Our analysis relies on the topological
degree theory on the cone derived from the properties of the Green function. This article
provides some new insights. Firstly, the existence results are obtained under some condi-
tions concerning the spectral radii with respect to the relevant linear operators, and the as-
sumptions on f are weaker than C1, C2. Secondly, we consider the case that 0 < β < 1 which
is different from [12, 32, 33] and more general integral boundary conditions which include
as special cases the multi-point problems (1.3), (1.4) and integral problems (1.5), (1.6). Fi-
nally, FBVP (1.1)–(1.2) possesses singularity, that is, f (t, x) may be singular at t = 0, 1 and
x = 0.

2 Preliminaries
For the convenience of the reader, we present here the necessary definitions from frac-
tional calculus theory and lemmas.
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Definition 2.1 ([2]) The fractional integral of order α > 0 of a function u : (0, +∞) → R is
given by

Iα
0+u(t) =

1
Γ (α)

∫ t

0
(t – s)α–1u(s) ds

provided that the right-hand side is point-wise defined on (0, +∞).

Definition 2.2 ([2]) The Riemann–Liouville fractional derivative of order α > 0 of a func-
tion u : (0, +∞) → R is given by

Dα
0+u(t) =

1
Γ (n – α)

(
d
dt

)n ∫ t

0
(t – s)n–α–1u(s) ds,

where n = [α] + 1, [α] denotes the integer part of number α, provided that the right-hand
side is point-wise defined on (0, +∞).

Lemma 2.1 ([30]) Let α > 0. Then the following equality holds for u ∈ L(0, 1), Dα
0+u ∈

L(0, 1):

Iα
0+Dα

0+u(t) = u(t) + c1tα–1 + c2tα–2 + · · · + cntα–n,

where ci ∈ R, i = 1, 2, . . . , n, n – 1 < α ≤ n.

Lemma 2.2 ([30]) Assume that g ∈ L(0, 1) and α > β ≥ 0. Then

Dβ
0+

∫ t

0
(t – s)α–1g(s) ds =

Γ (α)
Γ (α – β)

∫ t

0
(t – s)α–β–1g(s) ds.

Lemma 2.3 Assume that a ∈ L1[0, 1] ∩ C(0, 1), V is a function of bounded variation, and

	 := Γ (α – γ ) – Γ (α – β)
∫ η

0
a(t)tα–γ –1 dV (t) 	= 0.

Then, for any y ∈ L[0, 1] ∩ C(0, 1), the unique solution of the boundary value problem

⎧
⎨

⎩
Dα

0+u(t) + y(t) = 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n–2)(0) = 0, Dβ
0+u(1) =

∫ η

0 a(t)Dγ
0+u(t) dV (t),

(2.1)

is

u(t) =
∫ 1

0
G(t, s)y(s) ds,

where

G(t, s) = G1(t, s) + h(s)tα–1,

G1(t, s) =
1

Γ (α)

⎧
⎨

⎩
tα–1(1 – s)α–β–1, 0 ≤ t ≤ s ≤ 1,

tα–1(1 – s)α–β–1 – (t – s)α–1, 0 ≤ s ≤ t ≤ 1,
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G2(t, s) =
1

Γ (α)

⎧
⎨

⎩
tα–γ –1(1 – s)α–β–1, 0 ≤ t ≤ s ≤ 1,

tα–γ –1(1 – s)α–β–1 – (t – s)α–γ –1, 0 ≤ s ≤ t ≤ 1,

h(s) =
Γ (α – γ )

	

∫ η

0
a(t)G2(t, s) dV (t).

Proof It follows from Lemma 2.1 that the solution of (2.1) can be expressed by

u(t) = –Iα
0+y(t) + c1tα–1 + c2tα–2 + · · · + cntα–n

= –
1

Γ (α)

∫ t

0
(t – s)α–1y(s) ds + c1tα–1 + c2tα–2 + · · · + cntα–n.

By u(0) = u′(0) = · · · = u(n–2)(0) = 0, we know that c2 = · · · = cn = 0. Then we obtain

u(t) = –
1

Γ (α)

∫ t

0
(t – s)α–1y(s) ds + c1tα–1. (2.2)

From Lemma 2.2, we have

Dγ
0+u(t) = –

1
Γ (α – γ )

∫ t

0
(t – s)α–γ –1y(s) ds +

c1Γ (α)
Γ (α – γ )

tα–γ –1,

Dβ
0+u(t) = –

1
Γ (α – β)

∫ t

0
(t – s)α–β–1y(s) ds +

c1Γ (α)
Γ (α – β)

tα–β–1.
(2.3)

Then we get

Dβ
0+u(1) = –

1
Γ (α – β)

∫ 1

0
(1 – s)α–β–1y(s) ds +

c1Γ (α)
Γ (α – β)

. (2.4)

From (2.3) we have

∫ η

0
a(t)Dγ

0+u(t) dV (t)

=
–1

Γ (α – γ )

∫ η

0
a(t)

∫ t

0
(t – s)α–γ –1y(s) ds dV (t) +

c1Γ (α)
Γ (α – γ )

∫ η

0
a(t)tα–γ –1 ds.

Combining (2.3) with (2.4), we get

c1 =
Γ (α – γ )

∫ 1
0 (1 – s)α–β–1y(s) ds – Γ (α – β)

∫ η

0 a(t)
∫ t

0 (t – s)α–γ –1y(s) ds dV (t)
Γ (α)	

.

Substituting into (2.2), we have that the unique solution of (2.1) is

u(t) = –
1

Γ (α)

∫ t

0
(t – s)α–1y(s) ds + c1tα–1

= tα–1 Γ (α – γ )
∫ 1

0 (1 – s)α–β–1y(s) ds – Γ (α – β)
∫ η

0 a(t)
∫ t

0 (t – s)α–γ –1y(s) ds dV (t)
Γ (α)	

–
1

Γ (α)

∫ t

0
(t – s)α–1y(s) ds
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=
Γ (α – β)tα–1

Γ (α)	

∫ η

0
a(t)tα–γ –1 dV (t)

∫ 1

0
(1 – s)α–β–1y(s) ds

–
Γ (α – β)tα–1

Γ (α)	

∫ η

0
a(t)

∫ t

0
(t – s)α–γ –1y(s) ds dV (t)

+
tα–1

Γ (α)

∫ 1

0
(1 – s)α–β–1y(s) ds –

1
Γ (α)

∫ t

0
(t – s)α–1y(s) ds

=
Γ (α – β)tα–1

Γ (α)	

×
∫ η

0
a(t)

[
tα–γ –1

∫ 1

0
(1 – s)α–β–1y(s) ds –

∫ t

0
(t – s)α–γ –1y(s) ds

]
dV (t)

+
∫ 1

0
G1(t, s)y(s) ds

=
Γ (α – β)tα–1

	

∫ η

0
a(t)

∫ 1

0
G2(t, s)y(s) ds dV (t) +

∫ 1

0
G1(t, s)y(s) ds

=
∫ 1

0

[
G1(t, s) + h(s)tα–1]y(s) ds

=
∫ 1

0
G(t, s)y(s) ds. �

Lemma 2.4 The function G1(t, s) has the following properties:
(1) G1(t, s) > 0, ∀t, s ∈ (0, 1);
(2) Γ (α)G1(t, s) ≤ tα–1(1 – s)α–β–1, ∀t, s ∈ [0, 1];
(3) βs(1 – s)α–β–1tα–1 ≤ Γ (α)G1(t, s) ≤ s(1 – s)α–β–1, ∀t, s ∈ [0, 1].

Proof It is clear that (1), (2) hold. So we just need to prove that (3) holds.
When 0 < s ≤ t < 1. Noticing α > 2, we have

∂

∂t

[
tα–1 –

(t – s)α–1

(1 – s)α–2

]
= (α – 1)tα–2

[
1 –

(
t – s

t(1 – s)

)α–2]
≥ 0,

which implies

tα–1 –
(t – s)α–1

(1 – s)α–2 ≤ 1 – (1 – s) = s.

Noticing 0 < β < 1, we have

tα–1(1 – s)α–β–1 – (t – s)α–1 = (1 – s)α–β–1
[

tα–1 –
(t – s)α–1

(1 – s)α–β–1

]

≤ (1 – s)α–β–1
[

tα–1 –
(t – s)α–1

(1 – s)α–2

]
≤ s(1 – s)α–β–1. (2.5)

By

∂

∂s
[
βs + (1 – s)β

] ≤ 0, ∀s ∈ [0, 1),
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we have

βs + (1 – s)β ≤ 1, ∀s ∈ [0, 1].

Therefore,

tα–1(1 – s)α–β–1 – (t – s)α–1

≥ tα–1(1 – s)α–β–1 – (t – s)β(t – ts)α–β–1

= tα–1
[

1 –
(

1 –
s
t

)β]
(1 – s)α–β–1

≥ tα–1[1 – (1 – s)β
]
(1 – s)α–β–1

≥ βs(1 – s)α–β–1tα–1. (2.6)

When 0 ≤ t ≤ s ≤ 1. It is easy to get

tα–1(1 – s)α–β–1 ≤ sα–1(1 – s)α–β–1 ≤ s(1 – s)α–β–1. (2.7)

On the other hand, we have

tα–1(1 – s)α–β–1 ≥ stα–1(1 – s)α–β–1 ≥ βs(1 – s)α–β–1tα–1. (2.8)

It follows from (2.5)–(2.8) that (3) holds. �

We make the following assumptions throughout this paper:
(A1) a(t) ∈ L1[0, 1] ∩ C(0, 1), V is a function of bounded variation;
(A2) 	 := Γ (α – γ ) – Γ (α – β)

∫ η

0 a(t)tα–γ –1 dV (t) 	= 0, and h(s) ≥ 0 for s ∈ [0, 1];
(A3) f : (0, 1) × (0, +∞) → [0, +∞) is continuous. In addition, for any R ≥ r > 0, there

exists Ψr,R ∈ L1[0, 1] ∩ C(0, 1) such that

f (t, x) ≤ Ψr,R(t), ∀t ∈ (0, 1), x ∈ [
βrtα–1, R

]
.

Lemma 2.5 The Green function G(t, s) has the following properties:
(1) G(t, s) > 0, ∀t, s ∈ (0, 1);
(2) G(t, s) ≤ tα–1Φ1(s), ∀t, s ∈ [0, 1];
(3) βtα–1Φ2(s) ≤ G(t, s) ≤ Φ2(s), ∀t, s ∈ [0, 1],

where

Φ1(s) =
(1 – s)α–β–1

Γ (α)
+ h(s), Φ2(s) =

s(1 – s)α–β–1

Γ (α)
+ h(s).

Proof It can be directly deduced from Lemma 2.4 and the definition of G(t, s), so we omit
the proof. �

Let E = C[0, 1] be endowed with the maximum norm ‖u‖ = max0≤t≤1 |u(t)|, Br = {u ∈ E :
‖u‖ < r}. Define the cone Q by

Q =
{

u ∈ E : u(t) ≥ β‖u‖tα–1, t ∈ [0, 1]
}

.
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For convenience, we list here some assumptions to be used later:
(H1) There exist r1 > 0 and a nonnegative function b1 ∈ L1[0, 1] with

∫ 1
0 b1(s) ds > 0 such

that

f (t, x) ≥ b1(t)x, ∀(t, x) ∈ (0, 1) × (0, r1];

(H2) There exist r2 > 0 and a nonnegative function b2 ∈ L1[0, 1] with
∫ 1

0 b2(s) ds > 0 such
that

f (t, x) ≤ b2(t)x, ∀(t, x) ∈ (0, 1) × [r2, +∞);

(H3) There exist r3 > 0 and a nonnegative function b3 ∈ L1[0, 1] with
∫ 1

0 b3(s) ds > 0 such
that

f (t, x) ≤ b3(t)x, ∀(t, x) ∈ (0, 1) × (0, r3];

(H4) There exist r4 > 0 and a nonnegative function b4 ∈ L1[0, 1] with
∫ 1

0 b4(s) ds > 0 such
that

f (t, x) ≥ b4(t)x, ∀(t, x) ∈ (0, 1) × [r4, +∞).

Define operators A and Li as follows:

Au(t) =
∫ 1

0
G(t, s)f

(
s, u(s)

)
ds,

Liu(t) =
∫ 1

0
G(t, s)bi(s)u(s) ds, i = 1, 2, 3, 4.

Lemma 2.6 For any r > 0, A : Q \ Br → Q is completely continuous.

Proof For any u ∈ Q \ Br , we have βrtα–1 ≤ u(t) ≤ ‖u‖. It follows from (A3) that there
exists Ψr,‖u‖ ∈ L1[0, 1] ∩ C(0, 1) such that

f
(
t, u(t)

) ≤ Ψr,‖u‖(t), ∀t ∈ (0, 1).

Therefore,

Au(t) =
∫ 1

0
G(t, s)f

(
s, u(s)

)
ds ≤

∫ 1

0
Φ2(s)f

(
s, u(s)

)
ds

≤
∫ 1

0
Φ2(s)Ψr,‖u‖(s) ds < +∞.

On the other hand,

Au(t) =
∫ 1

0
G(t, s)f

(
s, u(s)

)
ds ≥ βtα–1

∫ 1

0
Φ2(s)f

(
s, u(s)

)
ds ≥ βtα–1‖u‖.

So, the operator A : Q \ Br → Q is well defined.
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For any D ∈ Q \ Br is a bounded set. There exists R > r such that r ≤ ‖v‖ ≤ R, ∀v ∈ D. By
the above proof, we have

Av(t) ≤
∫ 1

0
Φ2(s)Ψr,R(s) ds < +∞,

which implies A(D) is uniformly bounded.
It is clear that G(t, s) is uniformly continuous on [0, 1] × [0, 1]. For any ε > 0, there exists

δ > 0 such that, for any t′, t′′ ∈ [0, 1], |t′ – t′′| < δ, s ∈ [0, 1], one has

∣∣G
(
t′, s

)
– G

(
t′′, s

)∣∣ <
ε

∫ 1
0 Ψr,R(s) ds + 1

.

Consequently,

∣∣(AV )
(
t′) – (AV )

(
t′′)∣∣ ≤

∫ 1

0

∣∣G
(
t′, s

)
– G

(
t′′, s

)∣∣f
(
s, u(s)

)
ds

≤
∫ 1

0

∣
∣G

(
t′, s

)
– G

(
t′′, s

)∣∣Ψr,R(s) ds

≤
∫ 1

0

ε
∫ 1

0 Ψr,R(s) ds + 1
Ψr,R(s) ds < ε.

This means that A(D) is equicontinuous. By the Arzela–Ascoli theorem, we know that
A : Q \ Br → Q is compact.

Next, we will prove that A is continuous. Assume that {un} ⊂ Q \ Br and ‖un – u0‖ → 0
(n → +∞). Then there exists R > r such that

r ≤ ‖un‖ ≤ R, n = 0, 1, 2, . . . .

For any ε > 0, by the absolute continuity of integral, ∃δ ∈ (0, 1
2 ) such that

∫ δ

0
Φ2(s)Ψr,R(s) ds <

ε

6
,

∫ 1

1–δ

Φ2(s)Ψr,R(s) ds <
ε

6
.

Since f (t, x) is uniformly continuous on [δ, 1 – δ] × [βrtα–1, R] and ‖un – u0‖ → 0, there
exists N > 0 such that, for any n > N , we have

∣∣f
(
t, un(t)

)
– f

(
t, u0(t)

)∣∣ <
ε

3
∫ 1

0 Φ2(s) ds
, t ∈ [δ, 1 – δ].

Then

‖Aun – Au0‖ ≤ max
0≤t≤1

∫ 1

0
G(t, s)

∣
∣f

(
s, un(s)

)
– f

(
s, u0(s)

)∣∣ds

≤
∫ 1

0
Φ2(s)

∣∣f
(
s, un(s)

)
– f

(
s, u0(s)

)∣∣ds

≤ 2
∫ δ

0
Φ2(s)Ψr,R(s) ds +

∫ 1–δ

δ

Φ2(s)
∣
∣f

(
s, un(s)

)
– f

(
s, u0(s)

)∣∣ds
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+ 2
∫ 1

1–δ

Φ2(s)Ψr,R(s) ds

<
ε

3
+

ε

3
+

ε

3
= ε.

So A is continuous. The proof is completed. �

By the extension theorem of a completely continuous operator (see Theorem 2.7 of [35]),
for any r > 0, there exists the extension operator Ã : Q → Q, which is still completely con-
tinuous. Without loss of generality, we still write it as A.

By virtue of the Krein–Rutmann theorem and Lemma 2.5, we have the following lemma.

Lemma 2.7 Assume that bi ∈ L1[0, 1] (i = 1, 2, 3, 4) are nonnegative functions satisfying
∫ 1

0 bi(s) ds > 0. Then Li : Q → Q is a completely continuous linear operator. Moreover, the
spectral radius r(Li) > 0 and Li has a positive eigenfunction ϕi corresponding to its first
eigenvalue (r(Li))–1, that is, Liϕi = r(Li)ϕi.

Set

Tnu(t) =
∫ 1

an

G(t, s)b4(s)u(s) ds, (2.9)

where 1 > a1 > · · · > an > an+1 > · · · , and an → 0. By [34, 36], we have the following lemma.

Lemma 2.8 The spectral radius {r(Tn)} is increasing and converges to r(L4).

Lemma 2.9 ([35]) Let P be a cone in a Banach space E and Ω be a bounded open set in E.
Suppose that A: Ω ∩ P → P is a completely continuous operator. If there exists u0 ∈ P with
u0 	= θ such that

u – Au 	= λu0, ∀λ ≥ 0, u ∈ ∂Ω ∩ P,

then i(A,Ω ∩ P, P) = 0.

Lemma 2.10 ([35]) Let P be a cone in a Banach space E and Ω be a bounded open set in E.
Suppose that A: Ω ∩ P → P is a completely continuous operator. If

Au 	= λu, ∀λ ≥ 1, u ∈ ∂Ω ∩ P,

then i(A,Ω ∩ P, P) = 1.

3 Main results
Theorem 3.1 Assume that there exist r2 > r1 > 0 such that (H1) and (H2) hold. In addition,

r(L1) ≥ 1 > r(L2) > 0.

Then FBVP (1.1)–(1.2) has at least one positive solution.
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Proof It follows from (H1) that, for any u ∈ ∂Br1 ∩ Q, we have

Au(t) =
∫ 1

0
G(t, s)f

(
s, u(s)

)
ds ≥

∫ 1

0
G(t, s)b1(s)u(s) ds = L1u(t).

We may suppose that A has no fixed points on ∂Br1 ∩ Q (otherwise, the proof is finished).
Now we show that

u – Au 	= μϕ1, ∀u ∈ ∂Br1 ∩ Q,μ ≥ 0, (3.1)

here ϕ1 is the positive eigenfunction corresponding to the first eigenvalue of L1, that is,
L1ϕ1 = r(L1)ϕ1. If otherwise, there exist u1 ∈ ∂Br1 ∩ Q and μ0 > 0 such that

u1 – Au1 = μ0ϕ1,

which implies

u1 = Au1 + μ0ϕ1 ≥ μ0ϕ1.

Denote

μ∗ = sup{μ : u1 ≥ μϕ1}.

It is clear that μ∗ ≥ μ0 and u1 ≥ μ∗ϕ1. Notice that L1 is nondecreasing, we have L1u1 ≥
μ∗L1ϕ1 = μ∗r(L1)ϕ1 ≥ μ∗ϕ1. Then

u1 = Au1 + μ0ϕ1 ≥ L1u1 + μ0ϕ1 ≥ (
μ∗ + μ0

)
ϕ1,

which contradicts the definition of μ∗. Hence (3.1) holds and we have from Lemma 2.9
that

i(A, Br1 ∩ Q, Q) = 0. (3.2)

Set

W = {u ∈ Q\Br1 | u = μAu, 0 ≤ μ ≤ 1}.

In the following, we will prove that W is bounded.
For any u ∈ W , we have

f
(
t, u(t)

) ≤ b2(t)u(t) + f
(
t, ũ(t)

)
,

where ũ(t) = min{u(t), r2}. It is clear that βr1tα–1 ≤ ũ(t) ≤ r2. Then

u(t) = μAu(t) ≤ Au(t) ≤ L2u(t) + Aũ(t) ≤ L2u(t) + M,
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where

M =
∫ 1

0
Φ2(s)Ψr1,r2 (s) ds.

Thus

(I – L2)u(t) ≤ M, t ∈ [0, 1].

It follows from r(L2) < 1 that the inverse operator of (I – L2) exists and

(I – L2)–1 = I + L2 + L2
2 + · · · + Ln

2 + · · · .

So, u(t) ≤ (I – L2)–1M ≤ M‖(I – L2)–1‖, t ∈ [0, 1], which implies W is bounded.
Select R > max{r2, M‖(I – L2)–1‖}. Then, by Lemma 2.10, we have

i(A, BR ∩ Q, Q) = 1. (3.3)

By (3.2) and (3.3) we have that

i
(
A, (BR\B̄r1 ) ∩ Q, Q

)
= i(A, BR ∩ Q, Q) – i(A, Br1 ∩ Q, Q) = 1,

which implies that A has at least one fixed point on (BR\B̄r1 ) ∩ Q. This means that FBVP
(1.1)–(1.2) has at least one positive solution. �

Theorem 3.2 Assume that there exist r4 > r3 > 0 such that (H3) and (H4) hold. In addition,

r(L4) > 1 ≥ r(L3) > 0.

Then FBVP (1.1)–(1.2) has at least one positive solution.

Proof We may suppose that A has no fixed points on ∂Br3 ∩ Q (otherwise, the proof is
finished). In the following, we prove that

Au 	= μu, ∀u ∈ ∂Br3 ∩ Q,μ > 1.

If otherwise, there exists u1 ∈ ∂Br3 ∩ Q, μ0 > 1 such that Au1 = μ0u1. It follows from (H3)
that

μ0u1 = Au1 ≤ L3u1.

Noticing L3 is nondecreasing, we get

μ2
0u1 ≤ μ0L3u1 ≤ L2

3u1.

By induction, one has

μn
0u1 ≤ Ln

3u1,
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which implies

∥∥μn
0u1

∥∥ ≤ ∥∥Ln
3u1

∥∥ ≤ ∥∥Ln
3
∥∥‖u1‖.

Then

r(L3) = lim
n→+∞

n
√∥

∥Ln
3
∥
∥ ≥ μ0 > 1,

this contradicts r(L3) ≤ 1. We have from Lemma 2.10 that

i(A, Br3 ∩ Q, Q) = 1. (3.4)

On the other hand, by Lemma 2.8, we can select m large enough such that

r(Tm) > 1.

Let Rm = r4(βaα–1
m )–1. Then, for any u ∈ ∂BRm ∩ Q, one has

u(t) ≥ β‖u‖tα–1 ≥ r4, t ∈ [am, 1], (3.5)

where Tm, am are defined by (2.9). By virtue of the Krein–Rutmann theorem, we have that
there exists a positive eigenfunction ψm corresponding to the first eigenvalue of Tm, that
is, Tmψm = r(Tm)ψm.

For u ∈ ∂BRm ∩ Q. It follows from (H4) and (3.5) that

Au(t) =
∫ 1

0
G(t, s)f

(
s, u(s)

)
ds ≥

∫ 1

am

G(t, s)f
(
s, u(s)

)
ds

≥
∫ 1

am

G(t, s)b4(s)u(s) ds = (Tmu)(t), t ∈ [0, 1].

We may suppose that A has no fixed points on ∂BRm ∩ Q (otherwise, the proof is finished).
Now we will prove that

u – Au 	= μψm, ∀u ∈ ∂BRm ∩ Q,μ > 0. (3.6)

If otherwise, there exist u1 ∈ ∂BRm ∩ Q and μ0 > 0 such that

u1 – Au1 = μ0ψm.

Denote

μ∗ = sup{μ : u1 ≥ μψm}.

It is clear that μ∗ ≥ μ0 and u1 ≥ μ∗ψm. Then

u1 = Au1 + μ0ψm ≥ Tmu1 + μ0ψm

≥ μ∗Tmψm + μ0ψm = μ∗r(Tm)ψm + μ0ψm

≥ (
μ∗ + μ0

)
ϕm,
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which contradicts the definition of μ∗. Hence (3.6) holds, and we have from Lemma 2.9
that

i(A, BRm ∩ Q, Q) = 0. (3.7)

Equations (3.4) and (3.7) yield

i
(
A, (BRm\B̄r3 ) ∩ Q, Q

)
= i(A, BRm ∩ Q, Q) – i(A, Br3 ∩ Q, Q) = –1,

which implies that FBVP (1.1)–(1.2) has at least one positive solution on (BRm\B̄r3 ) ∩ Q. �

Theorem 3.3 Assume that there exist r4 > r5 > r1 > 0 such that (H1), (H4) and
(H5) There exist r5 > 0 and a nonnegative function b5 ∈ L1[0, 1] such that

f (t, x) ≤ b5(t)r5, ∀(t, x) ∈ (0, 1) × [
βr1tα–1, r5

]

hold. Moreover, r(L1) ≥ 1, r(L4) > 1, and ‖L5‖ < 1. Then FBVP (1.1)–(1.2) has at least two
positive solutions u1 and u2 with r1 < ‖u1‖ < r5 < ‖u2‖.

Proof For any u ∈ ∂Br5 ∩ Q, we will prove that

Au 	= λu, ∀λ ≥ 1.

If otherwise, there exist u1 ∈ ∂Br5 ∩ Q and λ0 ≥ 1 such that Au1 = λ0u1. Then we have

λ0u1 = Au1 =
∫ 1

0
G(t, s)f

(
s, u1(s)

)
ds ≤

∫ 1

0
G(t, s)r5b5(s) ds ≤ ‖L5‖r5 < r5,

which implies that ‖u1‖ < r5, this contradicts u1 ∈ ∂Br5 ∩ Q. Then, by Lemma 2.10, we
have

i(A, Br5 ∩ Q, Q) = 1. (3.8)

By the proof of Theorem 3.1 and Theorem 3.2, we have that (3.2) and (3.7) hold. Com-
bining with (3.8), we have

i
(
A, (BRm\B̄r5 ) ∩ Q, Q

)
= –1,

i
(
A, (Br5\B̄r1 ) ∩ Q, Q

)
= 1,

which implies that FBVP (1.1)–(1.2) has at least two positive solutions u1 and u2 with
r1 < ‖u1‖ < r5 < ‖u2‖. �

Theorem 3.4 Assume that there exist r2 > r6 > r3 > 0 such that (H2), (H3) and
(H6) There exist r6 > 0, ρ ∈ (0, 1), and a nonnegative function b6 ∈ L1[0, 1] such that

f (t, x) ≥ b6(t)r6, ∀(t, x) ∈ [ρ, 1] × [
βρα–1r6, r6

]
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hold. Moreover, r(L2) < 1, r(L3) ≤ 1, and

∫ 1

ρ

Φ2(s)b6(s) ds > β–1.

Then FBVP (1.1)–(1.2) has at least two positive solutions u1 and u2 with r3 < ‖u1‖ < r6 <
‖u2‖.

Proof For any u ∈ ∂Br6 ∩ Q, we have u(t) ≥ βtα–1r6 ≥ βρα–1r6, ∀t ∈ [ρ, 1]. Then

‖Au‖ ≥ max
t∈[0,1]

βtα–1
∫ 1

ρ

Φ2(s)f
(
s, u(s)

)
ds

= β

∫ 1

ρ

Φ2(s)f
(
s, u(s)

)
ds

≥ βr6

∫ 1

ρ

Φ2(s)b6(s) ds > ‖u‖.

Then, for any u0 > θ , we have

u – Au 	= λu0, ∀λ ≥ 0, u ∈ ∂BR ∩ Q.

It follows from Lemma 2.9 that

i(A, Br6 ∩ Q, Q) = 0. (3.9)

By (H2) and (H3), similar to the proof of Theorem 3.1 and Theorem 3.2, we can choose
r3 < r6 < r2 < R such that (3.3) and (3.4) hold. Combining with (3.9), we have

i
(
A, (BR\B̄r6 ) ∩ Q, Q

)
= 1,

i
(
A, (Br6\B̄r3 ) ∩ Q, Q

)
= –1,

which implies that FBVP (1.1)–(1.2) has at least two positive solutions u1 and u2 with
r3 < ‖u1‖ < r6 < ‖u2‖. This completes the proof. �

4 Example
Example 4.1 Consider the following singular boundary value problem:

⎧
⎨

⎩
D

7
2
0+u(t) + f (t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = u′′(0) = 0, D
1
2
0+u(1) =

∫ 1
0 a(t)D

3
2
0+u(t) dV (t),

(4.1)

where

a(t) ≡ 0.95,

V (t) =

⎧
⎨

⎩
0, 0 ≤ t < 1

2 ,

1, 1
2 ≤ t ≤ 1,
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f (t, x) =

⎧
⎪⎪⎨

⎪⎪⎩

120(t – 1
8 )2t– 1

2 x– 1
6 + (t – 1

4 )2(1 – t)– 1
2 x, (0, 1) × (0, 1],

[120(t – 1
8 )2t– 1

2 + (t – 1
4 )2(1 – t)– 1

2 ] cos2( 3πx–3π
13,120 ), (0, 1) × (1, 6561],

40
27 (t – 1

8 )2t– 1
2 x 1

2 + 1
9 (t – 1

4 )2(1 – t)– 1
2 x 1

4 , (0, 1) × (6561, +∞).

It is clear that

G1(t, s) =
8

15
√

π

⎧
⎨

⎩
t 5

2 (1 – s)2, 0 ≤ t ≤ s ≤ 1,

t 5
2 (1 – s)2 – (t – s) 5

2 , 0 ≤ s ≤ t ≤ 1,

G2(t, s) =
8

15
√

π

⎧
⎨

⎩
t(1 – s)2, 0 ≤ t ≤ s ≤ 1,

t(1 – s)2 – (t – s), 0 ≤ s ≤ t ≤ 1,

h(s) =
76

15
√

π

⎧
⎨

⎩
(1 – s)2, 1

2 ≤ s ≤ 1,

s2, 0 ≤ s < 1
2 ,

Φ1(s) =
8(1 – s)2

15
√

π
+ h(s),

Φ2(s) =
8s(1 – s)2

15
√

π
+ h(s),

G(t, s) = G1(t, s) + h(s)t
5
2 ,

	 := Γ (2) – Γ (3)
∫ 1

0
a(t)t dV (t) = 0.05.

Denote

b1(t) = 120
(

t –
1
8

)2

t– 1
2 +

(
t –

1
4

)2

(1 – t)– 1
2 , t ∈ (0, 1),

b2(t) =
b1(t)

9
.

It is clear that (A1), (A2), (A3), (H1), and (H2) hold.
Define operators L1 and L2 as follows:

L1u(t) =
∫ 1

0
G(t, s)b1(s)u(s) ds,

L2u(t) =
∫ 1

0
G(t, s)b2(s)u(s) ds =

1
9

L1u(t).

Denote

I(t) ≡ 1, e(t) = t
5
2 , t ∈ [0, 1].

By Lemma 2.5, we have

(L1e)(t) =
∫ 1

0
G(t, s)b1(s)s

5
2 ds ≥

[
1
2

∫ 1

0
Φ2(s)b1(s)s

5
2 ds

]
e(t).
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Then we can obtain

(
Ln

1e
)
(t) = L1

(
Ln–1

1 e
)
(t) ≥

[
1
2

∫ 1

0
Φ2(s)b1(s)s

5
2 ds

]n

e(t),

which implies that

r(L1) ≥ 1
2

∫ 1

0
Φ2(s)b1(s)s

5
2 ds.

Notice that
∫ 1

0
Φ2(s)b1(s)s

5
2 ds >

∫ 1

0
120

(
s –

1
8

)2

s– 1
2 Φ2(s)s

5
2 ds

= 120
∫ 1

0

(
s –

1
8

)2

s2
[

8s(1 – s)2

15
√

π
+ h(s)

]
ds

=
64√
π

∫ 1

0

(
s –

1
8

)2

s3(1 – s)2 ds

+
608√

π

[∫ 1
2

0

(
s –

1
8

)2

s4 ds +
∫ 1

1
2

(
s –

1
8

)2

s2(1 – s)2 ds
]

≈ 0.13836 + 1.87114 = 2.0095.

Therefore

r(L1) > 1.

On the other hand,

(L1I)(t) =
∫ 1

0
G(t, s)b1(s) ds ≤

∫ 1

0
Φ2(s)b1(s) ds

=
8

15
√

π

∫ 1

0
s(1 – s)2b1(s) ds +

76
15

√
π

∫ 1

0
s2b1(s) ds

–
76

15
√

π

∫ 1

1
2

(2s – 1)b1(s) ds

<
8

15
√

π

∫ 1

0
s(1 – s)2b1(s) ds +

76
15

√
π

∫ 1

0
s2b1(s) ds

–
76

15
√

π

∫ 1

1
2

(2s – 1) × 120
(

s –
1
8

)2

s– 1
2 ds

≈ 8.3.

From

L2u(t) =
1
9

L1u(t),

we have

r(L2) =
1
9

r(L1) ≤ 1
9
‖L1‖ =

1
9

(L1I)(t) <
8.3
9

< 1.
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Then

0 <
1
9

< r(L2) < 1 < r(L1).

By Theorem 3.1, we know that FBVP (4.1) has at least one positive solution.

Remark 4.1 It is clear that

lim inf
x→0+

min
t∈(0,1)

f (t, x)
x

= 0; lim sup
x→+∞

max
t∈(0,1)

f (t, x)
x

= +∞;

lim sup
x→0+

max
t∈(0,1)

f (t, x)
x

= +∞; lim inf
x→+∞ min

t∈(0,1)

f (t, x)
x

= 0,

which implies that neither (C1) nor (C2) holds.

5 Conclusions
In this paper, we consider the existence of positive solution for fractional differential equa-
tions with conjugate type integral conditions. Both the existence and multiplicity of posi-
tive solutions are considered. The interesting point lies in that the nonlinearity f (t, x) may
be singular at t = 0, 1 and x = 0, and the existence results are closely associated with the
relationship between 1 and the spectral radii corresponding to the relevant linear opera-
tors.
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