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Abstract
In this article we study applications of the Schrödinger-type identity for obtaining
transmutations via the fixed point index for nonlinear integral equations. It is possible
to derive a wide range of transmutation operators by this method. Classical Riesz
transforms are involved in the Schrödinger-type identity method as basic blocks,
among them are Fourier, sine and cosine-Fourier, Hankel, Mellin, Laplace, and some
generalized transforms. In this paper, we present a modified Schrödinger-type
identity for solutions of a class of linear Schrödinger equations with mixed boundary
conditions. The techniques used in our proofs are quite different, and most
remarkably some of the proofs become simpler and more straightforward. As an
application, we obtain the existence and uniqueness of a solution to the stationary
Schrödinger equation in the sense of the Weyl law, which advances the recent results
obtained in several articles even in a more general setting.

Keywords: Schrödinger-type identity; Neumann boundary condition; Stationary
Schrödinger equation

1 Introduction
The stationary Schrödinger equations are often used to express real-life problems. Natu-
rally, we focus on finding solutions of linear Schrödinger equations. However, analytical
solutions are frequently not possible to find and numerical solutions can be both theoret-
ically and computationally complicated due to the complexity of a modified Schrödinger
operator. Frequently, researchers investigate inequalities in weighted Banach spaces; see,
for example, [1–6] and the references therein for details. Hence, it is appropriate to de-
rive a generalized stationary Schrödinger inequality equation from modified Schrödinger
differential equations (see [4, 5, 7]).

In recent years, under the frame of the auxiliary principle, some references, such as Ding
[8], Noor [7], Chen and Zhang [9], Huang [10], and so on, introduced the related properties
of weak solutions for generalized stationary Schrödinger equations of fluid dynamics and
built the corresponding convergence theorems.

Due to the rapid advancement of computing resource, rigorous derivation of general-
ized stationary Schrödinger equations was done also for Schrödinger fluids. An asymp-
totic analysis of the generalized Schrödinger differential equation based on the asymptotic
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expansion was presented in [9, 10]. In this paper we investigate a new equation of general-
ized stationary Schrödinger inequalities and prove an existence and uniqueness theorem
of solutions for this kind of equation.

The rest of the paper is organized as follows. In Sect. 2, we present some basic def-
initions, concepts, and some results that will be used later for our model problem. In
Sect. 3, we prove the existence and uniqueness of weak solutions for generalized stationary
Schrödinger equations. Finally, the paper is concluded in Sect. 4.

2 Preliminaries
In 2013, Ren [11] proposed the following linear Schrödinger model:

dS
dt

= r(S + I)
(

1 –
S + I

K

)
– βSI – ηγ1(S)Y ,

dI
dt

= βSI – γ (I)Y – CI,

dY
dt

=
(
εγ (I) + ηεγ1(S) – d

)
Y ,

(1)

where S is the number of sound prey, I is the number of infected prey population, Y is the
number of predator population, γ (I) and ηγ1(S) are predator functional response func-
tions. Ren analyzed model (1) in terms of positivity, uniqueness, boundedness and studied
the existence of the Hopf bifurcation.

Model (1) may be re-written by Wang, Mai, and Wang (see [12]) in a simplified form as
follows:

dS
dt

= rS
(

1 –
S + I

K

)
– βSI,

dI
dt

= –cI + βSI – pIY ,

dY
dt

= –dY + pqIY .

(2)

Let I = {1, 2} be an index set, Hi be a real Hilbert space with inner product 〈·, ·〉i and
norm ‖ · ‖i, respectively, where i = 1, 2. Let A : H1 → H1, B : H2 → H2, F1 : H1 × H2 → H1,
and η1 : H1 × H1 → H1 be mappings. Let ai : Hi × Hi → R be a coercive continuous map
such that

(C1) ai(σi,σi) ≥ ci‖σi‖2
i ;

(C2) |ai(�i,σi)| ≤ di‖�i‖i · ‖σi‖i

for any �i,σi ∈ Hi.
Let bi : Hi × Hi →R be a map with nondifferentiable terms such that
(C3) bi is a linear function for the first variable;
(C4) bi is a convex function;
(C5) There exists a positive constant γi satisfying

γi‖�i‖i · ‖σi‖i ≥ ai(�i,σi)

for any �i,σi ∈ Hi.
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(C6) bi(�i,σi – wi) ≥ bi(�i,σi) – bi(�i, wi)

for any �i,σi, wi ∈ Hi.
Based on the above notations, we then define the proposed equation of generalized non-

linear stationary Schrödinger inequality problems as follows (see [13, 14]):

∂F1(x, y)
∂x

= F1(x, y)
[
b1(x,σ1) – η1(x, y)

(
F1(x, y) + F2(x, y)

)
– a1(x, y)f1(x,σ1 – x)

]
,

∂F2(x, y)
∂x

= F2(x, y)
[
b1(x,σ1) – η2(x, y)

(
F1(x, y) + F2(x, y)

)
– a2(x, y)f2(x,σ2 – x)

]
,

∂fi(x, y)
∂x

= –d(x, y)x3(x, y) – b(x, y)x2
3(x, y) + c1(x, y)x3(t – τ )F1(t – τ )

+ c2(x, y)x3(t – τ )F2(t – τ ) (i = 1, 2),

(3)

where F1, F2, and fi are susceptible, infected, and predator population respectively, and the
corresponding parameters have the meaning as defined in [15]. Time delay is considered
as a gestation period, and a disease can be transmitted by contact and spreads among prey
species only.

Remark 1 There are some special cases for the model problem (3):
(1) If A = B = I , fi = 0, and ai(�i,σi) = 0, then (3) is equivalent to

〈
F1(x, y),η1(σ1, x)

〉
1 + b1(x,σ1) – b1(x, x) ≥ 0

for any σ1 ∈ H1 and

〈
F2(x, y),η2(σ2, y)

〉
2 + b2(y,σ2) – b2(y, y) ≥ 0

for any σ2 ∈ H2.
(2) If H1 = H2 = H , fi = f2 = f , η1 = η2 = η, a1 = a2 = a, b1 = b2 = b, then (3) is reduced to

〈
F(Ax, Bx) – f ,η(w, y)

〉
+ a(y, w – y) + b(y, w) – b(y, y) ≥ 0

for any v ∈ H .

We then introduce the following definition (see [16, 17]), which will be useful for the
proposed method.

Definition 1 Let A : H1 → H1, B : H2 → H2, F1 : H1 × H2 → H1, and η1 : H1 × H1 → H1

be mappings. Then
(1) F1 is α1-strongly monotone if the following inequality holds:

〈
F1(A�1,�2) – F1(Aσ1,�2),�1 – σ1)

〉
1 ≥ α1‖�1 – σ1‖2

1,

where �1,σ1 ∈ H1, �2 ∈ H2 and α1 is a positive constant;
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(2) If there exist two positive constants β1 and ξ1 such that

∥∥F1(A�1, B�2) – F1(Aσ1, Bσ2)
∥∥

1 ≤ β1‖�1 – σ1‖1 + ξ1‖�2 – σ2‖2

for �1,σ1 ∈ H1 and �2,σ2 ∈ H2, then F1 is (β1, ξ1)-Lipschitz continuous;
(3) If

∥∥η1(�1,σ1)
∥∥

1 ≤ δ1‖�1 – σ1‖1

for �1,σ1 ∈ H1, then η1 is δ1-Lipschitz continuous, where δ1 is a positive constant.
(4) If

〈
�1 – σ1,η1(�1,σ1)

〉
1 ≥ σ1‖�1 – σ1‖2

1

for �1,σ1 ∈ H1, then η1 is σ1-strongly monotone, where σ1 is a positive constant.

3 Existence and uniqueness
In this section, we give an existence and uniqueness theorem of the solution of the aux-
iliary problem for (3). Under the frame of this theorem, we develop a new linearization
iterative algorithm for the proposed model. First of all, let us present the following auxil-
iary problem for (3).

It follows that there exist z1 ∈ H1 and z2 ∈ H2 such that (see [18])

〈
z1 – η1,η1(σ1, z1)

〉
1 + ρ1

〈
F1(Aη1, Bx2) – f1,η1(σ1, z1)

〉
1 + ρ1

[
a1(z1,σ1 – z1)

]
+ ρ1

[
b1(η1,σ1) – b1(η1, z1)

] ≥ 0 (4)

for any σ1 ∈ H1.

〈
z2 – x2,η2(σ2, z2)

〉
2 + ρ2

〈
F2(Aη1, Bx2) – f2,η2(σ2, z2)

〉
2 + ρ2

[
a2(z2,σ2 – z2)

]
+ ρ2

[
b2(x2,σ2) – b1(x2, z2)

] ≥ 0 (5)

for any σ2 ∈ H2 and any given (η1, x2) ∈ H1 × H2.
By applying a fixed point theorem, which is due to Yao et al. (see [19]), we have the

following.

Theorem 1 Let φi be a continuous function defined in H1 × H2 and S be multifunctions
defined in R+. If there exists a function m ∈L1

loc(R+) satisfying

m(s) ≥ H
(
F(s, x, y), 0

)

for any t ∈R+, then there exists a solution x of problem (3) satisfying

∣∣η1(s) – ρ2(s)
∣∣ ≤

(∣∣η1(0) – x0
∣∣ +

∫ L

0
ρ1(s) ds

)
exp

(
2λ+s

)
(6)

for s ∈ [0, L], where λ+ = max{λ, 0}.
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Proof Define

ψi(s,ς ,β) =
{

x ∈ F(s,ς ,β) :
〈
ẋ1(s) – x,η1(s) – ς

〉 ≤ λ
∣∣η1(s) – ς

∣∣2}.

It is easy to see that it is nonempty for any s ∈ [0, L]. So

∣∣η̇1(s) – w
∣∣ = d

(
ẋ1(s),φi

(
s,η1(s), max

s∈S(s)
η1(s)

))
≤ ρ1(s),

which together with (C3) gives that

〈
w – x,η1(s) – ς

〉 ≤ λ
∣∣η1(s) – ς

∣∣2 +
∣∣η1(s) – ς

∣∣.
So

〈
ẋ1(s) – x,η1(s) – ς

〉
≤ 〈

w – x,η1(s) – ς
〉
+

∣∣ẋ1(s) – w
∣∣∣∣η1(s) – ς

∣∣
≤ λ

∣∣η1(s) – ς
∣∣2 +

∣∣η1(s) – ς
∣∣(λ

∣∣∣max
s∈S(s)

η1(s) – β

∣∣∣ + ρ1(s)
)

,

which yields that there exists a solution x of problem

ẋ(s) ∈ G
(

s,ρ2(s), max
s∈S(s)

x(s)
)

,

x(0) = x0

(7)

satisfying

〈
ẋ1(s) – ẋ(s),η1(s) – ρ2(s)

〉

≤ λ
∣∣η1(s) – ρ2(s)

∣∣2 +
∣∣η1(s) – ρ2(s)

∣∣(λ

∣∣∣max
s∈S(s)

η1(s) – max
s∈S(s)

x(s)
∣∣∣ + ρ1(s)

)

≤ λ
∣∣η1(s) – ρ2(s)

∣∣2 +
∣∣η1(s) – ρ2(s)

∣∣(λ max
s∈S(s)

∣∣η1(s) – x(s)
∣∣ + ρ1(s)

)
(8)

for any s ∈ [0, L].
Define

r(s) = max
s∈S(s)

∣∣η1(s) – ρ2(s)
∣∣,

which is absolutely continuous and differentiable. It follows that

r(s)ṙ(s) =
d
dt

r2(s) ≤ λr(s)
(

r(s) + max
s∈S(s)

r(s)
)

(9)

from (8).
And define

T =
{

s ∈ [0, L] : r(s) = 0
}

.
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It follows that

ṙ(s) ≤ λ+
(

r(s) + max
s∈S(s)

r(s)
)

+ ρ1(s) (10)

for any t /∈ T from (9), which yields that r is the solution of

ṙ(s) = λ+
(

r(s) + max
s∈S(s)

r(s)
)

+ ρ1(s), s ∈ [0, L]

r(0) = r(0).

So

r(s) ≤ r(0) +
∫ s

0

(
2λ+r(τ ) + ρ1(τ )

)
dτ ,

which implies the required conclusion. �

Theorem 2 Let the following conditions hold:
(1) ai : Hi × Hi →R satisfy (C1) and (C2), bi : Hi × Hi →R with (C3)–(C6);
(2) ηi is σi-strongly monotone;
(3) 〈Fi(Ax, By),ηi(σi, ·)〉 is concave and upper semicontinuous.

Then the auxiliary problems (4) and (5) are solvable.

Proof Let mappings φi,ψi : Hi × Hi →R be defined as follows:

φi(σi, zi) =
〈
σi – xi,ηi(σi, zi)

〉
i + ρi

〈
Fi(Aη1, Bx2) – fi,ηi(σi, zi)

〉
i

and

ψi(σi, zi) =
〈
zi – xi,ηi(σi, zi)

〉
i + ρi

〈
Fi(Aη1, Bx2) – fi,ηi(σi, zi)

〉
i,

respectively.
So

φi(σi, zi) – ψi(σi, zi) =
〈
σi – zi,ηi(σi, zi)

〉
i + ρi

[
ai(σi – zi,σi – zi)

]
≥ (σi + ρici)‖σi – zi‖2

i ≥ 0

for any σi, zi ∈ Hi, which yields that 1 (1) holds. And ai is coercive continuous, then
ai(σi,σi – zi) is weakly upper semicontinuous.

It follows that bi is convex and lower semicontinuous, which means that 〈Fi(Ax, By),
ηi(σi, ·)〉 is concave and upper semicontinuous. Hence, φi(σi, ·) and {σi ∈ Hi : ψi(σi, zi)} are
convex. That is to say, conditions (2) and (3) hold.

Furthermore,

wi = [σi + ρici]–1{ρi
∥∥Fi(Aη1, Bx2) – fi

∥∥
i + (ρ1i + ρiγi)‖xi‖i

}



Sun Boundary Value Problems         (2019) 2019:60 Page 7 of 9

and

Ki =
{

zi ∈ Hi : ‖zi‖i ≤ wi
}

for each i ∈ I .
So

ψi(σ0i , zi) = ψi(0, zi)

=
〈
zi – xi,ηi(0, zi)

〉
i + ρi

〈
Fi(Aη1, Bx2) – fi,ηi(0, zi)

〉
i

+ ρi
[
ai(zi, 0 – zi)

]
= –

〈
0 – zi,ηi(0, zi)

〉
i +

〈
xi,ηi(zi, 0)

〉
i + ρi

〈
Fi(Aη1, Bx2) – fi,ηi(0, zi)

〉
i

– ρi
[
ai(zi, zi)

]
≤ –σi‖zi‖2

i + ρ1i‖xi‖i‖zi‖i + ρi
∥∥Fi(Aη1, Bx2) – fi

∥∥
i‖zi‖i

– ρici‖zi‖2
i + ρiγi‖xi‖i‖zi‖i

= –‖zi‖i
{

(σi + ρici)‖zi‖i – ρi
∥∥Fi(Aη1, Bx2) – fi

∥∥
i – (ρ1i + ρiγi)‖xi‖i

}
≤ 0.

There exists z∗
i ∈ Hi such that

〈
σi – xi,ηi

(
σi, z∗

i
)〉

i + ρi
〈
Fi(Aη1, Bx2) – fi,ηi

(
σi, z∗

i
)〉

i + ρi
[
ai

(
σi,σi – z∗

i
)] ≥ 0 (11)

for any s ∈ (0, 1] and σi ∈ Hi from Theorem 1.
If σi is replaced by yi,t in (11), then we obtain that

0 ≤ 〈
yi,t – xi,ηi

(
yi,t , z∗

i
)〉

i + ρi
〈
Fi(Aη1, Bx2) – fi,ηi

(
yi,t , z∗

i
)〉

i

+ ρi
[
ai

(
yi,t , yi,t – z∗

i
)]

+ ρi
[
bi(xi, yi,t)

]
= –

〈
yi,t – xi,ηi

(
z∗

i , yi,t
)〉

i – ρi
〈
Fi(Aη1, Bx2) – fi,ηi

(
z∗

i , yi,t
)〉

i

+ ρi
[
ai

(
yi,t , yi,t – z∗

i
)]

+ ρi
[
bi(xi, yi,t)

]
≤ –t

〈
yi,t – xi,ηi

(
z∗

i ,σi
)〉

i – ρit
〈
Fi(Aη1, Bx2) – fi,ηi

(
z∗

i ,σi
)〉

i,

where

yi,t := tσi + (1 – t)z∗
i .

In fact, in the above formulation, the second inequality comes from that ηi is affine in
the second variable, ηi(z∗

i , z∗
i ) = 0 and bi satisfies (C3)–(C6).

Hence, we derive

〈
yi,t – xi,ηi

(
σi, z∗

i
)〉

i + ρi
〈
Fi(Aη1, Bx2) – fi,ηi

(
σi, z∗

i
)〉

i + ρi
[
ai

(
yi,t ,σi – z∗

i
)] ≥ 0,
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which yields that

〈
z∗

i – xi,ηi
(
σi, z∗

i
)〉

i + ρi
〈
Fi(Aη1, Bx2) – fi,ηi

(
σi, z∗

i
)〉

i + ρi
[
ai

(
z∗

i ,σi – z∗
i
)]

+ ρi
[
bi(xi,σi) – bi

(
xi, z∗

i
)] ≥ 0

in the case t → 0+.
Therefore, z∗

1 ∈ H1 and z∗
2 ∈ H2 are the solutions of auxiliary problems (4) and (5), re-

spectively.
In the following, we prove the uniqueness of problems (4) and (5). For any two solutions

z1, z′
1 ∈ H1 of (4), we have

〈
z1 – η1,η1(σ1, z1)

〉
1 + ρ1

〈
F1(Aη1, Bx2) – f1,η1(σ1, z1)

〉
1 + ρ1

[
a1(z1,σ1 – z1)

]
+ ρ1

[
b1(η1,σ1) – b1(η1, z1)

] ≥ 0 ∀σ1 ∈ H1, (12)
〈
z′

1 – η1,η1
(
σ1, z′

1
)〉

1 + ρ1
〈
F1(Aη1, Bx2) – f1,η1

(
σ1, z′

1
)〉

1 + ρ1
[
a1

(
z′

1,σ1 – z′
1
)]

+ ρ1
[
b1(η1,σ1) – b1

(
η1, z′

1
)] ≥ 0 ∀σ1 ∈ H1. (13)

Taking σ1 = z′
1 in (12) and σ1 = z1 in (13), we obtain that

〈
z1 – η1,η1

(
z′

1, z1
)〉

1 + ρ1
〈
F1(Aη1, Bx2) – f1,η1

(
z′

1, z1
)〉

1 + ρ1
[
a1

(
z1, z′

1 – z1
)]

+ ρ1
[
b1

(
η1, z′

1
)

– b1(η1, z1)
] ≥ 0, (14)

〈
z′

1 – η1,η1
(
z1, z′

1
)〉

1 + ρ1
〈
F1(Aη1, Bx2) – f1,η1

(
z1, z′

1
)〉

1 + ρ1
[
a1

(
z′

1, z1 – z′
1
)]

+ ρ1
[
b1(η1, z1) – b1

(
η1, z′

1
)] ≥ 0. (15)

Adding (14) and (15), we deduce that

σ1
∥∥z1 – z′

1
∥∥2

1 ≤ 〈
z1 – z′

1,η1
(
z1, z′

1
)〉

1

≤ –ρ1
[
a
(
z1 – z′

1
)
, z1 – z′

1)
]

≤ –ρ1c1
∥∥z1 – z′

1
∥∥2

1,

which yields z1 = z′
1. That is to say, z∗

1 ∈ H1 is the unique solution of (4). In a similar fashion,
z∗

2 ∈ H2 is the unique solution of (5). �

4 Conclusions
In this work, we have studied applications of the Schrödinger-type identity for obtain-
ing transmutations via the fixed point index for nonlinear integral equations. It was pos-
sible to derive a wide range of transmutation operators by this method. Classical Riesz
transforms were involved in the Schrödinger-type identity method as basic blocks, among
them are Fourier, sine and cosine-Fourier, Hankel, Mellin, Laplace, and some generalized
transforms. In this paper, we presented a modified Schrödinger-type identity for solutions
of a class of linear Schrödinger equations with mixed boundary conditions. The tech-
niques used in our proofs were quite different, and most remarkably some of the proofs
became simpler and more straightforward. As an application, we obtained the existence
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and uniqueness of a solution to the stationary Schrödinger equation in the sense of the
Weyl law, which advanced the recent results obtained in several articles even in a more
general setting.
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