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Abstract
In this paper, by studying the solutions of the abstract operator equation
A(x, x) + B(x, x) + e = x on ordered Banach spaces, where A, B are two mixed monotone
operators and e ∈ P with θ ≤ e ≤ h, we prove a class of boundary value problems on
elastic beam equation to have a unique solution. Furthermore, we also apply our
abstract result to establish the existence and uniqueness theorem of nontrivial
solutions for nonlinear fractional boundary value problems. The iterative sequences
to approximate unique solutions for the above two classes of problems are also
obtained.
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1 Introduction
Our work is motivated by recent results obtained in [1]. In [1], Cabrera, López, and
Sadarangani studied the existence and uniqueness of positive solutions for the following
boundary value problem by using a mixed monotone operator method:

⎧
⎪⎪⎨

⎪⎪⎩

u(4)(t) = f (t, u(t), (Hu)(t)), t ∈ [0, 1],

u(0) = u′(0) = 0,

u′′(1) = 0, u′′′(1) = g(u(1)).

(1.1)

Problem (1.1) describes an elastic beam of length 1 depending on a nonlinear foundation
provided with the function f . The first boundary condition u(0) = u′(0) = 0 implies that
the left end of the beam is fixed. The boundary condition u′′(1) = 0, u′′′(1) = g(u(1)) implies
that the right end of the beam is fastened with a bearing device, given by the function g . In
particularly, if g ≡ 0, problem (1.1) is called the cantilever beam. It models the deflection
of the elastic beam fixed at the left end and free at the right end [2–4].

The assumptions imposed on f and g are the following:
(H1) f : [0, 1] × [0, +∞) × [0, +∞) → [0, +∞), g : [0, +∞) → (–∞, 0] are continuous

functions. Moreover, g is decreasing;
(H2) f (t, x, y) is increasing in x and decreasing in y, for fixed t ∈ [0, 1];
(H3) g(λx) ≤ λg(x) for any λ ∈ (0, 1) and x ∈ [0, +∞);
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(H4) there exists a constant γ ∈ (0, 1) such that

f
(
t,λx,λ–1y

) ≥ λγ f (t, x, y),

for every λ ∈ (0, 1), t ∈ [0, 1] and x, y ∈ [0, +∞);
(H5) g(1) < 0 and there exists a constant ξ > 0 such that

–g(x) ≤ ξ ≤ 2
3

∫ 1

0
s2f (s, 0, y) ds,

for every x, y ∈ [0, +∞);
(H6) H : C[0, 1] → C[0, 1] and satisfies the following conditions:

(a) Hu ≥ 0 for any u ∈ P;
(b) for u, v ∈ P, u ≤ v ⇒ Hu ≤ Hv;
(c) for λ ∈ (0, 1) and u ∈ P, H(λu) ≥ λHu,
where P = {x ∈ C[0, 1] : x(t) ≥ 0, t ∈ [0, 1]}.

In recent years, much attention has been paid to elastic beam equations. Various tools ad
methods have been applied to study the existence, uniqueness and multiplicity of solutions
for problem (1.1), for example topological degree theory [5–8], the monotone iteration
method [9–13], partial order theory [14, 15], and critical point theory [16, 17]. We would
like to mention some results of [5, 6, 9, 14], which motivated us to consider problem (1.1).
In [9], Alves, Ma and Pelicer studied the following boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

u(4)(t) = f (t, u, u′), t ∈ [0, 1],

u(0) = u′(0) = 0,

u′′(1) = 0, u′′′(1) = g(u(1)),

(1.2)

where the conditions imposed on f and g are local. The authors established the existence
of monotone solutions to problem (1.2). Furthermore, Zhai and Anderson [14] considered
the uniqueness of positive solutions for (1.2) when f (t, u, u′) is replaced by f (t, u), and the
iterative sequences of approximating the unique solution were also constructed. In [5],
Wang et al. were concerned with the following boundary value problem with a parameter:

⎧
⎪⎪⎨

⎪⎪⎩

u(4)(t) = λf (t, u), t ∈ [0, 1],

u(0) = u′(0) = 0,

u′′(1) = 0, u′′′(1) = g(u(1)),

(1.3)

where λ ≥ 0 is a parameter. The authors proved how the parameter λ affects the num-
ber of monotone solutions of (1.3). Very recently, Cianciaruso, Infante and Pietramala [6]
transformed problem (1.2) into the following Hammerstein integral equation with pertur-
bation:

u(t) = γ (t)h
(
u(1)

)
+

∫ 1

0
k(t, s)f

(
s, u(s), u′(s)

)
ds,

where γ and k(t, s) are defined on Sect. 4. We should point out that Hammerstein integral
equations can be ascribed to general nonlinear operator equations discussed in this paper
[18].
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Since Guo and Lakshmikantham [19] introduced mixed monotone operators, many au-
thors have investigated various types of nonlinear mixed monotone operators in Banach
spaces and many interesting theorems have been established. In [20], Bhaskar and Laksh-
mikantham were concerned with some coupled fixed point theorems for mixed monotone
operators in partially ordered metric spaces. Moreover, Harjani, López and Sadarangani
[21] generalized the main results of [20] using the altering distance functions. We note
that Li and Zhao [22] considered a class of τ–ϕ-mixed monotone operators. On the other
hand, mixed monotone operators with perturbation have been extensively studied. In [23],
Liu et al. considered the existence and uniqueness of positive solutions to the following
operator equation on ordered Banach spaces:

A(x, x) + B(x, x) = x,

where A and B are two mixed monotone operators. The authors also gave an application
to nonlinear fractional differential equation with two-point boundary conditions. Very
recently, Wardowski [24] introduced the definition of (e, u)-concave-convex operator, and
proved a fixed point theorem of such operator by analyzing some of its properties. By
comparing with main result obtained in [25], we find that the above new operator is the
same as ϕ – (h, e)-concave operator defined in Zhai and Wang [25].

In this paper, we firstly consider the existence and uniqueness of solution to the following
operator equation on ordered Banach spaces E:

A(x, x) + B(x, x) + e = x, (1.4)

where A and B are two mixed monotone operators, and e ∈ P with P a cone in E.
Secondly, based on main results of [1], we will apply the abstract result for (1.1) to im-

prove and generalize conditions (H1)–(H6). More specifically, we will study the existence
and uniqueness of solutions for the following boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

u(4)(t) = f (t, u(t), (Hu)(t)) – b, t ∈ [0, 1],

u(0) = u′(0) = u′′(1) = 0,

u′′′(1) = g(u(1)),

(1.5)

where b > 0 is a constant, f : [0, 1] × (–∞, +∞) × (–∞, +∞) −→ (–∞, +∞), g : (–∞,
+∞) −→ (–∞, +∞) are continuous functions and H is an operator.

The rest of the paper consists of the following sections. In Sect. 2, we present some
preliminaries and lemmas to be used to prove our main result. In Sect. 3, we establish
the existence and uniqueness theorems of solution for (1.1). In Sect. 4, to demonstrate
the applicability of our abstract theorem, we give an application to nonlinear fourth-order
two-point boundary value problems and give an example to explain our theoretical result.
In Sect. 5, we use our abstract result to prove fractional boundary value problem to have
a unique solution.

2 Preliminaries and lemmas
In this section, we give some definitions and lemmas to be used in the proof of our main
result [19, 26, 27].
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Throughout this paper, E is a real Banach space with norm ‖ · ‖, P is a cone in E, θ is the
zero element in E. A partially ordered relation in E is given by x ≤ y iff y – x ∈ P. P is said
to be normal if there exists a positive constant N , such that θ ≤ x ≤ y �⇒ ‖x‖ ≤ N‖y‖, the
smallest N is called the normal constant of P. Given h > θ (i.e., h ≥ θ and h �= θ ), we denote
by Ch the set

Ch = {x ∈ E | there exist λ > 0 and μ > 0 such that λh ≤ x ≤ μh}.

We say that an operator A : E → E is increasing (decreasing) if x ≤ y implies Ax ≤ Ay
(Ax ≥ Ay).

Let e ∈ P with θ ≤ e ≤ h. Define

Ch,e = {x ∈ E|x + e ∈ Ch}.

Lemma 2.1 ([25]) If x ∈ Ch,e, then λx + (λ – 1)e ∈ Ch,e for λ > 0.

Lemma 2.2 ([25]) If x, y ∈ Ch,e, then there exist 0 < μ < 1, γ > 1 such that

μy + (μ – 1)e ≤ x ≤ γ y + (γ – 1)e.

Further, we can choose a small number r ∈ (0, 1), such that

ry + (r – 1)e ≤ x ≤ r–1y +
(
r–1 – 1

)
e.

Definition 2.1 ([27]) Let A : Ch,e × Ch,e −→ E is said to be a mixed monotone operator
if A(x, y) is increasing in x, and decreasing in y, i.e., ui, vi ∈ Ch,e (i = 1, 2), u1 ≤ u2, v1 ≥ v2

imply A(u1, v1) ≤ A(u2, v2). Element x ∈ Ch,e is called a fixed point of A if A(x, x) = x.

Lemma 2.3 Let P be a normal cone and T : Ch,e ×Ch,e −→ E be a mixed monotone operator
with T(h, h) ∈ Ch,e, and the following condition is satisfied:

(H) there exists a mapping ϕ : (0, 1) −→ (0, +∞) with ϕ(λ) > λ such that

T
(
λu + (λ – 1)e,λ–1v +

(
λ–1 – 1

)
e
) ≥ ϕ(λ)T(u, v) +

(
ϕ(λ) – 1

)
e,

for all u, v ∈ Ch,e and λ ∈ (0, 1). Then:
(1) there exist u0, v0 ∈ Ch,e, and s ∈ (0, 1) such that

sv0 ≤ u0 < v0, u0 ≤ T(u0, v0) ≤ T(v0, u0) ≤ v0;

(2) T has a unique fixed point x∗ in Ch,e;
(3) for any initial values x0, y0 ∈ Ch,e, by making the sequences as follows:

xn = T(xn–1, yn–1), yn = T(yn–1, xn–1), n = 1, 2, . . . ,

we have xn → x∗ and yn → x∗ as n → ∞.
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Proof Firstly, by (H), we have

T
(
t–1u +

(
t–1 – 1

)
e, tv + (t – 1)e

) ≤ ϕ(t)–1T(u, v) +
(
ϕ(t)–1 – 1

)
e, (2.1)

for every t ∈ (0, 1), u, v ∈ Ch,e. For every u, v ∈ Ch,e, there exist σ1,σ2 ∈ (0, 1) such that

σ1h + (σ1 – 1)e ≤ u ≤ σ –1
1 h +

(
σ –1

1 – 1
)
e,

σ2h + (σ2 – 1)e ≤ u ≤ σ –1
2 h +

(
σ –1

2 – 1
)
e.

Let σ = min{σ1,σ2}. Then σ ∈ (0, 1), from (2.1) and the mixed monotone properties of
operator T , we have

T(u, v) ≥ T
(
σh + (σ – 1)e,σ –1h +

(
σ –1 – 1

)
e
) ≥ ϕ(σ )T(h, h) +

(
ϕ(σ ) – 1

)
e,

T(u, v) ≤ T
(
σ –1h +

(
σ –1 – 1

)
e,σh + (σ – 1)e

) ≤ ϕ(σ )–1T(h, h) +
(
ϕ(σ )–1 – 1

)
e.

It follows from T(h, h) ∈ Ch,e that T(u, v) ∈ Ch,e. Hence we have T : Ch,e × Ch,e −→ Ch,e.
Since T(h, h) ∈ Ch,e, we can choose a small enough number t0 ∈ (0, 1) such that

t0h + (t0 – 1)e ≤ T(h, h) ≤ t–1
0 h +

(
t–1
0 – 1

)
e.

Nothing that ϕ(t) > t, we can take a positive integer k such that

(
ϕ(t0)

t0

)k

≥ 1
t0

.

Let

xn = tn
0 h +

(
tn
0 – 1

)
e, yn = t–n

0 h +
(
t–n
0 – 1

)
e, n = 1, 2, . . . .

Thus

xn = t0xn–1 + (t0 – 1)e, yn = t–1
0 yn–1 +

(
t–1
0 – 1

)
e, n = 1, 2, . . . .

Denote u0 := xk , v0 := yk , then u0, v0 ∈ Ch,e,

T(u0, v0) = T(xk , yk)

= T
(
t0xk–1 + (t0 – 1)e, t–1

0 yk–1 +
(
t–1
0 – 1

)
e
)

≥ ϕ(t0)T(xk–1, yk–1) +
(
ϕ(t0) – 1

)
e

≥ ϕ(t0)T
(
t0xk–2 + (t0 – 1)e, t–1

0 yk–2 +
(
t–1
0 – 1

)
e
)

+
(
ϕ(t0) – 1

)
e

≥ ϕ(t0)
(
ϕ(t0)T(xk–2, yk–2) +

(
ϕ(t0) – 1

)
e
)

+
(
ϕ(t0) – 1

)
e

= ϕ(t0)2T(xk–2, yk–2) +
(
ϕ(t0)2 – 1

)
e ≥ · · · ≥ ϕ(t0)kT(h, h) +

(
ϕ(t0)k – 1

)
e

≥ ϕ(t0)k(t0h + (t0 – 1)e
)

+
(
ϕ(t0)k – 1

)
e
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≥ tk–1
0

(
t0h + (t0 – 1)e

)
+

(
tk–1
0 – 1

)
e

= tk
0h +

(
tk
0 – 1

)
e = xk = u0

and

T(v0, u0) = T(yk , xk)

= T
(
t–1
0 yk–1 +

(
t–1
0 – 1

)
e, t0xk–1 + (t0 – 1)e

)

≤ ϕ(t0)–1T(yk–1, xk–1) +
(
ϕ(t0)–1 – 1

)
e

≤ ϕ(t0)–1T
(
t–1
0 yk–2, t0xk–2 + (t0 – 1)e

)
+

(
ϕ(t0)–1 – 1

)
e

≤ ϕ(t0)–1[ϕ(t0)–1T(yk–2, xk–2) +
(
ϕ(t0)–1 – 1

)
e
]

+
(
ϕ(t0)–1 – 1

)
e

= ϕ(t0)–2T(yk–2, xk–2) +
(
ϕ(t0)–2 – 1

)
e

≤ · · · ≤ ϕ(t0)–kT(h, h) +
(
ϕ(t0)–k – 1

)
e

≤ ϕ(t0)–k(t–1
0 h +

(
t–1
0 – 1

)
e
)

+
(
ϕ(t0)–k – 1

)
e

≤ t1–k
0

(
t–1
0 h +

(
t–1
0 – 1

)
e
)

+
(
t1–k
0 – 1

)
e

= t–k
0 h +

(
t–k
0 – 1

)
e = yk = v0.

Therefore we conclude that there exist u0, v0 ∈ Ch,e and s ∈ (0, 1) such that sv0 ≤ u0 ≤ v0

and u0 ≤ T(u0, v0) ≤ T(v0, u0) ≤ v0.
Construct the sequences

un = T(un–1, vn–1), vn = T(vn–1, un–1), n = 1, 2, . . . .

It is clear that u1 ≤ v1. Combining with the mixed monotone properties of T , we have
un ≤ vn, n = 1, 2, . . . . We obtain for all n ∈N

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0. (2.2)

Furthermore

un ≥ u0 ≥ sv0 + (s – 1)e ≥ svn + (s – 1)e, n = 1, 2, . . . .

Let

tn = sup
{

t > 0|un ≥ tvn + (t – 1)e
}

.

Thus we have un ≥ tnvn + (tn – 1)e, n = 1, 2, . . . , and then un+1 ≥ un ≥ tnvn + (tn – 1)e ≥
tnvn+1 + (tn – 1)e, n = 1, 2, . . . . Therefore tn+1 ≥ tn, i.e. {tn} is increasing with {tn} ⊂ (0, 1].
Assume that tn → t∗ as n → ∞, then t∗ = 1. If not, 0 < t∗ < 1.

In the following, we prove that t∗ = 1. If 0 < t∗ < 1, we need to discuss the following two
cases.
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Case one: there exists an integer N such that tN = t∗. For all n > N , we have tn = t∗. Then

un+1 = T(un, vn) ≥ T
(
tnvn + (tn – 1)e, t–1

n un +
(
t–1
n – 1

)
e
)

= T
(
t∗vn +

(
t∗ – 1

)
e,

(
t∗)–1un +

((
t∗)–1 – 1

)
e
)

≥ ϕ
(
t∗)T(vn, un) +

(
ϕ
(
t∗) – 1

)
e, for n ≥ N .

We see from the definition of tn+1 that t∗ = tn+1 ≥ ϕ(t∗) > t∗, which is a contradiction.
Case two: for all integers n, tn < t∗, then we get

un+1 = T(un, vn) ≥ T
(
tnvn + (tn – 1)e, t–1

n un +
(
t–1
n – 1

)
e
)

= T
(

tn

t∗
(
t∗vn +

(
t∗ – 1

)
e
)

+
(

tn

t∗ – 1
)

e,
(

tn

t∗

)–1((
t∗)–1un +

((
t∗)–1 – 1

)
e
)

+
((

tn

t∗

)–1

– 1
)

e
)

≥ ϕ

(
tn

t∗

)

T
(
t∗vn +

(
t∗ – 1

)
e,

(
t∗)–1un +

((
t∗)–1 – 1

)
e
)

+
(

ϕ

(
tn

t∗

)

– 1
)

e

≥ ϕ

(
tn

t∗

)
(
ϕ
(
t∗)T(vn, un) +

(
ϕ
(
t∗) – 1

)
e
)

+
(

ϕ

(
tn

t∗

)

– 1
)

e

≥ ϕ

(
tn

t∗

)

ϕ
(
t∗)T(vn, un) +

(

ϕ

(
tn

t∗

)

ϕ
(
t∗) – 1

)

e.

Again, it follows from the definition of tn+1 that

tn+1 ≥ ϕ

(
tn

t∗

)

ϕ
(
t∗) >

tn

t∗ ϕ
(
t∗).

Taking n → ∞, we have t∗ ≥ ϕ(t∗) > t∗, which is also a contradiction. Consequently t∗ = 1.
Since P is normal, we have

‖un+p – un‖ ≤ M(1 – tn)‖v0 + e‖,

‖vn – vn+p‖ ≤ M(1 – tn)‖v0 + e‖,
(2.3)

where M is the normality constant. Let n → ∞ in (2.3), we deduce that

‖un+p – un‖ → 0, ‖vn – vn+p‖ → 0.

Therefore un and vn are Cauchy sequences. Note that E is complete, there exist u∗, v∗ ∈ E
such that un → u∗, vn → v∗ as n → ∞. By (2.3), we get

u0 ≤ un ≤ u∗ ≤ v∗ ≤ vn ≤ v0.

Thus u∗, v∗ ∈ Ch,e and

θ ≤ v∗ – u∗ ≤ vn – un ≤ (1 – tn)(v0 + e).
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The normality of P implies that

∥
∥v∗ – u∗∥∥ ≤ M(1 – tn)‖v0 + e‖ → 0 (n → ∞).

Consequently u∗ = v∗. Put x∗ = u∗ = v∗ and we have

un+1 = T(un, vn) ≤ T
(
x∗, x∗) ≤ T(vn, un) = vn+1.

Taking n → ∞, we deduce that x∗ = T(x∗, x∗). That is, x∗ is a fixed point of T in Ch,e.
Secondly, we prove that x∗ is the unique fixed point of T in Ch,e. Assume that y∗ is any

fixed point of T in Ch,e. It follows from Lemma 2.2 and x∗, y∗ ∈ Ch,e that there exists τ > 0
such that

τy∗ + (τ – 1)e ≤ x∗ ≤ τ–1y∗ +
(
τ–1 – 1

)
e.

Let

t̃ = sup
{
τ > 0|τy∗ + (τ – 1)e ≤ x∗ ≤ τ–1y∗ +

(
τ–1 – 1

)
e
}

.

Next we show that t̃ ≥ 1. If 0 < t̃ < 1, then

x∗ = T
(
x∗, x∗)

≥ T
(
t̃y∗ + (̃t – 1)e,̃ t–1y∗ +

(
t̃–1 – 1

)
e
)

≥ ϕ (̃t)T
(
y∗, y∗) +

(
ϕ (̃t) – 1

)
e

= ϕ (̃t)y∗ +
(
ϕ (̃t) – 1

)
e.

Combining with the definition of t̃, we have t̃ ≥ ϕ (̃t) > t̃, which is a contradiction. Hence
t̃ ≥ 1. Furthermore

x∗ ≥ t̃y∗ + (̃t – 1)e ≥ t̃y∗ ≥ y∗.

Similarly, we also deduce that y∗ ≥ x∗. Therefore x∗ = y∗.
Lastly, we construct successively the sequences xn = T(xn–1, yn–1), yn = T(yn–1, xn–1), n =

1, 2, . . . , for any initial points x0, y0 ∈ Ch,e. Thus, we can take small numbers τ2, τ3 ∈ (0, 1)
such that

τ2h + (τ2 – 1)e ≤ x0 ≤ τ–1
2 h +

(
τ–1

2 – 1
)
e,

τ3h + (τ3 – 1)e ≤ y0 ≤ τ–1
3 h +

(
τ–1

3 – 1
)
e.

Let τ ∗ = min{τ2, τ3}. Then τ ∗ ∈ (0, 1) and

τ ∗h +
(
τ ∗ – 1

)
e ≤ x0, y0 ≥ (

τ ∗)–1h +
((

τ ∗)–1 – 1
)
e.

We can choose a sufficiently large positive integer m such that

(
ϕ(τ ∗)
τ ∗

)m

≥ 1
τ ∗ .
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Set

u0 =
(
τ ∗)mh +

((
τ ∗)m – 1

)
e, v0 =

(
τ ∗)–mh +

((
τ ∗)–m – 1

)
e.

Obviously, u0, v0 ∈ Ch,e, and u0 < x0, y0 < v0. Let

un = T(un–1, vn–1), vn = T(vn–1, un–1), n = 1, 2, . . . .

Similarly, there exists y ∈ Ch,e such that

T(y, y) = y, lim
n→∞ un = lim

n→∞ vn = y.

Since fixed points of T in Ch,e is unique, we have x∗ = y. And by induction, un < xn, yn < vn,
n = 1, 2, . . . . By the normality of P, we deduce that limn→∞ xn = limn→∞ yn = x∗. �

3 Main result
In this section we consider the existence and uniqueness of a solution for the operator
equation (1.1).

Theorem 3.1 Let P be a normal cone in E, and let A, B : Ch,e × Ch,e −→ E be two mixed
monotone operators and satisfy the following conditions:

(i) for all t ∈ (0, 1), there exists ψ(t) ∈ (t, 1) such that

A
(
tx + (t – 1)e, t–1y +

(
t–1 – 1

)
e
) ≥ ψ(t)A(x, y) +

(
ψ(t) – 1

)
e, ∀x, y ∈ Ch,e;

(ii) for all t ∈ (0, 1) and x, y ∈ Ch,e

B
(
tx + (t – 1)e, t–1y +

(
t–1 – 1

)
e
) ≥ tB(x, y) + (t – 1)e;

(iii) A(h, h) ∈ Ch,e and B(h, h) ∈ Ch,e;
(iv) there exists a constant δ > 0, such that for all x, y ∈ Ch,e

A(x, y) ≥ δB(x, y) + (δ – 1)e.

Then the operator equation (1.1) has a unique solution x∗ in Ch,e, and for any initial values
x0, y0 ∈ Ch,e, by setting the sequences

xn = A(xn–1, yn–1) + B(xn–1, yn–1) + e,

yn = A(yn–1, xn–1) + B(yn–1, xn–1) + e, n = 1, 2, . . . ,

we have xn → x∗ and yn → x∗ in E as n → ∞.

Proof Firstly, from conditions (i) and (ii), for every t ∈ (0, 1) and x, y ∈ Ch,e, we have

A
(
t–1x +

(
t–1 – 1

)
e, ty + (t – 1)e

) ≤ ψ(t)–1A(x, y) +
(
ψ(t)–1 – 1

)
e, (3.1)

B
(
t–1x +

(
t–1 – 1

)
e, ty + (t – 1)e

) ≤ t–1B(x, y) +
(
t–1 – 1

)
e. (3.2)
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Since A(h, h) ∈ Ch,e, B(h, h) ∈ Ch,e, there exist constants ai > 0 and bi > 0 (i = 1, 2) such that

a1h + (a1 – 1)e ≤ A(h, h) ≤ b1h + (b1 – 1)e, (3.3)

a2h + (a2 – 1)e ≤ B(h, h) ≤ b2h + (b2 – 1)e. (3.4)

Next we show that A : Ch,e × Ch,e → Ch,e. For every x, y ∈ Ch,e, we can take two small
enough numbers α1,α2 ∈ (0, 1) such that

α1h + (α1 – 1)e ≤ x ≤ α–1
1 h +

(
α–1

1 – 1
)
e,

α2h + (α2 – 1)e ≤ y ≤ α–1
2 h +

(
α–1

2 – 1
)
e.

(3.5)

Let α = min{α1,α2}, then α ∈ (0, 1), by (3.1), (3.3)–(3.5), we obtain

A(x, y) ≥ A
(
αh + (α – 1)e,α–1h +

(
α–1 – 1

)
e
) ≥ ψ(α)A(h, h) +

(
ψ(α) – 1

)
e

≥ ψ(α)
(
a1h + (a1 – 1)e

)
+

(
ψ(α) – 1

)
e

≥ ψ(α)a1h +
(
ψ(α)a1 – 1

)
e

and

A(x, y) ≤ A
(
α–1h +

(
α–1 – 1

)
e,αh + (α – 1)e

) ≤ ψ(α)–1A(h, h) +
(
ψ(α)–1 – 1

)
e

≤ ψ(α)–1(b1h + (b1 – 1)e
)

+
(
ψ(α)–1 – 1

)
e

≤ ψ(α)–1b1h +
(
ψ(α)–1b1 – 1

)
e.

Hence A(x, y) ∈ Ch,e, that is A : Ch,e × Ch,e → Ch,e.
Finally, we prove that B : Ch,e × Ch,e → Ch,e. For every x, y ∈ Ch,e, we can choose two

sufficiently small numbers β1,β2 ∈ (0, 1) such that

β1h + (β1 – 1)e ≤ x ≤ β–1
1 h +

(
β–1

1 – 1
)
e,

β2h + (β2 – 1)e ≤ y ≤ β–1
2 h +

(
β–1

2 – 1
)
e.

(3.6)

Let β = min{β1,β2}, then β ∈ (0, 1), by (3.2), (3.3), (3.4) and (3.6), we deduce that

B(x, y) ≥ B
(
βh + (β – 1)e,β–1h +

(
β–1 – 1

)
e
) ≥ βB(h, h) + (β – 1)e

≥ β
(
a2h + (a2 – 1)e

)
+ (β – 1)e

≥ βa2h + (βa2 – 1)e,

and

B(x, y) ≤ B
(
β–1h +

(
β–1 – 1

)
e,βh + (β – 1)e

) ≤ β–1B(h, h) +
(
β–1 – 1

)
e

≤ β–1(b2h + (b2 – 1)e
)

+
(
β–1 – 1

)
e

≤ β–1b2h +
(
β–1b1 – 1

)
e.

Therefore B : Ch,e × Ch,e → Ch,e.
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Now we define the operator T = A + B + e : Ch,e × Ch,e → E by

T(x, y) = A(x, y) + B(x, y) + e, ∀x, y ∈ Ch,e. (3.7)

Then T : Ch,e × Ch,e → E is a mixed monotone operator. Note that A(h, h) ∈ Ch,e, B(h, h) ∈
Ch,e, we have T(h, h) = A(h, h) + B(h, h) + e ∈ Ch,e.

In the following, we show that, for every t ∈ (0, 1), there exists ϕ(t) ∈ (t, 1], such that, for
all x, y ∈ Ch,e, T(tx + (t – 1), t–1y + (t–1 – 1)e) ≥ ϕ(t)T(x, y) + (ϕ(t) – 1)e. For every x, y ∈ Ch,e,
by condition (iv), we have

A(x, y) + δA(x, y) + δe ≥ δB(x, y) + (δ – 1)e + δA(x, y) + δe,

A(x, y) ≥ δ

1 + δ
T(x, y) –

e
1 + δ

.
(3.8)

By the conditions (i), (ii), (3.7) and (3.8), for every x, y ∈ Ch,e, we obtain

T
(
tx + (t – 1)e, t–1y +

(
t–1 – 1

)
e
)

– tT(x, y)

= A
(
tx + (t – 1)e, t–1y +

(
t–1 – 1

)
e
)

+ B
(
tx + (t – 1)e, t–1y +

(
t–1 – 1

)
e
)

+ e – t
(
A(x, y) + B(x, y) + e

)

≥ ψ(t)A(x, y) +
(
ψ(t) – 1

)
e + tB(x, y) + (t – 1)e + (t – 1)e + e

– tA(x, y) – tB(x, y) – te

≥ (
ψ(t) – t

)
A(x, y) +

(
ψ(t) – 1

)
e

≥ (
ψ(t) – t

)
(

δ

1 + δ
T(x, y) –

e
1 + δ

)

+
(
ψ(t) – 1

)
e

=
δ(ψ(t) – t)

1 + δ
T(x, y) +

(

ψ(t) – 1 –
ψ(t) – t

1 + δ

)

e. (3.9)

Thus

T
(
tx + (t – 1)e, t–1y +

(
t–1 – 1

)
e
)

≥
(

δ(ψ(t) – t)
1 + δ

+ t
)

T(x, y) +
(

ψ(t) – 1 –
ψ(t) – t

1 + δ

)

e

=
δψ(t) + t

1 + δ
T(x, y) +

(
δψ(t) + t

1 + δ
– 1

)

e, for x, y ∈ Ch,e. (3.10)

Let ϕ(t) = δψ(t)+t
1+δ

, then ϕ(t) ∈ (t,ψ(t)) ⊂ (t, 1], t ∈ (0, 1), by (3.10), we conclude that

T
(
tx + (t – 1)e, t–1y +

(
t–1 – 1

)
e
) ≥ ϕ(t)T(x, y) +

(
ϕ(t) – 1

)
e, ∀x, y ∈ Ch,e.

According to Lemma 2.3, we obtain the conclusion of Theorem 3.1. �
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4 Application to nonlinear fourth-order two-point boundary value problem
Lemma 4.1 ([9]) Suppose that h ∈ C[0, 1]. Then the boundary value problem

⎧
⎨

⎩

u(4) = h(t), t ∈ (0, 1),

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,
(4.1)

has a unique solution

u(t) =
∫ 1

0
G(t, s)h(s) ds,

where G(t, s) is the Green function given by

G(t, s) =
1
6

⎧
⎨

⎩

s2(3t – s), 0 ≤ s ≤ t ≤ 1,

t2(3s – t), 0 ≤ t ≤ s ≤ 1.

By (4.1), we know that the following boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

u(4) = h(t), t ∈ (0, 1),

u(0) = u′(0) = u′′(1) = 0,

u′′′(1) = g(u(1)),

(4.2)

where h, g ∈ C[0, 1] has the following integral expression:

u(t) =
∫ 1

0
G(t, s)h(s) ds – g

(
u(1)

)
(

t2

2
–

t3

6

)

, t ∈ [0, 1],

where G(t, s) is introduced in Lemma 4.1.

Lemma 4.2 ([14]) For (t, s) ∈ [0, 1] × [0, 1], we have

1
3

s2t2 ≤ G(t, s) ≤ 1
2

st2.

In the following, we consider in the Banach space

C[0, 1] =
{

x : [0, 1] −→R is continuous
}

equipped with the norm ‖x‖ = sup{|x(t)| : t ∈ [0, 1]}. It is obvious that C[0, 1] can be en-
dowed with a partial order

x, y ∈ C[0, 1], x ≤ y ⇐⇒ x(t) ≤ y(t), ∀t ∈ [0, 1].

Set P = {x ∈ C[0, 1]|x(t) ≥ 0, t ∈ [0, 1]}. We see that P is a normal cone in C[0, 1]. Let

e(t) =
b

24
t4 +

b
4

t2 –
b
6

t3, t ∈ [0, 1].
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Theorem 4.1 Suppose that the following assumptions are satisfied:
(H1)′ f : [0, 1] × [–e∗, +∞) × [–e∗, +∞) → (–∞, +∞) and g : [–e∗, +∞) → (–∞, 0] are

continuous functions. Moreover, g is decreasing, where e∗ = max{e(t) : t ∈ [0, 1]};
(H2)′ f (t, x, y) is increasing in x and decreasing in y for fixed t ∈ [0, 1];
(H3)′ g(λx + (λ – 1)c) ≤ λg(x) for every λ ∈ (0, 1), x ∈ [–e∗, +∞) and c ∈ [0, e∗];
(H4)′ for every λ ∈ (0, 1), there is ψ(λ) > λ such that

f
(
t,λx + (λ – 1)c,λ–1y +

(
λ–1 – 1

)
c
) ≥ ψ(λ)f (t, x, y),

for every t ∈ [0, 1], x ∈ (–∞, +∞), y ∈ (–∞, +∞), c ∈ [0, e∗];
(H5)′ g(q) < 0 with q ≥ 7b

24 , and there exists a constant ξ > 0 such that

–g(x) ≤ ξ ≤ 2
3

∫ 1

0
s2f (s, 0, y) ds, for every x, y ∈ [

– e∗, +∞)
;

(H6)′ H : C[0, 1] → C[0, 1] and satisfies the following assumptions:
(a)′ Hu ≥ 0 for every u ∈ Ch,e;
(b)′ for u, v ∈ Ch,e, u ≤ v ⇒ Hu ≤ Hv;
(c)′ for λ ∈ (0, 1) and u ∈ Ch,e,

H
(
λu + (λ – 1)c

) ≥ λ(Hu) + (λ – 1)c, c ∈ [
0, e∗].

Then the problem (1.5) has a unique nontrivial solution u∗ in Ch,e, where h(t) = qt2, t ∈
[0, 1].

Proof Firstly, for t ∈ [0, 1]

e(t) =
b

24
t4 –

b
6

t3 +
b
4

t2 = bt2
(

t2

24
–

t
6

+
1
4

)

≥ 0.

That is, e ∈ P. Furthermore, for t ∈ [0, 1]

e(t) =
b

24
t4 –

b
6

t3 +
b
4

t2 ≤ b
24

t4 +
b
4

t2 ≤ b
24

t2 +
b
4

t2 =
7b
24

t2 ≤ qt2 = h(t).

Hence, 0 < e(t) ≤ h(t). In addition, Ch,e = {u ∈ C[0, 1]|u + e ∈ Ch}. From Lemma 4.1, we
rewrite the problem (1.5) as a Hammerstein integral equation

u(t) =
∫ 1

0
G(t, s)f

(
s, u(s), (Hu)(s)

)
ds – b

∫ 1

0
G(t, s) ds – g

(
u(1)

)
(

t2

2
–

t3

6

)

=
∫ 1

0
G(t, s)f

(
s, u(s), (Hu)(s)

)
ds –

(
b

24
t4 –

b
6

t3 +
b
4

t2
)

– g
(
u(1)

)
(

t2

2
–

t3

6

)

=
∫ 1

0
G(t, s)f

(
s, u(s), (Hu)(s)

)
ds – e(t) – g

(
u(1)

)
(

t2

2
–

t3

6

)

=
∫ 1

0
G(t, s)f

(
s, u(s), (Hu)(s)

)
ds – e(t) – g

(
u(1)

)
(

t2

2
–

t3

6

)

– e(t) + e(t).
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Define

A(u, v)(t) =
∫ 1

0
G(t, s)f

(
s, u(s), (Hu)(s)

)
ds – e(t),

(Bu)(t) = –g
(
u(1)

)
(

t2

2
–

t3

6

)

– e(t),

for every t ∈ [0, 1] and u, v ∈ Ch,e. We know that the solutions of the problem (1.5) are fixed
points of the operator A + B + e.

Next, we check that assumptions of Theorem 3.1 are satisfied. We prove that A is a mixed
monotone operator. In fact, for u1, u2, v ∈ Ch,e, with u1 ≤ u2, we have, for all t ∈ [0, 1],

A(u2, v)(t) =
∫ 1

0
G(t, s)f

(
s, u2(s), (Hv)(s)

)
ds – e(t)

≥
∫ 1

0
G(t, s)f

(
s, u1(s), (Hv)(s)

)
ds – e(t)

= A(u1, v)(t).

Similarly, for u, v1, v2 ∈ Ch,e, with v1 ≥ v2, we have, for all t ∈ [0, 1],

A(u, v2)(t) =
∫ 1

0
G(t, s)f

(
s, u(s), (Hv2)(s)

)
ds – e(t)

≥
∫ 1

0
G(t, s)f

(
s, u(s), (Hv1)(s)

)
ds – e(t)

= A(u, v1)(t).

That is, A is a mixed monotone operator. In order to prove that B is an increasing operator,
we take u, v ∈ Ch,e, with u ≤ v. Since g is decreasing, g(v(1)) ≤ g(u(1)) and it follows that

(Bu)(t) = –g
(
u(1)

)
(

t2

2
–

t3

6

)

– e(t) ≤ –g
(
v(1)

)
(

t2

2
–

t3

6

)

– e(t) = (Bv)(t),

for any t ∈ [0, 1]. Therefore, B is an increasing operator.
For λ ∈ (0, 1) and u ∈ Ch,e, together with assumption (H6)′ ((c)′), and noting that

H
(
λ
(
λ–1u +

(
λ–1 – 1

)
e
)

+ (λ – 1)e
) ≥ λH

(
λ–1u +

(
λ–1 – 1

)
e
)

+ (λ – 1)e,

we obtain

H
(
λ–1u +

(
λ–1 – 1

)
e
) ≤ λ–1(Hu) +

(
λ–1 – 1

)
e. (4.3)

Now, for λ ∈ (0, 1), u, v ∈ Ch,e and t ∈ [0, 1], it follows from (4.3) (H2)′ and (H4)′ that

A
(
λu + (λ – 1)e,λ–1v +

(
λ–1 – 1

)
e
)
(t)

=
∫ 1

0
G(t, s)f

(
s,λu(s) + (λ – 1)e(s), H

(
λ–1v(s) +

(
λ–1 – 1

)
e(s)

))
ds – e(t)
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≥
∫ 1

0
G(t, s)f

(
s,λu(s) + (λ – 1)e(s),λ–1(Hv)(s) +

(
λ–1 – 1

)
e(s)

)
ds – e(t)

≥ ψ(λ)
∫ 1

0
G(t, s)f

(
s, u(s), (Hv)(s)

)
ds – e(t)

= ψ(λ)
(∫ 1

0
G(t, s)f

(
s, u(s), (Hv)(s)

)
ds – e(t)

)

+
(
ψ(λ) – 1

)
e(t)

= ψ(λ)A(u, v)(t) +
(
ψ(λ) – 1

)
e(t).

Thus

A
(
λu + (λ – 1)e,λ–1v +

(
λ–1 – 1

)
e
) ≥ ψ(λ)A(u, v) +

(
ψ(λ) – 1

)
e,

for every u, v ∈ Ch,e, λ ∈ (0, 1), and ψ(λ) > λ. Taking λ ∈ (0, 1), u ∈ Ch,e and t ∈ [0, 1], by
assumption (H3)′, we have

B
(
λu + (λ – 1)e

)
(t) = –g

(
λu(1) + (λ – 1)e

)
(

t2

2
–

t3

6

)

– e(t)

≥ –λg
(
u(1)

)
(

t2

2
–

t3

6

)

– e(t)

= λ

(

–g
(
u(1)

)
(

t2

2
–

t3

6

)

– e(t)
)

+ (λ – 1)e(t)

= λ(Bu)(t) + (λ – 1)e(t).

Hence, we obtain

B
(
λu + (λ – 1)e

) ≥ λ(Bu) + (λ – 1)e, ∀u ∈ Ch,e,λ ∈ (0, 1).

In the following, we show that A(h, h) ∈ Ch,e and Bh ∈ Ch,e. So we need to prove
A(h, h) + e ∈ Ch, Bh + e ∈ Ch. We consider the function h(t) = qt2 for every t ∈ [0, 1]. Since
0 ≤ h(t) ≤ q for every t ∈ [0, 1], by assumption (H6)′, we have 0 ≤ Hh ≤ Hq. For every
t ∈ [0, 1], it follows from Lemma 4.2 and (H2)′ that

A(h, h)(t) + e(t) =
∫ 1

0
G(t, s)f

(
s, h(s), (Hh)(s)

)
ds

≥ t2
∫ 1

0

s2

3
f
(
s, 0, (Hq)(s)

)
ds

=
1
q

∫ 1

0

s2

3
f
(
s, 0, (Hq)(s)

)
ds · h(t),

and

A(h, h)(t) + e(t) ≤ t2
∫ 1

0

s
2

f (s, q, 0) ds

=
1
q

∫ 1

0

s
2

f (s, q, 0) ds · h(t).
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Set

l1 =
1
q

∫ 1

0

s2

3
f
(
s, 0, (Hq)(s)

)
ds, l2 =

1
q

∫ 1

0

s
2

f (s, q, 0) ds.

Since 1
q
∫ 1

0
s
2 f (s, q, 0) ds ≥ 1

q
∫ 1

0
s2

3 f (s, 0, (Hq)(s)) ds ≥ ξ

2q > 0, then l2 > l1 > 0. Thus A(h, h) +
e ∈ Ch.

Now we prove that Bh + e ∈ Ch. In fact, for t ∈ [0, 1], using (H5)′, we deduce that

(Bh)(t) + e(t) = –g
(
h(1)

)
(

t2

2
–

t3

6

)

= –g(q)
(

t2

2
–

t3

6

)

≤ g(q)
t2

2
=

(

–
g(q)
2q

)

· h(t),

and

(Bh)(t) + e(t) = –g
(
h(1)

)
(

t2

2
–

t3

6

)

≥ g(q)t2
(

1
2

–
1
6

)

=
(

–
g(q)
3q

)

· h(t).

Let

β1 = –
g(q)
2q

, β2 = –
g(q)
3q

.

Since g(q) < 0, 0 < β2 < β1, combining with (H5)′, we have Bh + e ∈ Ch.
For every u, v ∈ Ch,e and t ∈ [0, 1], by Lemma 4.2 and (H5)′, we get

A(u, v)(t) =
∫ 1

0
G(t, s)f

(
s, u(s), (Hv)(s)

)
ds – e(t)

≥ 1
3

t2
∫ 1

0
s2f

(
s, 0, (Hv)(s)

)
ds – e(t)

≥ ξ

2
t2 – e(t) ≥ –g

(
u(1)

) t2

2
– e(t)

≥ –g
(
u(1)

)
(

t2

2
–

t3

6

)

– e(t)

= (Bu)(t),

which implies that, for every u, v ∈ Ch,e, A(u, v) ≥ δ0Bu + (δ0 – 1)e, with δ0 = 1. Therefore all
the conditions of Theorem 3.1 are fulfilled. Consequently, the conclusion of Theorem 4.1
holds. �

Now, we give an example to illustrate our main result.

Example 4.1 Consider the following boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

u(4)(t) = f (t, u(t), (Hu)(t)) – 1, t ∈ [0, 1],

u(0) = u′(0) = u′′(1) = 0,

u′′′(1) = g(u(1)),

(4.4)
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where

(Hu)(t) =
∫ t

0
u(s) ds,

f
(
t, u(t), (Hu)(t)

)
=

[(
t4

6
–

2t3

3
+ t2

)

u(t) +
(

t4

24
–

t3

6
+

t2

4

)] 1
5

+
[(

t4

6
–

2t3

3
+ t2

)

(Hu)(t) +
(

t4

24
–

t3

6
+

t2

4

)

+ 1
]– 2

5
,

and g : [– 1
4 , +∞) → (–∞, 0] is the function defined as

g(t) =

⎧
⎨

⎩

–t – 1
4 , – 1

4 ≤ t ≤ 7
24 ,

– 13
24 , t > – 7

24 .

Choose

e(t) =
t4

24
–

t3

6
+

t2

4
, h(t) = qt2 with q ≥ 7

24
, for every t ∈ [0, 1].

Then

e(t) = t2
(

t2

24
–

t
6

+
1
4

)

≥ t2

8
≥ 0,

and

e(t) ≤ 7t2

24
≤ qt2 = h(t), e∗ =

1
4

for t ∈ [0, 1].

It is easy to check that H satisfies assumption (H6)′ of Theorem 4.1, f : [0, 1] × [– 1
4 , +∞) ×

[– 1
4 , +∞) → (–∞, +∞) is continuous and increasing in x and decreasing in y for fixed

t ∈ [0, 1], and g : [– 1
4 , +∞) → (–∞, 1

4 ) is continuous and decreasing.

In the following, we verify the assumptions (H3)′ and (H4)′ of Theorem 4.1. For λ ∈ (0, 1),
x, y ∈ (–∞, +∞) and c ∈ [0, e∗], we have

g
(
λx + (λ – 1)c

)
= –

(
λx + (λ – 1)c

)
– e∗ = –λx + (1 – λ)c – e∗

≤ –λx + (1 – λ)e∗ – e∗ = λ
(
–x – e∗) = λg(x),

and

f
(
t,λx + (λ – 1)c,λ–1y +

(
λ–1 – 1

)
c
)

=
(

e(t)
e∗

(
λx + (λ – 1)c

)
+ e(t)

) 1
5

+
(

e(t)
e∗

(
λ–1y +

(
λ–1 – 1

)
c
)

+ e(t) + 1
)– 2

5

= λ
1
5

(
e(t)
e∗

(

x +
(

1 –
1
λ

)

c
)

+
1
λ

e(t)
) 1

5
+ λ

2
5

(
e(t)
e∗

(
y + (1 – λ)c

)
+ λe(t) + λ

)– 2
5
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≥ λ
1
5

(
e(t)
e∗ x +

(

1 –
1
λ

)
e(t)
e∗ e∗ +

1
λ

e(t)
) 1

5

+ λ
2
5

(
e(t)
e∗ y + (1 – λ)

e(t)
e∗ e∗ + λe(t) + λ

)– 2
5

= λ
1
5

(
e(t)
e∗ x + e(t)

) 1
5

+ λ
2
5

(
e(t)
e∗ y + e(t) + λ

)– 2
5

> λ
2
5

[(
e(t)
e∗ x + e(t)

) 1
5

+
(

e(t)
e∗ y + e(t) + 1

)– 2
5
]

= λ
2
5 f (t, x, y).

Let ϕ(λ) = λ
2
5 . Then

f
(
t,λx + (λ – 1)c,λ–1y +

(
λ–1 – 1

)
c
) ≥ ϕ(λ)f (t, x, y).

Therefore, assumption (H3)′, (H4)′ of Theorem 4.1 are satisfied.
Moreover, taking x, y ∈ (–∞, +∞), we get

2
3

∫ 1

0
s2f (s, 0, y) ds

=
2
3

∫ 1

0
s2

[(
s4

24
–

s3

6
+

s2

4

) 1
5

+
((

s4

6
+

2s3

3
+ t2

)

y +
(

s4

24
–

s3

6
+

s2

4

)

+ 1
)– 2

5
]

ds

≥ 2
3

∫ 1

0
s2

(
s4

24
–

s3

6
+

s2

4

) 1
5

ds ≥ 2
3

∫ 1

0
s2 ds = 1 >

13
24

≥ –g(x).

Note that g( 7
24 ) = – 13

24 < 0, thus assumption (H5)′ of Theorem 4.1 holds.

5 Application to fractional differential equation boundary value problem
In this section, we consider the following fractional boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

–Dα
0+ u(t) = f (t, u(t), u(t)) + g(t, u(t), u(t)) – b, 0 < t < 1, n – 1 < α ≤ n,

u(i)(0) = 0, 0 ≤ i ≤ n – 2,

[Dβ

0+ u(t)]t=1 = 0, 1 ≤ β ≤ n – 2,

(5.1)

where n ≥ 3 (n ∈N), b > 0 is a constant, f , g : [0, 1] × (–∞, +∞) × (–∞, +∞) → (–∞, +∞)
are continuous functions, and Dα

0+ is the Riemann–Liouville fractional derivative of order
α, i.e.,

Dα
0+ u(t) =

1
Γ (k – α)

dk

dtk

∫ t

0

u(s)
(t – s)α–k+1 ds,

where k = [α] + 1, [α] denotes the integer part of the number α. Because of non-local
behavior, fractional order boundary value problems are extensively applied to blood flow
problems, control theory, the fluid-dynamic traffic model and polymer rheology. It im-
plies that differential operators of arbitrary order can describe memory and hereditary
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properties of certain important processes [28–31]. There are many tools to deal with the
uniqueness and multiplicity of solutions for fractional differential equations such as mixed
monotone operators [23, 32–34], Avery–Peterson fixed point theorem [35, 36], Guo–
Krasnosel’skii fixed point theorem on a cone [37, 38], the fixed point index theory [39–41],
monotone iteration method [42], the critical point theory [43, 44], Schauder’s fixed point
theory [45] and stability.

Problem (5.1) has caused great attention since it generalizes the well-known elastic beam
equation [46]. In [47], Goodrich first obtained some properties of the Green’s function cor-
responding to (5.1). Then, applying these properties and Krasnosel’skii fixed point theo-
rem in cones, the author gave some sufficient conditions under which problem (5.1) when
g ≡ 0 and b = 0 has a positive solution. Note that the nonlinearity discussed in [47] grows
sublinearly. Furthermore, through the nonlinearity is again considered to grow sublin-
early, Xu, Wei and Dong [39] utilized fixed point index theory to establish existence and
uniqueness theorems of problem (5.1) based on a priori estimate. On the other hand, if
we replace g(t, u(t), u(t)) with g(t, u(t)) in problem (5.1), Jleli and Samet [33] studied the
existence and uniqueness of positive solutions for problem (5.1) with b = 0. The authors
proved that problem (5.1) has a unique solution by a mixed monotone fixed point theorem
obtained in [14]. Zhang and Tian [34] and Yang, Shen and Xie [35] be both concerned with
the case that the derivative of the unknown function is involved in the nonlinear term. Re-
cently, Liu et al. [23] obtained a unique solution of problem with b = 0 by the fixed point
theorems of a sum operator on a cone. We point out that the assumptions imposed on the
nonlinear terms f and g in [23, 33–36, 39] are nonnegative. The interesting point of this
paper is to remove above restrictions.

Lemma 5.1 ([23, 47]) Let g(t) ∈ C[0, 1], then the fractional boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

–Dα
0+ u(t) = g(t), 0 < t < 1, n – 1 < α ≤ n,

u(i)(0) = 0, 0 ≤ i ≤ n – 2,

[Dβ

0+ u(t)]t=1 = 0, 1 ≤ β ≤ n – 2,

has a unique positive solution

u(t) =
∫ 1

0
G(t, s)g(s) ds,

where

G(t, s) =
1

Γ (α)

⎧
⎨

⎩

tα–1(1 – s)α–β–1 – (t – s)α–1, 0 ≤ s ≤ t ≤ 1,

tα–1(1 – s)α–β–1, 0 ≤ t ≤ s ≤ 1.

Lemma 5.2 ([23, 47]) The Green function G(t, s) in Lemma 5.1 has the following proper-
ties:

(1) G(t, s) is continuous on [0, 1] × [0, 1];
(2) for all (t, s) ∈ [0, 1] × [0, 1], we can have G(t, s) ≥ 0;
(3) for all t, s ∈ [0, 1], we have

(
1 – (1 – s)β

)
(1 – s)α–β–1tα–1 ≤ Γ (α)G(t, s) ≤ (1 – s)α–β–1tα–1. (5.2)
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Define

E = C[0, 1], ‖u‖ = sup
{

u(t)|t ∈ [0, 1]
}

,

and

P =
{

u ∈ E|u(t) ≥ 0, t ∈ [0, 1]
}

.

It is clear that E is a Banach space and P is a normal cone of E. Let

e(t) =
b

(α – β)Γ (α)

(

tα–1 –
α – β

α
tα

)

, t ∈ [0, 1].

Theorem 5.1 Suppose that the following assumptions hold:
(C1) f , g : [0, 1] × [–e∗, +∞) × [–e∗, +∞) → (–∞, +∞) are continuous and for all t ∈

[0, 1], g(t, 0, H) ≥ 0 with g(t, 0, H) �≡ 0 where H ≥ b
(α–β)Γ (α) and e∗ = max{e(t) : t ∈

[0, 1]};
(C2) for fixed t ∈ [0, 1] and y ∈ [–e∗, +∞), f (t, x, y), g(t, x, y) are increasing in x ∈

[–e∗, +∞); for fixed t ∈ [0, 1] and x ∈ [–e∗, +∞), f (t, x, y), g(t, x, y) are decreasing
in y ∈ [–e∗, +∞);

(C3) for all λ ∈ (0, 1), there exists ψ(λ) ∈ (λ, 1), such that, for all t ∈ [0, 1],

f
(
t,λx + (λ – 1)ρ,λ–1y +

(
λ–1 – 1

)
ρ
) ≥ ψ(λ)f (t, x, y),

x, y ∈ (–∞, +∞),ρ ∈ [
0, e∗], (5.3)

g
(
t,λx + (λ – 1)ρ,λ–1y +

(
λ–1 – 1

)
ρ
) ≥ λg(t, x, y),

x, y ∈ (–∞, +∞),ρ ∈ [
0, e∗]; (5.4)

(C4) there exists a constant δ > 0, such that

f (t, x, y) ≥ δg(t, x, y), for all t ∈ [0, 1], x, y ∈ [
– e∗, +∞)

.

Then the problem (5.1) has a unique nontrivial solution u∗ in Ch,e, where h(t) = Htα–1,
t ∈ [0, 1]. Moreover, we can construct the following two sequences:

ωn(t) =
∫ 1

0
G(t, s)

(
f
(
s,ωn–1(s), τn–1(s)

)
+ g

(
s,ωn–1(s), τn–1(s)

))
ds

–
b

(α – β)Γ (α)
tα–1 +

b
αΓ (α)

tα , n = 1, 2, . . . ,

τn(t) =
∫ 1

0
G(t, s)

(
f
(
s, τn–1(s),ωn–1(s)

)
+ g

(
s, τn–1(s),ωn–1(s)

))
ds

–
b

(α – β)Γ (α)
tα–1 +

b
αΓ (α)

tα , n = 1, 2, . . . ,

for any given ω0, τ0 ∈ Ch,e, and we have {ωn(t)} and {τn(t)} both converge to u∗(t) uniformly
for all t ∈ [0, 1].
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Proof For t ∈ [0, 1]

e(t) =
b

(α – β)Γ (α)
tα–1 –

b
αΓ (α)

tα =
b

(α – β)Γ (α)

(

tα–1 –
α – β

α
tα

)

≥ 0.

That is e ∈ P. Further, for t ∈ [0, 1]

e(t) =
b

(α – β)Γ (α)
tα–1 –

b
αΓ (α)

tα ≤ b
(α – β)Γ (α)

tα–1 ≤ Htα–1 = h(t).

Hence, 0 < e(t) ≤ h(t). In addition, Ch,e = {u ∈ C[0, 1]|u + e ∈ Ce}. From Lemma 5.1, the
problem (5.1) has the integral formulation

u(t) =
∫ 1

0
G(t, s)

(
f
(
s, u(s), u(s)

)
+ g

(
s, u(s), u(s)

)
– b

)
ds

=
∫ 1

0
G(t, s)

(
f
(
s, u(s), u(s)

)
+ g

(
s, u(s), u(s)

))
ds – b

∫ 1

0
G(t, s) ds

=
∫ 1

0
G(t, s)f

(
s, u(s), u(s)

)
ds +

∫ 1

0
G(t, s)g

(
s, u(s), u(s)

)
ds

–
b

(α – β)Γ (α)

(

tα–1 –
α – β

α
tα

)

=
∫ 1

0
G(t, s)f

(
s, u(s), u(s)

)
ds +

∫ 1

0
G(t, s)g

(
s, u(s), u(s)

)
ds – e(t)

=
∫ 1

0
G(t, s)f

(
s, u(s), u(s)

)
ds – e(t) +

∫ 1

0
G(t, s)g

(
s, u(s), u(s)

)
ds – e(t) + e(t).

For every t ∈ [0, 1] and u, v ∈ Ch,e, we consider the operators defined by

A(u, v)(t) =
∫ 1

0
G(t, s)f

(
s, u(s), v(s)

)
ds – e(t),

B(u, v)(t) =
∫ 1

0
G(t, s)g

(
s, u(s), v(s)

)
ds – e(t).

It is clear that u is the solution of the problem (5.1) if and only if u = A(u, u) + B(u, u) + e.
(1) Firstly, we show that A, B : Ch,e × Ch,e → E are mixed monotone operators. In fact,

for all ui, vi ∈ Ch,e (i = 1, 2) with u1 ≥ u2, v1 ≤ v2, by (C2), we get

A(u1, v1)(t) =
∫ 1

0
G(t, s)f

(
s, u1(s), v1(s)

)
ds – e(t)

≥
∫ 1

0
G(t, s)f

(
s, u2(s), v2(s)

)
ds – e(t) = A(u2, v2)(t).

That is A(u1, v1) ≥ A(u2, v2). In a similar way we get B(u1, v1) ≥ B(u2, v2).
(2) From (C3), for every λ ∈ [0, 1] and t ∈ [0, 1], there exists ψ(λ) ∈ (λ, 1) such that, for

every u, v ∈ Ch,e, we have

A
(
λu + (λ – 1)e,λ–1v +

(
λ–1 – 1

)
e
)
(t)

=
∫ 1

0
G(t, s)f

(
s,λu(s) + (λ – 1)e,λ–1v(s) +

(
λ–1 – 1

)
e
)

ds – e(t)
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≥ ψ(λ)
∫ 1

0
G(t, s)f

(
s, u(s), v(s)

)
ds – e(t)

= ψ(λ)
∫ 1

0
G(t, s)f

(
s, u(s), v(s)

)
ds – e(t) + ψ(λ)e(t) – ψ(λ)e(t)

= ψ(λ)
(∫ 1

0
G(t, s)f

(
s, u(s), v(s)

)
ds – e(t)

)

+
(
ψ(λ) – 1

)
e(t)

= ψ(λ)A(u, v)(t) +
(
ψ(λ) – 1

)
e(t)

and

B
(
λu + (λ – 1)e,λ–1v +

(
λ–1 – 1

)
e
)
(t)

=
∫ 1

0
G(t, s)g

(
s,λu(s) + (λ – 1)e,λ–1v(s) +

(
λ–1 – 1

)
e
)

ds – e(t)

≥ λ

∫ 1

0
G(t, s)g

(
s, u(s), v(s)

)
ds – e(t)

= λ

(∫ 1

0
G(t, s)g

(
s, u(s), v(s)

)
ds – e(t)

)

+ (λ – 1)e(t)

= λB(u, v)(t) + (λ – 1)e(t).

(3) Next we show that A(h, h) ∈ Ch,e, B(h, h) ∈ Ch,e. It is sufficient to prove A(h, h)+e ∈ Ch,
B(h, h) + e ∈ Ch. It follows from Lemma 5.2 and (C1), (C3) that

A(h, h)(t) + e(t) =
∫ 1

0
G(t, s)f

(
s, h(s), h(s)

)
ds

=
∫ 1

0
G(t, s)f

(
s, Hsα–1, Hsα–1)ds

≤
∫ 1

0

(1 – s)α–β–1tα–1

Γ (α)
f (s, H , 0) ds

≤ 1
Γ (α)

∫ 1

0
(1 – s)α–β–1f (s, H , 0) ds · tα–1

=
1

HΓ (α)

∫ 1

0
(1 – s)α–β–1f (s, H , 0) ds · h(t)

and

A(h, h)(t) + e(t) ≥
∫ 1

0

(1 – (1 – s)β )(1 – s)α–β–1tα–1

Γ (α)
f (s, 0, H) ds

≥ 1
Γ (α)

∫ 1

0

(
1 – (1 – s)β

)
(1 – s)α–β–1f (s, 0, H) ds · tα–1

=
1

HΓ (α)

∫ 1

0

(
1 – (1 – s)β

)
(1 – s)α–β–1f (s, 0, H) ds · h(t).

Since α > β , Γ (α) > 0 and from (C2), (C4), we derive that

f (s, H , 0) ≥ f (s, 0, H) ≥ δg(s, 0, H), for s ∈ [0, 1].
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Note that g(s, 0, H) �≡ 0 and g(s, 0, H) ≥ 0 for every s ∈ [0, 1], we have

∫ 1

0
f (s, H , 0) ds ≥

∫ 1

0
f (s, 0, H) ds ≥

∫ 1

0
δg(s, 0, H) ds > 0.

Let

l1 =
1

HΓ (α)

∫ 1

0
(1 – s)α–β–1f (s, H , 0) ds > 0,

l2 =
1

HΓ (α)

∫ 1

0

(
1 – (1 – s)β

)
(1 – s)α–β–1f (s, 0, H) ds > 0.

Thus l2h(t) ≤ A(h, h)(t) + e(t) ≤ l1h(t), t ∈ [0, 1] and we have A(h, h) ∈ Ch,e. In a similar way
we get

B(h, h)(t) + e(t) =
∫ 1

0
G(t, s)g

(
s, h(s), h(s)

)
ds

≤ 1
Γ (α)

∫ 1

0
(1 – s)α–β–1g(s, H , 0) ds · tα–1

=
1

HΓ (α)

∫ 1

0
(1 – s)α–β–1g(s, H , 0) ds · h(t)

and

B(h, h)(t) + e(t) =
∫ 1

0
G(t, s)g

(
s, h(s), h(s)

)
ds

≥ 1
Γ (α)

∫ 1

0

(
1 – (1 – s)β

)
(1 – s)α–β–1g(s, 0, H) ds · tα–1

=
1

HΓ (α)

∫ 1

0

(
1 – (1 – s)β

)
(1 – s)α–β–1g(s, 0, H) ds · h(t).

Let

l3 =
1

HΓ (α)

∫ 1

0
(1 – s)α–β–1g(s, H , 0) ds > 0,

l4 =
1

HΓ (α)

∫ 1

0

(
1 – (1 – s)β

)
(1 – s)α–β–1g(s, 0, H) ds > 0.

Thus l4h(t) ≤ B(h, h)(t) + e(t) ≤ l3h(t), t ∈ [0, 1] and we have B(h, h) ∈ Ch,e.
(4) For every u, v ∈ Ch,e, t ∈ [0, 1], from (C4) we know that

A(u, v)(t) =
∫ 1

0
G(t, s)f

(
s, u(s), v(s)

)
ds – e(t)

≥ δ

∫ 1

0
G(t, s)g

(
s, u(s), v(s)

)
ds – e(t) – δe(t) + δe(t)

≥ δ

(∫ 1

0
G(t, s)g

(
s, u(s), v(s)

)
ds – e(t)

)

+ (δ – 1)e(t)

= δB(u, v)(t) + (δ – 1)e(t),
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so we get A(u, v) ≥ δB(u, v) + (δ – 1)e. Therefore all the conditions of Theorem 3.1 are
satisfied. Consequently the conclusion of Theorem 5.1 holds. �

6 Conclusions
In this paper, we firstly consider the existence and uniqueness of solution to the operator
equation (1.4) on ordered Banach spaces E. Secondly, based on main results of [1], we
apply our abstract result for (1.1) to improve and generalize conditions (H1)–(H6). Finally,
we use Theorem 3.1 to prove fractional boundary value problem (5.1) to have a unique
solution.
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