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1 Introduction
A lot of papers on fractional differential equations (see, for example, [1–18] and the refer-
ences therein) have been published. As you know, most famous fractional derivations are
the Caputo and Riemann–Liouville derivations. In 2015, Caputo and Fabrizio introduced a
new fractional derivation without singular kernel [19]. Some researchers published some
works about solving different equations including the new derivation (see, for example,
[2, 3, 10, 20–25]). Some researchers investigated some results on dimension of the set of
solutions for some fractional differential inclusions (see, for example, [26]).

Let b > 0, u ∈ H1(0, b), and ζ ∈ (0, 1). As you know, the Caputo–Fabrizio fractional
derivative of order ζ is defined by

CFDζ u(t) =
(2 – ζ )M(ζ )

2(1 – ζ )

∫ t

0
exp

(
–ζ

1 – ζ
(t – s)

)
u′(s) ds,

where t ≥ 0 and M(ζ ) is a normalization constant depending on ζ such that M(0) =
M(1) = 1 [19]. Losada and Nieto showed that CFIζ u(t) = 2(1–ζ )

(2–ζ )M(ζ ) u(t) + ζ

(2–ζ )M(ζ )
∫ t

0 u(s) ds
[27]. Also, they showed that M(ζ ) = 2

2–ζ
[27]. Hence, the fractional Caputo–Fabrizio

derivative of order ζ is given by CFDζ u(t) = 1
1–ζ

∫ t
0 exp(– ζ

1–ζ
(t – s))u′(s) ds, when t ≥ 0

and 0 < ζ < 1 [27]. If n ≥ 1 and ζ ∈ (0, 1), then the fractional derivative CFDζ+n of or-
der n + ζ is defined by CFDζ+nu := CFDζ (Dnu(t)) [27]. Let u, v ∈ H1(0, 1) and ζ ∈ (0, 1).
If u(s)(0) = 0 for all s = 1, 2, . . . , n, then CFDζ (CFDn(u(t)) = CFDn(CFDζ (u(t)). Also, we
have limζ→0

CFDζ u(t) = u(t) – u(0), limζ→1
CFDζ u(t) = u(t)′, and CFDζ (λu(t) + γ v(t)) =

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13661-019-1194-0
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-019-1194-0&domain=pdf
mailto:rezapourshahram@yahoo.ca
mailto:sh.rezapour@azaruniv.ac.ir


Baleanu et al. Boundary Value Problems         (2019) 2019:79 Page 2 of 17

λCFDζ u(t) + γ CFDζ v(t) [27]. It has been proved that the unique solution for the prob-
lem CFDζ u(t) = v(t) with boundary condition u(0) = c is given by u(t) = c + aζ (v(t) – v(0)) +
bζ

∫ t
0 v(s) ds, where aζ = 2(1–ζ )

(2–ζ )M(ζ ) = 1 – ζ and bζ = 2ζ

(2–ζ )M(ζ ) = ζ ([19] and [27]). Note that
v(0) = 0. Suppose that u, v ∈ CR[0, 1], u(0) = 0, and there is a real constant L such that
|u(t) – v(t)| ≤ L for all t ∈ [0, 1]. Recently, Baleanu, Mousalou, and Rezapour proved that
|CFDζ u(t) – CFDζ v(t)| ≤ 1

(1–ζ )2 L for all t ∈ [0, 1] [10]. This leads to |CFDζ u(t)| ≤ ( 1
(1–ζ )2 )L

for all t ∈ [0, 1] whenever u ∈ CR[0, 1] and |u(t)| ≤ L for some L ≥ 0 and all t ∈ [0, 1] with
u(0) = 0 [10]. Also, they showed that |CFIζ u(t) – CFIζ v(t)| ≤ L for all t ∈ [0, 1] [10] and so
|CFIζ u(t)| ≤ L for all t ∈ [0, 1] whenever u ∈ CR[0, 1] with |u(t)| ≤ L for some L ≥ 0 and all
t ∈ [0, 1]. For some more necessary definitions, see [1].

Let u ∈ CR[0, d], d > 0 and ζ ∈ (0, 1). The extended fractional Caputo–Fabrizio deriva-
tion of order ζ is defined by [11]

CF
N Dζ u(t) =

B(ζ )
1 – ζ

(
u(t) – u(0)

)
exp

(
–ζ

1 – ζ
t
)

+
ζB(ζ )

(1 – ζ )2

∫ t

0

(
u(t) – u(s)

)
exp

(
–ζ

1 – ζ
(t – s)

)
ds.

If u(0) = 0, then we have CF
N Dζ u(t) = B(ζ )

1–ζ
u(t) – ζB(ζ )

(1–ζ )2

∫ t
0 exp(– ζ

1–ζ
(t – s))u(s) ds [11].

Lemma 1 ([11]) Let u ∈ H1(0, b), b > 0, and ζ ∈ (0, 1). Then CF
N Dζ u(t) = CFDζ u(t). If u ∈

CR[0, b], then limζ→0
CF
N Dζ u(t) = u(t) – u(0).

Lemma 2 ([11]) Let 0 < ζ < 1. Then a solution for the problem CF
N Dζ u(t) = v(t) with bound-

ary condition u(0) = 0 is given by u(t) = aζ v(t) + bζ

∫ t
0 v(s) ds.

Lemma 3 ([11]) Let u, v ∈ CR[0, 1]. If there is a real constant L such that |u(t) – v(t)| ≤ L
for all t ∈ [0, 1], then |CF

N Dζ u(t) – CF
N Dζ v(t)| ≤ (2–ζ )B(ζ )

(1–ζ )2 L for all t ∈ [0, 1]. If u(0) = v(0), then
|CF
N Dζ u(t) – CF

N Dζ v(t)| ≤ B(ζ )
(1–ζ )2 L.

This result implies that |CF
N Dζ u(t)| ≤ (2–ζ )B(ζ )

(1–ζ )2 L for all t ∈ [0, 1] whenever u ∈ CR[0, 1]
with |u(t)| ≤ L for some L ≥ 0 and all t ∈ [0, 1].

We need the following results.

Lemma 4 ([28]) Suppose that Y is a Banach space, F : I × Y → Pcp,cv(Y) is an L1-
Caratheodory multivalued and ε is a linear continuous mapping from L1(I,Y) to C(I,Y).
Then the mapping ε ◦SF : C(I,Y) →Pcp,cvC(I,Y) defined by (ε ◦SF )(y) = ε(SF ,y) is a closed
graph mapping in C(I,Y) × C(I,Y).

Theorem 5 ([29]) Assume that Y is a Banach space, D is a closed and convex subset of Y ,
and W is an open subset of D with 0 ∈ W . If F : W̄ → Pcp,c(D) is an upper semi-continuous
compact map, then either F has a fixed point in W̄ or there is x ∈ ∂W and δ ∈ (0, 1) such
that x ∈ δF (x).

Theorem 6 ([30]) Suppose that (Y , d) is a complete metric space. If G : Y → Pcl(Y) is a
contraction, then G has a fixed point.
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Theorem 7 ([31]) Assume that Y is a Banach space, E ∈ Pbd,cl,cv(Y) and F ,G : E →
Pcp,cv(Y) are two multivalued operators. If Fy +Gy ⊂ E for all y ∈ E , F is a contraction and
G is an upper semi-continuous compact map, then there is y ∈ E such that y ∈Fy + Gy.

Theorem 8 ([32]) Assume that Y is a Banach algebra, D ∈ Pbd,cl,cv(Y) and F1 : D →
Pcl,cv,bd(Y) and F2 : D →Pcp,cv(Y) are two set-valued maps such that F1 is Lipschitz with a
Lipschitz constant δ, F2 is upper semi-continuous and compact, F1xF2x is a convex subset
D for all x ∈ D and N δ < 1, where N = ‖F2(D)‖ = sup{‖F2x‖ : x ∈ D}. Then there is y ∈ D
such that y ∈F1yF2y.

Lemma 9 ([26]) Let A mapping [0, 1] into Pcp,cv(R) be measurable such that the Lebesgue
measure of the set {t : dimA(t) < 1} is zero. Then there are arbitrarily many linearly inde-
pendent measurable selections y1(·), . . . , ym(·) of A.

Theorem 10 ([26]) Let H be a nonempty closed convex subset of a Banach space Y and
F : H →Pcp,cv(H) be a δ-contraction. If dimF (x) ≥ m for all x ∈H, then dim Fix(F ) ≥ m.

2 Main results
Consider the Banach space X = C(I) of real-valued continuous functions on I = [0, 1] via
the norm ‖x‖ = supt∈I |x(t)|. Assume that ζ , ι : [0, 1] × [0, 1] → [0,∞) are two continuous
maps such that sup | ∫ t

0 ι(t, s) ds| < ∞ and sup | ∫ t
0 ζ (t, s) ds| < ∞. Consider the maps φ and

ϕ defined by (φw)(t) =
∫ t

0 ζ (t, s)w(s) ds and (ϕw)(t) =
∫ t

0 ι(t, s)w(s) ds. Suppose that η(t) ∈
L∞(I) with η∗ = supt∈I |η(t)|. Put ζ0 = sup | ∫ t

0 ζ (t, s) ds| and ι0 = sup | ∫ t
0 ι(t, s) ds|. First, we

are going to investigate the fractional integro-differential inclusion

CF
N Dζ x(t) ∈F

(
t, x(t), (φx)(t), (ϕx)(t), CF

N Dβ1 x(t), CF
N Dβ2 x(t), . . . , CF

N Dβm x(t)
)
, (1)

with boundary condition x(0) = 0, where ζ ,β1, . . . ,βm ∈ (0, 1).
We say that a function x ∈X is a solution for problem (1) whenever there exists a func-

tion f ∈ C(I) such that

f (t) ∈F
(
t, x(t), (φx)(t), (ϕx)(t), CF

N Dβ1 x(t), CF
N Dβ2 x(t), . . . , CF

N Dβm x(t)
)

for almost all t ∈ I and x(t) = aζ f (t) + bζ

∫ t
0 f (s) ds.

Theorem 11 Let F : I ×R
m+3 → Pcp,cv(R) be a Caratheodory multivalued map such that

∥∥F (t, x1, x2, x3, y1, . . . , ym)
∥∥

p = sup
{|y| : y ∈F (t, x1, x2, x3, y1, . . . , ym)

}

≤ η(t)

(
|x1| + |x2| + |x3| +

m∑
i=1

|yi|
)

for all t ∈ I , xi, yj ∈ R, 1 ≤ i ≤ 3 and 1 ≤ j ≤ m. If η∗(1 + ζ0 + ι0 +
∑m

i=1
B(βi)

(1–βi)2 ) ≤ 1, then
inclusion (1) has one solution.

Proof For x ∈X , define a selection set of F at x ∈X by

SF ,x :=
{

f ∈ L1(I, R) : f (t) ∈F
(
t, x(t), (φx)(t), (ϕx)(t),

CF
N Dβ1 x(t), CF

N Dβ2 x(t), . . . , CF
N Dβm x(t)

)
for all t ∈ I

}
.
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Since F is a Caratheodory multifunction, by using Theorem 1.3.5 in [33], we get SF ,x

is nonempty. Define an operator Ω : X → P(X ) by Ω(x) = {g ∈ X : there exists f ∈
SF ,x such that g(t) = aζ f (t) + bζ

∫ t
0 f (s) ds for all t ∈ I}. We show that the operator Ω sat-

isfies the hypothesis of Theorem 5. First, we show that Ω(x) is convex for all ∈X .
Let g1, g2 ∈ Ω(x) and w ∈ [0, 1]. Choose f1, f2 ∈ SF ,x such that gi(t) = aζ fi(t) + bζ

∫ t
0 fi(s) ds

for all t ∈ I . Then we have

[
wg1 + (1 – w)g2

]
(t) = aζ

(
wf1 + (1 – w)f2

)
(t) + bζ

∫ t

0

(
wf1 + (1 – w)f2

)
(s) ds

for all t ∈ I . Since F has convex values, it is easy to check that SF ,x is convex, and so
wg1 + (1 – w)g2 ∈ Ω(x). Now, we show that Ω maps bounded sets into bounded subsets.
Let Br = {x ∈X : ‖x‖ ≤ r}, x ∈ Br , and g ∈ Ω(x). Choose f ∈ SF ,x such that

∣∣g(t)
∣∣ ≤ aζ

∣∣f (t)
∣∣ + bζ

∫ t

0

∣∣f (s)
∣∣ds ≤ aζ η(t)

(|x| +
∣∣ϕ(x)

∣∣ +
∣∣φ(x)

∣∣

+
∣∣CF
N Dβ1 x(t)

∣∣ +
∣∣CF
N Dβ2 x(t)

∣∣ + · · · +
∣∣CF
N Dβm x(t)

∣∣)

+ bζ

∫ t

0

(|x| +
∣∣ϕ(x)

∣∣ +
∣∣φ(x)

∣∣

+
∣∣CF
N Dβ1 x(s)

∣∣ +
∣∣CF
N Dβ2 x(s)

∣∣ + · · · +
∣∣CF
N Dβm x(s)

∣∣)η(s) ds

≤ aζ η
∗
(

r + ζ0r + ι0r +
m∑

i=1

B(βi)
(1 – βi)2 r

)

+ bζ η
∗
(

r + ζ0r + ι0r +
m∑

i=1

B(βi)
(1 – βi)2 r

)

= η∗ · r ·
(

1 + ζ0 + ι0 +
m∑

i=1

B(βi)
(1 – βi)2

)
(aζ + bζ ) ≤ r.

Thus, ‖g‖ = maxt∈I |g(t)| ≤ r. This implies that Ω maps bounded sets into bounded sets in
X . Now, we show that Ω maps bounded sets of X into equi-continuous sets. Let t1, t2 ∈ I
with t1 < t2, x ∈ Br and g ∈ Ω(x). Then we have

∣∣g(t2) – g(t1)
∣∣ =

∣∣∣∣aζ f (t2) + bζ

∫ t2

0
f (s) ds – aζ f (t1) – bζ

∫ t1

0
f (s) ds

∣∣∣∣

≤ aζ

∣∣f (t2) – f (t1)
∣∣ + bζ

∫ t2

t1

∣∣f (s)
∣∣ds

≤ r

(
1 + ζ0 + ι0 +

m∑
i=1

B(βi)
(1 – βi)2

)(
η(t2) – η(t1)

)
(aζ + bζ ).

Hence, the right-hand side of the inequality tends to zero (independent on x ∈ Br) as
t2 → t1. This implies that Ω : X → P(X ) is a compact multivalued map by using the
Arzela–Ascoli theorem. We show that Ω has a closed graph. Let xn → x∗, gn ∈ Ω(xn)
for all n and gn → g∗. It is sufficient to prove that g∗ ∈ Ω(x∗). Since gn ∈ Ω(xn) for all n,
there exist fn ∈ SF ,xn such that gn(t) = aζ fn(t) + bζ

∫ t
0 fn(s) ds for all t ∈ I . Thus, we have to

show that there exist f∗ ∈ SF ,x∗ such that g∗(t) = aζ f∗(t) + bζ

∫ t
0 f∗(s) ds for all t ∈ I . Consider
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the linear continuous operator θ : L1(I,R) → X defined by f �→ θ (f )(t), where θ (f )(t) =
aζ f (t) + bζ

∫ t
0 f (s) ds for all t ∈ I . Since θ is a linear continuous map, by using Lemma 4 we

get θ ◦ SF is a closed graph operator. Note that gn ∈ θ ◦ SF (xn) for all n. Since xn → x∗
and gn → g∗, there exists f∗ ∈ SF (x∗) such that g∗(t) = aζ f∗(t) + bζ

∫ t
0 f∗(s) ds for all t ∈ I . For

λ ∈ (0, 1) and x ∈ λΩ(x), there exists f ∈ SF ,x such that x(t) = aζ λf (t) + bζ

∫ t
0 λf (s) ds for all

t ∈ I . Hence,

∣∣x(t)
∣∣ ≤ λ(aζ + bζ )η∗ ·

(
1 + ζ0 + ι0 +

m∑
i=1

B(βi)
(1 – βi)2

)
‖x‖.

Thus, ‖x‖ = maxt∈I |x(t)| ≤ λ‖x‖. Put W = {x ∈ X ,‖x‖ < r(1 + ζ0 + ι0 +
∑m

i=1
B(βi)

(1–βi)2 )}. Note
that the operator Ω : W → Pcp,cv(X ) is upper semi-continuous and compact. In view of
the choice of W , there is no x ∈ ∂W such that x ∈ λΩ(x) for some λ ∈ (0, 1). Hence, by
using Theorem 5, Ω has a fixed point x ∈ W which is a solution for problem (1). This
completes the proof. �

Now consider the Banach space X = C(I) via the norm

‖x‖ = max
t∈I

∣∣x(t)
∣∣ +

m∑
i=1

max
t∈I

∣∣CF
N Dβi x(t)

∣∣ +
n∑

j=1

max
t∈I

∣∣CFIγj x(t)
∣∣.

Here, we investigate the fractional integro-differential inclusion

CF
N Dζ x(t) ∈F

(
t, x(t), (φx)(t), (ϕx)(t),

CF
N Dβ1 x(t), CF

N Dβ2 x(t), . . . , CF
N Dβm x(t),

CFIγ1 x(t), CFIγ2 x(t), . . . , CFIγn x(t)
)
, (2)

with boundary condition x(0) = 0, where ζ ,β1, . . . ,βm,γ1, . . . ,γn ∈ (0, 1). Similar to the last
case, we say that a function x ∈ C(I,R) is a solution for problem (2) whenever there exists
a function f ∈ L1(I) such that

f (t) ∈F
(
t, x(t), (φx)(t), (ϕx)(t), CF

N Dβ1 x(t), CF
N Dβ2 x(t), . . . ,

CF
N Dβm x(t)

)
,CF Iγ1 x(t),CF Iγ2 x(t), . . . ,CF Iγn x(t))

for almost all t ∈ I and x(t) = aζ f (t) + bζ

∫ t
0 f (s) ds for all t ∈ I .

Theorem 12 Assume that F : I × R
m+n+3 → Pcv,cp(R) is a multifunction such that the

map t → F (t, x1, x2, . . . , x3+m+n) is measurable for all x1, x2, . . . , xm+n+3 ∈ R, the map t →
dH (0,F (t, 0, . . . , 0)) is integrably bounded for almost all t ∈ I and

Hd
(
F (t, x1, x2, x3, y1, y2, . . . , ym, z1, z2, . . . , zn),

F
(
t, x′

1, x′
2, x′

3, y′
1, y′

2, . . . , y′
m, z′

1, z′
2, . . . , z′

n
))

≤ η(t)

(∣∣x1 – x′
1
∣∣ +

∣∣x2 – x′
2
∣∣ +

∣∣x3 – x′
3
∣∣ +

m∑
i=1

∣∣yi – y′
i
∣∣ +

n∑
j=1

∣∣zj – z′
j
∣∣
)
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for all t ∈ I and all x1, x2, x3, x′
1, x′

2, x′
3, y1, . . . , ym, y′

1, . . . , y′
m, z1, . . . , zn, z′

1, . . . , z′
n ∈ R. If � ≤ 1,

then the inclusion problem (2) has at least one solution, where

� = η∗
(

1 + n + ζ0 + ι0 +
m∑

i=1

B(βi)
(1 – βi)2

)(
1 + n +

m∑
i=1

B(βi)
(1 – βi)2

)
.

Proof By using the assumptions of Theorem III-6 in [34], we conclude that F admits a
measurable selection f : I → R. Since F is integrable bounded, f ∈ L1(I,R) and so SF ,x is
nonempty for all x ∈X , where

SF ,x =
{

f ∈ L1(I, R) : f (t) ∈F
(
t, x(t), (φx)(t), (ϕx)(t), CF

N Dβ1 x(t),
CF
N Dβ2 x(t), . . . , CF

N Dβm x(t), CFIγ1 x(t), CFIγ2 x(t), . . . ,
CFIγn x(t)

)
for all t ∈ I

}
.

Define the operator Ω : X → P(X ) by

Ω(x) =
{

g ∈X : there exists f ∈ SF ,x such that

g(t) = aζ f (t) + bζ

∫ t

0
f (s) ds for all t ∈ I

}
.

First, we show that Ω(x) ∈ Pcl(X ) for all x ∈X . Let gn ∈ Ω(x) for all n ≥ 0 and gn → g∗ for
some g ∈X . For each n, choose fn ∈ SF ,x such that gn(t) = aζ fn(t) + bζ

∫ t
0 fn(s) ds for all t ∈ I .

Since F has compact values, there is a subsequence of fn that converges to f in L1(I,R).
Thus, f ∈ SF ,x and gn(t) → g∗(t) = aζ f (t)+bζ

∫ t
0 f (s) ds for all t ∈ I . This implies that g∗ ∈ Ω .

Now, we show that there exists ε < 1 such that Hd(Ω(x),Ω(y)) ≤ ε‖x – y‖ for all x, y ∈ X .
Let x, y ∈ X and g1 ∈ Ω(x). Choose f1 ∈ SF ,x such that g1(t) = aζ f1(t) + bζ

∫ t
0 f1(s) ds for all

t ∈ I . Consider the multifunction F̃ defined by

F̃
(
t, x(t)

)
= F

(
t, x(t), (φx)(t), (ϕx)(t), CF

N Dβ1 x(t), CF
N Dβ2 x(t), . . . , CF

N Dβm x(t),

CFIγ1 x(t), CFIγ2 x(t), . . . , CFIγn x(t)
)
.

Then we have

Hd(F̃
(
t, x(t)

)
, F̃

(
t, y(t)

) ≤ η(t)

(∣∣x(t) – y(t)
∣∣ +

∣∣(φx)(t) – (φy)(t)
∣∣

+
∣∣(ϕx)(t) – (ϕy)(t)

∣∣

+
m∑

i=1

∣∣CF
N Dβi x(t) – CF

N Dβi y(t)
∣∣

+
n∑

j=1

∣∣CFIγj x(t) –CF Iγj y(t)
∣∣
)
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for almost t ∈ I . Hence, there exists wt ∈ F̃ (t, y(t)) such that

∣∣f1(t) – wt
∣∣ ≤ η(t)

(∣∣x(t) – y(t)
∣∣ +

∣∣(φx)(t) – (φy)(t)
∣∣ +

∣∣(ϕx)(t) – (ϕy)(t)
∣∣

+
m∑

i=1

∣∣CF
N Dβi x(t) – CF

N Dβi y(t)
∣∣

+
n∑

j=1

∣∣CFIγj x(t) –CF Iγj y(t)
∣∣
)

:= Mt

for almost t ∈ I . Define V : I → P(R) by V (t) = {u ∈ R : |f1(t) – u| ≤ Mt} for all t ∈ I . By
using Theorem III-41 in [34], we get V is measurable. Since t �→ V (t) ∩ F̃ (t, y(t)) is mea-
surable (Proposition III-4 in [34]), we can choose f2 ∈ SF ,y such that |f1(t) – f2(t)| ≤ Mt for
almost all t ∈ I . Define g2 ∈ Ω(y) by g2(t) = aζ f2(t) + bζ

∫ t
0 f2(s) ds for all t ∈ I . Then we have

‖g1 – g2‖ = max
t∈I

∣∣g1(t) – g2(t)
∣∣ +

m∑
i=1

max
t∈I

∣∣CF
N Dβi g1(t) – CF

N Dβi g2(t)
∣∣

+
n∑

i=1

max
t∈I

∣∣CFIγi g1(t) – CFIγi g2(t)
∣∣∣∣g1(t) – g2(t)

∣∣

≤ aζ

∣∣f1(t) – f2(t)
∣∣ + bζ

∫ t

0

∣∣f1(s) – f2(s)
∣∣ds

≤ η(t)

(
1 + n + ζ0 + ι0 +

m∑
i=1

B(βi)
(1 – βi)2

)
(aζ + bζ )‖x – y‖,

and so

∣∣CF
N Dβi g1(t) – CF

N Dβi g2(t)
∣∣

≤ B(βi)
(1 – βi)2

∣∣g1(t) – g2(t)
∣∣

≤ η(t)
B(βi)

(1 – βi)2

(
1 + n + ζ0 + ι0 +

m∑
i=1

B(βi)
(1 – βi)2

)
(aζ + bζ )‖x – y‖.

Thus,

∣∣CFIγi g1(t) – CFIγi g2(t)
∣∣ ≤ ∣∣g1(t) – g2(t)

∣∣

≤ η(t)

(
1 + n + ζ0 + ι0 +

m∑
i=1

B(βi)
(1 – βi)2

)
(aζ + bζ )‖x – y‖,

and so

‖g1 – g2‖ ≤ η∗
(

1 + n + ζ0 + ι0 +
m∑

i=1

B(βi)
(1 – βi)2

)

×
(

1 + n +
m∑

i=1

B(βi)
(1 – βi)2

)
‖x – y‖ = �‖x – y‖.
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Hence, Hd(Ω(x),Ω(y)) ≤ �‖x–y‖. Since � < 1, Ω is a closed-valued contraction. By using
Theorem 6, Ω has a fixed point which is a solution for the inclusion problem (2). �

Consider the Banach space X = {x : x, CF
N Dβi x ∈ C(I,R)} endowed with the norm ‖x‖ =

maxt∈I |x(t)| + maxt∈I |CF
N Dβi x(t)|. Here, we review the inclusion problem

CF
N Dζ x(t) ∈F

(
t, x(t), (φx)(t), CF

N Dβ1 x(t), CF
N Dβ2 x(t), . . . , CF

N Dβn x(t)
)

+ G
(
t, x(t), (ϕx)(t), CFIβ1 x(t), CFIβ2 x(t), . . . ,CF Iβn x(t)

)
(3)

with boundary condition x(0) = 0, where ζ ,β1, . . . ,βn ∈ (0, 1). Define the set of the selec-
tions of F and G at x by

SF ,x =
{

v ∈ L1[0, 1] : v(t) ∈F
(
t, x(t), (φx)(t),

CF
N Dβ1 x(t), CF

N Dβ2 x(t), . . . , CF
N Dβn x(t)

)
for almost all t ∈ I

}

and

SG,x =
{

v ∈ L1[0, 1] : v(t) ∈ G
(
t, x(t), (ϕx)(t),

CFIβ1 x(t), CFIβ2 x(t), . . . , CFIβn x(t)
)

for almost all t ∈ I
}

.

We suppose that SF ,x �= ∅ and SG,x �= ∅ for all x ∈X . A function x ∈ C(I,R) is a solution for
problem (3) whenever there exist two functions f ∈ H1(I) and f ′ ∈ H1(I) such that

f (t) ∈F
(
t, x(t), (φx)(t), CF

N Dβ1 x(t), CF
N Dβ2 x(t), . . . , CF

N Dβn x(t)
)

and f ′ ∈ G(t, x(t), (ϕx)(t), CFIβ1 x(t), CFIβ2 x(t), . . . ,CF Iβn x(t)) for almost all t ∈ I and

x(t) = aζ f (t) + bζ

∫ t

0
f (s) ds + aζ f ′(t) + bζ

∫ t

0
f ′(s) ds

for all t ∈ I .

Theorem 13 Let F : I ×R
n+2 → Pcp,cv(R) be a multifunction and G : I ×R

n+2 → Pcp,cv(R)
be a Caratheodory set-valued map. Assume that there exist continuous functions p, m : I →
(0,∞) and η(t) ∈ L∞(I) such that t �F (t, y1, . . . , yn+2) is measurable,

∥∥F(
t, x(t), (φx)(t), CF

N Dβ1 x(t), CF
N Dβ2 x(t), . . . , CF

N Dβn x(t)
)∥∥ ≤ m(t),

∥∥G(
t, x(t), (ϕx)(t), CFIβ1 x(t), CFIβ2 x(t), . . . ,CF Iβn x(t)

)∥∥ ≤ p(t),

and

Hd
(
F (t, y1, . . . , yn+2),F

(
t, y′

1, . . . , y′
n+2

)) ≤ η(t)
n+2∑
i=1

(∣∣yi – y′
i
∣∣)

for all t ∈ I , x ∈ X and y1, . . . , yn+2, y′
1, . . . , y′

n+2 ∈ R. If L = η∗(1 +
∑n

i=1
B(βi)

(1–βi)2 )(1 + ζ0 +∑n
i=1

B(βi)
(1–βi)2 ) < 1, then the inclusion problem (3) has at least one solution.
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Proof Put Y = {x ∈ X : ‖x‖ ≤ M}, where M = (1 +
∑n

i=1
B(βi)

(1–βi)2 )(‖p‖∞ + ‖m‖∞). One can
check that Y is a closed, bounded, and convex subset of X . Define the multivalued oper-
ators A,B : Y → P(X ) by

Ax :=
{

x ∈X : there is v ∈ SF ,x such that x(t) = aζ v(t) + bζ

∫ t

0
v(s) ds for all t ∈ I

}

and Bx := {x ∈ X : there is v ∈ SG,x such that x(t) = aζ v(t) + bζ

∫ t
0 v(s) ds for all t ∈ I}. Note

that problem (3) is equivalent to the inclusion fixed point problem x ∈ Ax + Bx. Also,
the operator A is equivalent to the composition θ ◦ SF , where θ is the continuous linear
operator on L1(0, 1) into X defined by θv(t) = aζ v(t) + bζ

∫ t
0 v(s) ds. Let x ∈ Y and {vn}n≥1

be a sequence in SF ,x. Then vn(t) ∈ F (t, x(t), (φx)(t), CFDβ1 x(t), CFDβ2 x(t), . . . , CFDβn x(t))
for almost t ∈ I . Since

F
(
t, x(t), (φx)(t), CF

N Dβ1 x(t), CF
N Dβ2 x(t), . . . , CF

N Dβn x(t)
)

is compact for all t ∈ I , there is a convergent subsequence of {vn(t)} (call it again {vn(t)})
such that it converges in measure to some v(t) ∈ SF ,x for almost all t ∈ I . Since θ is con-
tinuous, θvn(t) → θv(t) pointwise on I . In order to show that the convergence is uniform,
we show that {θvn} is an equi-continuous sequence. Let τ < t ∈ I . Then we have

∣∣θvn(t) – θvn(τ )
∣∣ ≤ aζ

∣∣vn(t) – vn(τ )
∣∣ + bζ

∫ t

τ

∣∣vn(s)
∣∣ds.

Since the right-hand of the above inequality tends to 0 as t → τ , the sequence {θvn} is equi-
continuous. Now, by using the Arzela–Ascoli theorem, there is a uniformly convergent
subsequence of {vn} (we show it again by {vn}) such that θvn → θv. Note that θv ∈ θ (SF ,x).
Hence, Ax = θ (SF ,x) is compact for all x ∈ Y . Now, we show that Ax is convex for all
x ∈ Y . Let u, u′ ∈ Ax. Choose v, v′ ∈ SF ,x such that u(t) = aζ v(t) + bζ

∫ t
0 v(s) ds and u′(t) =

aζ v′(t) + bζ

∫ t
0 v′(s) ds for almost all t ∈ I . Let 0 ≤ λ ≤ 1. Then we have

(
λu + (1 – λ)u′)(t) = aζ

(
λv(t) + (1 – λ)v′(t)

)
+ bζ

∫ t

0

(
λv(s) + (1 – λ)v′(s)

)
ds.

Since F is convex-valued, λu + (1 – λ)u′ ∈ Ax. Similarly, we can show that B is compact
and convex-valued. Here, we show that Ay + By ⊂ Y for all y ∈ Y . Let y ∈ Y , u ∈ Ay,
and u′ ∈ By. Choose v ∈ SF ,y and v′ ∈ SG,y such that u(t) = aζ v(t) + bζ

∫ t
0 v(s) ds and u′(t) =

aζ v′(t) + bζ

∫ t
0 v′(s) ds for almost all t ∈ I . Hence,

∣∣u(t) + u′(t)
∣∣ ≤ aζ

(∣∣v(t)
∣∣ +

∣∣v′(t)
∣∣) + bζ

∫ t

0

(∣∣v(s)
∣∣ +

∣∣v′(s)
∣∣)ds,

and so
∣∣CF
N Dβi u(t) + CF

N Dβi u′(t)
∣∣ ≤ ∣∣CF

N Dβi u(t)
∣∣ +

∣∣CF
N Dβi u′(t)

∣∣

≤ aζ B(βi)
(1 – βi)2

(
p(t) + m(t)

)

+
bζ B(βi)
(1 – βi)2

(‖p‖∞ + ‖m‖∞
)
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for 1 ≤ i ≤ n. This implies that

max
t∈I

∣∣u(t) + u′(t)
∣∣ ≤ aζ

(‖p‖∞ + ‖m‖∞
)

+ bζ

(‖p‖∞ + ‖m‖∞
)

= ‖p‖∞ + ‖m‖∞

and

max
t∈I

∣∣CF
N Dβi u(t) + CF

N Dβi u′(t)
∣∣ ≤ aζ B(βi)

(1 – βi)2

(‖p‖∞ + ‖m‖∞
)

+
bζ B(βi)
(1 – βi)2

(‖p‖∞ + ‖m‖∞
)

=
B(βi)(‖p‖∞ + ‖m‖∞)

(1 – βi)2 .

Thus, ‖u + u′‖ ≤ (1 +
∑n

i=1( B(βi)
(1–βi)2 ))(‖p‖∞ + ‖m‖∞) = M. Now, we show that the opera-

tor B is compact on Y . To do this, we prove that B(Y) is uniformly bounded and equi-
continuous in X . Let u ∈ B(Y) be arbitrary. Choose v ∈ SG,x such that u(t) = aζ v(t) +
bζ

∫ t
0 v(s) ds for some x ∈ Y . Hence,

∣∣u(t)
∣∣ ≤ aζ

∣∣v(t)
∣∣ + bζ

∫ t

0

∣∣v(s)
∣∣ds

∣∣CF
N Dβi u(t))

∣∣

≤ aζ

∣∣CF
N Dβi v(t)

∣∣ + bζ

∫ t

0

∣∣CF
N Dβi v(s)

∣∣ds

≤ B(βi)(aζ + bζ )
(1 – βi)2 p(t)

=
B(βi)

(1 – βi)2 p(t).

Thus, maxt∈I |u(t)| ≤ (aζ + bζ )‖p‖∞ = ‖p‖∞ and maxt∈I |CF
N Dβi ui(t)| ≤ B(βi)

(1–βi)2 ‖p‖∞ for
i = 1, . . . , n, and so ‖u‖ ≤ (1 +

∑n
i=1

B(βi)
(1–βi)2 )‖p‖∞. Here, we show that B maps Y to equi-

continuous subsets of X . Let t, τ ∈ I with τ < t, x ∈ Y and u ∈ Bx. Choose v ∈ SG,x such
that u(t) = aζ v(t) + bζ

∫ t
0 v(s) ds for all. Then we have

∣∣u(t) – u(τ )
∣∣ ≤ aζ

(
v(t) – v(τ )

)
+ bζ

∫ t

τ

v(s) ds ≤ aζ

(
v(t) – v(τ )

)
+ bζ (t – τ )‖p‖∞

and |CF
N Dβi u(t) – CF

N Dβi u(τ )| ≤ B(βi)
(1–βi)2 |u(t) – u(τ )|. Since the right-hand of the inequality

tends to 0 as t → τ , by using the Arzela–Ascoli theorem, we get B is compact. Now, we
show that B has a closed graph. Let xn ∈ Y and un ∈ B(xn) for all n with xn → x0 and
un → u0. We show that u0 ∈ B(x0). For each n, choose vn ∈ SG,xn such that un(t) = aζ vn(t) +
bζ

∫ t
0 vn(s) ds for all t ∈ I . Again, consider the continuous linear operator θ : L1(0, 1) →

X defined by θ (v)(t) = aζ v(t) + bζ

∫ t
0 v(s) ds. By using Lemma 4, θoSG is a closed graph

operator. Since un ∈ θ (SG,xn ) for all n and xn → x0, there exists v0 ∈ SG,x0 such that u0(t) =
aζ v0(t)+bζ

∫ t
0 v0(s) ds. Hence, u0 ∈ B(x0). This implies thatB has a closed graph, and soB is

upper semi-continuous. Now, we show that A is a contraction multifunction. Let x, y ∈X
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and u ∈Ay. Choose v ∈ SF ,y such that u(t) = aζ v(t) + bζ

∫ t
0 v(s) ds for all t ∈ I . Since

Hd
(
F

(
t, x(t), (φx)(t), CF

N Dβ1 x(t), . . . , CF
N Dβn x(t)

)
,

F
(
t, y(t), (φy)(t), CF

N Dβ1 y(t), . . . , CF
N Dβn y(t)

))

≤ η(t)

(
1 + ζ0 +

n∑
i=1

B(βi)
(1 – βi)2

)
‖x – y‖

for almost all t ∈ I , there exists w ∈ F (t, x(t), (φx)(t), CF
N Dβ1 x(t), . . . , CF

N Dβn x(t)) such that
|v(t) – w| ≤ η(t)(1 + ζ0 +

∑n
i=1

B(βi)
(1–βi)2 )‖x – y‖ for almost all t ∈ I . Consider the multifunction

U : I → 2R defined by

U(t) =

{
w ∈R :

∣∣v(t) – w
∣∣ ≤ η(t)

(
1 + ζ0 +

n∑
i=1

B(βi)
(1 – βi)2

)
‖x – y‖ for almost all t ∈ I

}
.

Since v and η(1 + ζ0 +
∑n

i=1
B(βi)

(1–βi)2 ) are measurable, we get

U(·) ∩F
(
t, x(·), (φx)(·), CFDβ1 x(·), . . . , CFDβn x(·))

is a measurable multifunction. Choose

v′(t) ∈F
(
t, x(t), (φx)(t), CF

N Dβ1 x(t), . . . , CF
N Dβn x(t)

)

such that |v(t) – v′(t)| ≤ η(t)(1 + ζ0 +
∑n

i=1
B(βi)

(1–βi)2 )‖x – y‖ and u′(t) = aζ v′(t) + bζ

∫ t
0 v′(s) ds

for all t ∈ I . Since |u(t) – u′(t)| ≤ aζ (v(t) – v′(t)) + bζ

∫ t
0 (v(s) – v′(s)) ds and

∣∣CF
N Dβi u(t) – CF

N Dβi u′(t)
∣∣ ≤ B(βi)

(1 – βi)2

∣∣u(t) – u′(t)
∣∣,

we get

max
t∈I

∣∣u(t) – u′(t)
∣∣ ≤ aζ η

∗
(

1 + ζ0 +
n∑

i=1

B(βi)
(1 – βi)2

)
‖x – y‖

+ bζ η
∗
(

1 + ζ0 +
n∑

i=1

B(βi)
(1 – βi)2

)
‖x – y‖

= η∗
(

1 + ζ0 +
n∑

i=1

B(βi)
(1 – βi)2

)
‖x – y‖

and

max
t∈I

∣∣CF
N Dβi u(t) – CF

N Dβi u′(t)
∣∣ ≤ η∗ B(βi)

(1 – βi)2

(
1 + ζ0 +

n∑
i=1

1
(1 – βi)2

)
‖x – y‖|

for 1 ≤ i ≤ n. Hence, ‖u–u′‖ ≤ η∗(1+
∑n

i=1
B(βi)

(1–βi)2 )(1+ζ0 +
∑n

i=1
B(βi)

(1–βi)2 )‖x–y‖. This implies
that Hd(Ax,Ay) ≤ L‖x – y‖. Now, by using Theorem 7, the inclusion fixed point problem
x ∈Ax + Bx has a solution which is a solution for the inclusion problem (3). �
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Now, we are ready to investigate the fractional integro-differential inclusion

CF
N Dζ

(
x(t)

g(t, x(t), (φx)(t), (ϕx)(t), CF
N Dζ1 x(t), . . . , CF

N Dζn x(t))

)

∈ G
(
t, x(t), (φx)(t), (ϕx)(t), CF

N Dβ1 x(t), . . . , CF
N Dβk x(t)

)
(4)

with boundary condition u(0) = 0, where ζ , ζ1, . . . , ζn,β1, . . . ,βk ∈ (0, 1), g : I × R
n+3 →

R\{0} is continuous and G : I × R
k+3 → P(R) is a multifunction. We say that x ∈ X is

a solution for problem (4) whenever it satisfies the boundary conditions and there exists
v ∈ SG,x such that

x(t) = g
(
t, x(t), (φx)(t), (ϕx)(t), CF

N Dζ1 x(t), . . . , CF
N Dζn x(t)

)

×
(

aζ v(t) + bζ

∫ t

0
v(s) ds

)
,

where

SG,x =
{

v ∈ L1[0, 1] : v(t) ∈ G
(
t, x(t), (φx)(t), (ϕx)(t),

CF
N Dβ1 x(t), . . . , CF

N Dβk x(t)
)

for almost all t ∈ I
}

.

Theorem 14 Suppose that G : I × R
k+3 → Pcp,cv(R) is a Caratheodory set-valued map,

g : J × R
n+3 → R\{0} is a bounded continuous map with upper bound K and there are

continuous functions p, m : J → (0,∞) such that ‖G(t, x1, x2, . . . , xk+3)‖ ≤ m(s) and

∣∣g(t, x1, x2, . . . , xn+3) – g(t, y1, y2, . . . , yn+3)
∣∣ ≤ η(t)

n+3∑
i=1

|xi – yi|

for all t ∈ I . If η∗(1 + ζ0 + ι0 +
∑n

i=1
B(βi)

(1–βi)2 ) · K · ‖m‖∞ < 1, then the inclusion problem (4)
has a solution.

Proof Put S = {x ∈ X : ‖x‖ ≤ L}, where L = K‖m‖∞. It is clear that S is a convex, closed,
and bounded subset of the Banach space X . Define A,B : S →P(X ) by

Ax(t) = g
{

t, x(t), (φx)(t), (ϕx)(t), CF
N Dζ1 x(t), . . . , CF

N Dζn x(t)
}

and

Bx(t) =
{

u ∈X : there is v ∈ SG,x such that u(t) = aζ v(t) + bζ

∫ t

0
v(s) ds for all t ∈ I

}
.

Thus, the problem of fractional differential inclusions is equivalent to the inclusion prob-
lem x ∈ A(x)B(x). Consider the operator B = θ ◦ SG , where θ is the continuous linear
operator on L1(I) into X defined by θv(s) = aζ v(t) + bζ

∫ t
0 v(s) ds. Let x ∈ S be arbitrary and

{vn} be a sequence in SG,x. Then vn(t) ∈ G(t, x(t), (φx)(t), (ϕx)(t), CF
N Dβ1 x(t), . . . , CF

N Dβk x(t))
for almost t ∈ I . Since

G
(
t, x(t), (φx)(t), (ϕx)(t), CF

N Dβ1 x(t), . . . , CF
N Dβk x(t)

)
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is compact for all t ∈ I , there is a convergent subsequence of {vn(t)} (show it by {vn(t)}
again) to some v ∈ SG,x. Note that θvn(t) → θv(t) pointwise on I because θ is continu-
ous. Now, we show that {θvn} is an equi-continuous sequence. Let τ < t ∈ I . Then we
have |θvn(t) – θvn(τ )| ≤ aζ |vn(t) – vn(τ )|+ bζ

∫ t
τ
|vn(s)|ds. Thus, the sequence {θvn} is equi-

continuous because the right-hand of the inequality tends to 0 as t → τ . Hence, it has a
uniformly convergent subsequence by using the Arzela–Ascoli theorem. Choose a sub-
sequence of {vn} (we show it again by {vn}) such that θvn → θv. Hence, θv ∈ θ (SG,x) and
so B = θ (SG,x) is compact for all x ∈ S. Here, we prove that Bx is convex for all x ∈ S.
Let x ∈ S and u, u′ ∈ Bx. Choose v, v′ ∈ SG,x such that u(t) = aζ v(t) + bζ

∫ t
0 v(s) ds and

u′(t) = aζ v′(t) + bζ

∫ t
0 v′(s) ds for almost all t ∈ I . Let 0 ≤ λ ≤ 1. Then we have

λu(t) + (1 – λ)u′(t) = aζ

(
λv(t) + (1 – λ)v′(t)

)
+ bζ

∫ t

0

(
λv(s) + (1 – λ)v′(s)

)
ds.

Since G is convex-valued, λu + (1 – λ)u′ ∈ Bx. It is clear that A is bounded, closed, and
convex-valued. We show that AxBx is a convex subset of S for all x ∈ S. Let x ∈ S and
u, u′ ∈AxBx. Choose v, v′ ∈ SG,x such that

u(t) = g
(
t, x(t), (φx)(t), (ϕx)(t), CF

N Dζ1 x(t), . . . , CF
N Dζn x(t)

) ×
(

aζ v(t) + bζ

∫ t

0
v(s) ds

)
,

and

u′(t) = g
(
t, x(t), (φx)(t), (ϕx)(t), CF

N Dζ1 x(t), . . . , CF
N Dζn x(t)

)

×
(

aζ v′(t) + bζ

∫ t

0
v′(s) ds

)

for almost all t ∈ I . Hence,

λu(t) + (1 – λ)u′(t) = g
(
t, x(t), (φx)(t), (ϕx)(t),

CF
N Dζ1 x(t), . . . , CF

N Dζn x(t)
)

×
[

aζ

(
λv(t) + (1 – λ)v′(t)

)

+ bζ

∫ t

0

(
λv(s) + (1 – λ)v′(s)

)
ds

]
.

Note that λu + (1 – λ)u′ ∈ AxBx because G is convex-valued. Hence, AxBx is a convex
subset of X for all x ∈X . However, we have

∣∣u(t)
∣∣ =

∣∣∣∣g
(
t, x(t), (φx)(t), (ϕx)(t), CF

N Dζ1 x(t), . . . , CF
N Dζn x(t)

) ×
(

aζ v(t) + bζ

∫ t

0
v(s) ds

)∣∣∣∣
≤ K(aζ + bζ )‖m‖∞ = L < 1

for all t ∈ I , and so u ∈ S and AxBx is a convex subset of S for all x ∈ S. Now, we show
that the operator B is compact. It is enough to prove that B(S) is uniformly bounded and
equi-continuous. Let u ∈ B(S). Choose v ∈ SG,x such that

u(t) = g
(
t, x(t), (φx)(t), (ϕx)(t), CF

N Dζ1 x(t), . . . , CF
N Dζn x(t)

) ×
(

aζ v(t) + bζ

∫ t

0
v(s) ds

)
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for some x ∈ S. Since |u(t)| ≤ K(aζ + bζ )‖m‖∞, ‖u‖∞ = maxt∈I |u(t)| ≤ K(aζ + bζ )‖m‖∞.
Now, we prove that B maps S to equi-continuous subsets of X . Let t, τ ∈ J with τ < t, x ∈ S,
and u ∈ Bx. Choose v ∈ SG,x such that u(t) = aζ v(t) + bζ

∫ t
0 v(s) ds. Then we have

∣∣u(t) – u(τ )
∣∣ ≤ aζ

∣∣v(t) – v(τ )
∣∣ + bζ

∫ t

τ

∣∣v(s)
∣∣ds.

Note that the right-hand side of this inequality tends to 0 as t → τ . By using the Arzela–
Ascoli theorem, we get B is compact. Here, we show that B has a closed graph. Let xn ∈ S
and un ∈ Bxn for all n with xn → x′ and un → u′. We show that u′ ∈ Bx′. For each n,
choose vn ∈ SG,xn such that un(t) = aζ vn(t) + bζ

∫ t
0 vn(s) ds for all t ∈ J . Again, consider the

continuous linear operator θ : L1(I) →X such that θ (v)(t) = u(t) = aζ v(t) + bζ

∫ t
0 v(s) ds. By

using Lemma 4, θ ◦ SG is a closed graph operator. Since xn → x′ and un ∈ θ (SG,xn ) for all
n, there is v′ ∈ SG,x′ such that u′(s) = aζ v′(t) + bζ

∫ t
0 v′(s) ds. Hence, u′ ∈ Bx′. Thus, B has a

closed graph and so B is upper semi-continuous. Finally note that

H(Ax,Ay) = ‖Ax – Ay‖
= max

t∈I

∣∣g(
t, x(t), (φx)(t), (ϕx)(t), CF

N Dζ1 x(t), . . . , CF
N Dζn x(t)

)

– g
(
t, y(t), (φy)(t), (ϕy)(t), CF

N Dζ1 y(t), . . . , CF
N Dζn y(t)

)
)
∣∣

≤ max
t∈I

∣∣η(t)
∣∣
(

1 + ζ0 + ι0 +
n∑

i=1

B(ζi)
(1 – ζi)2

)∣∣x(t) – y(t)
∣∣

= η∗(

(
1 + ζ0 + ι0 +

n∑
i=1

B(ζi)
(1 – ζi)2

)
‖x – y‖∞

for all x, y ∈X . Now, by using Theorem 8, the inclusion problem x ∈AxBx has a solution
which is a solution for problem (4). �

In this part, we show that the set of solutions for the second fractional integro-
differential inclusion problem is infinite dimensional under some conditions. First we
prove the next result.

Lemma 15 Suppose that m ∈ L1(I,R+), F : I ×R
m+n+3 → Pcv,cp(R) is a multivalued map

such that the map t � f (t, x1, x2, . . . , x3+m+n) is measurable and

∥∥F (t, x1, x2, . . . , xm+n+3)
∥∥ = sup

{|f | : f ∈F (t, x1, x2, . . . , xm+n+3)
} ≤ m(t)

for almost all t ∈ I and ∈ x1, x2, . . . , xm+n+3 ∈ R. Define Φ : X →P(X ) by

Φ(x) =
{

g ∈X : there is f ∈ SF ,x such that g(t) = aζ f (t) + bζ

∫ t

0
f (s) ds for all t ∈ I

}
.

Then Φ(x) ∈Pcp.cv(X ) for all x ∈X .

Proof Note that Φ = θ ◦ SF , where θ : L1(I,R) → X is the continuous linear map defined
by θg(t) = aζ f (t) + bζ

∫ t
0 f (s) ds. Let x ∈X and {gn} be a sequence in SF ,x. Then we have

gn(t) ∈F
(
t, x(t), (φx)(t), (ψx)(t), CF

N Dβ1 x(t), . . . , CF
N Dβm x(t), cFIγ1 x(t), . . . , cFIγn x(t)

)
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for almost t ∈ I . Since

F
(
t, x(t), (φx)(t), (ψx)(t), CF

N Dβ1 x(t), . . . , CF
N Dβm x(t), cFIγ1 x(t), . . . , cFIγn x(t)

)

is compact for all t ∈ I , there is a convergent subsequence of {gn(t)} (show it by {gn(t)})
which converges to some g ∈ SF ,x. Note that θgn(t) → θg(t) pointwise on I because θ is
continuous. Here, we prove that {θgn} is an equi-continuous sequence. Let τ < t ∈ I . Then
we have |θgn(t) – θgn(τ )| = aζ (f (t) – f (τ )) + bζ

∫ t
τ

f (s) ds. Note that the sequence {θgn} is
equi-continuous because the right-hand side of the inequality tends to zero when τ → t.
Thus, there is a uniformly convergent subsequence of {gn} (show it by {gn} again) such
that θgn → θg (we use the Arzela–Ascoli theorem). This implies that θg ∈ θ (SF ,x). Hence,
Φx = θ (SF ,x) is compact for all x ∈ X . Now, we show that Φx is convex for each x ∈ X .
Let g, g ′ ∈ Φx. Choose f , f ′ ∈ SF ,x such that g(t) = aζ f (t) + bζ

∫ t
0 f (s) ds) and g ′(t) = aζ f ′(t) +

bζ

∫ t
0 f ′(s) ds) for almost all t ∈ I . Let 0 ≤ λ ≤ 1. Then we have

λg(t) + (1 – λ)g ′(t) = aζ

(
λf (t) + (1 – λ)f ′(t)

)
+ bζ

∫ t

0

(
λf (s) + (1 – λ)f ′(s)

)
ds.

Since SF ,x is convex, λg + (1 – λ)g ′ ∈ Φx. This completes the proof. �

Note that the fixed point set of Φ is equal to the set of solutions for the inclusion problem
(2). Now by using some different conditions, we show that the set of solutions for the
fractional integro-differential inclusion problem could be infinite dimensional.

Theorem 16 Suppose that η ∈ L1(I,R+), F : I ×R
m+n+3 →Pcv,cp(R) is a multivalued map

such that the function t �F (t, x1, x2, . . . , xm+n+3) is measurable,

H
(
F (t, x1, x2, . . . , xm+n+3),F (t, y1, y2, . . . , ym+n+3)

) ≤ η(t)
m+n+3∑

i=1

|xi – yi|

and ‖F (t, x1, x2, . . . , xm+n+3)‖ = sup{|f | : f ∈ F (t, x1, x2, . . . , xm+n+3)} ≤ η(t) for almost all t ∈
I and ∈ x1, x2, . . . , xm+n+3, y1, y2, ym+n+3 ∈R. If Lebesgue measure of the set

{
t : dimF (t, x1, x2, . . . , xm+n+3) < 1 for some x1, x2, . . . , xm+n+3 ∈R

}

is zero and � < 1, then the set of all solutions for problem (2) is infinite dimensional, where
� = η∗(1 + n + ζ0 + ι0 +

∑m
i=1

B(βi)
(1–βi)2 )(1 + n +

∑m
i=1

B(βi)
(1–βi)2 ).

Proof Similar to Lemma 15, define the multivalued map Φ : X →P(X ) by

Φ(x) =
{

g ∈X : there is f ∈ SF ,x such that g(t) = aζ f (t) + bζ

∫ t

0
f (s) ds for all t ∈ I

}
.

By using Lemma 15, Φx ∈Pcp,cv(X ) for all x ∈X . By using a similar proof in Theorem 12,
we can prove that Φ is a contractive multivalued map. Now, we show that dimΦx > k for
all x ∈X and k ≥ 1. Let k ≥ 1, x ∈X , and

G(t) = F
(
t, x(t), (φx)(t), (ψx)(t), CF

N Dβ1 x(t), CF
N Dβ2 x(t), . . . , CF

N Dβm x(t),
cFIγ1 x(t), cFIγ2 x(t), . . . , cFIγn x(t)

)
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for all t ∈ I . By using Lemma 9, there are linearly independent measurable selections
g1, . . . , gk for G . Consider the maps hi(t) = aζ gi(t) + bζ (t)

∫ t
0 gi(s) ds for i = 1, . . . , k. Assume

that
∑k

i=1 aihi(t) = 0 for almost t ∈ I . Since aζ , bζ �= 0, by using the Caputo–Fabrizio deriva-
tives, we get

∑k
i=1 aigi(t) = 0 for almost t ∈ I . Hence, a1 = · · · = ak = 0. This implies that

h1, . . . , hk are linearly independent, and so dimΦx ≥ k. Hence, we conclude that the set of
fixed points of Φ is infinite dimensional by using Theorem 10. Thus, the set of all solutions
for problem (2) is infinite dimensional. �

3 Conclusion
We guess that researchers will review different more fractional integro-differential in-
clusions in the near future. In this manuscript, we first investigate the existence of solu-
tions for four fractional integro-differential inclusions including the new Caputo–Fabrizio
derivation which has been introduced recently. Also, we show that dimension of the set
of solutions for the second fractional integro-differential inclusion problem is infinite di-
mensional under some different conditions.
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