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Abstract
This paper deals with the eigenvalue problem for a fractional variable coefficients
elliptic equation defined on a bounded domain. Compared to the previous work, we
prove a quite different variational formulation of the first eigenvalue for the above
problem. This allows us to give a variational proof of the fractional Faber–Krahn
inequality by employing suitable rearrangement techniques.
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1 Introduction
In this paper, we study the eigenvalue problem for a fractional elliptic equation

⎧
⎨

⎩

Lsu = λu in Ω ,

u = 0 in R
N \ Ω ,

(Pλ)

where 0 < s < 1, Ω is an open bounded subset of RN and N > 2s; L is an elliptic operator in
divergence form Lu = – div(A(x)∇u). Here A(x) = {aij(x)} is a symmetric matrix with aij ∈
W 1,∞(RN ), satisfying the uniformly ellipticity condition A(x)ξ · ξ ≥ Λ|ξ |2 for all ξ ∈ R

N ,
a.e. x ∈R

N and for some constant Λ.
Fractional powers of elliptic operators, whose basic case is the fractional Laplacian

(–�)s, arise naturally in many applications, for instance, the obstacle problem that appears
in the study of the configuration of elastic membranes, anomalous diffusion, the so-called
quasi-geostrophic flow problem, and pricing of American options, as well as many modern
physical problems when considering fractional kinetics and anomalous transport, strange
kinetics, and Lévy processes in quantum mechanics; one can see [1–3] and the references
therein. When working in the whole space domain R

N , there are several equivalent defi-
nitions of the fractional Laplacian operator (–�)s, classical references being [4–6]. How-
ever, when working on a bounded domain Ω , things get complicated because there are
different options for defining (–�)s. A particular one is to define the fractional Laplacian
as the Dirichlet-to-Neumann map, through an extended function defined in a cylinder
C+

Ω = Ω × (0, +∞) ⊂ R
N+1 whose values are assigned to zero on the lateral boundary of

C+
Ω , as was proposed in [7, 8]. This allows reducing nonlocal problems involving (–�)s to

suitable local problems, defined in one more space dimension. A similar definition of the
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fractional elliptic operator Ls in a bounded domain is given in [9]. However, this definition
seems to be contrary to the nonlocal feature of fractional operators, and thus there are
some restrictions on its validity. In [10], the authors take a more usual approach to define
(–�)s in a bounded domain. It consists in keeping the definition of fractional Laplacian
in R

N through the extension method but asking the functions u(x) to vanish outside of
Ω , which seems to be more natural in many applications. In this paper, we will take this
approach to define the fractional elliptic operator Ls in bounded domains (see Sect. 2).

The study of eigenvalue problems is a classical topic and there are lots of results on
local eigenvalue problems (see, for instance, [11–14] and the references therein). Recently,
great attention has been focused on studying of eigenvalue problems involving fractional
operators. Results for fractional linear operators were obtained in [15], where variational
formulations of eigenvalues and some properties of eigenfunctions were proved. In [16–
18], the eigenvalue problem associated with the fractional nonlinear operator (–�)s

p was
studied, and particularly some properties of the first eigenvalue and of the higher order
eigenvalues were obtained. Then, Iannizzotto and Squassina [19] proved some Weyl-type
estimates for the asymptotic behavior of variational eigenvalues corresponding to (–�)s

p.
More recently, by employing rearrangement techniques, Sire, Vázquez and Volzone [10]

proved the Faber–Krahn inequality in two ways for the first eigenvalue of the fractional
Laplacian operator in bounded domains. A variational proof was provided, which seems
to be simpler, based on the variational characterization of the first eigenvalue and nonlocal
Pólya–Szegö inequality. However, they pointed out that for the fractional variable coeffi-
cients problem (Pλ), it is not clear how to use the variational approach to prove such an
inequality since in this case the variational formulations of the first eigenvalue given before
does not seem to allow Pólya–Szegö inequality to be applied. To solve the above problem,
in this paper, with the help of the extension problem of (Pλ) defined in one more space
dimension, we will prove a quite different variational formulation of the first eigenvalue,
in which the operator Ls is associated to a norm satisfying Pólya–Szegö inequality. Then
using some properties of rearrangement, a variational proof of fractional Faber–Krahn
inequality can be achieved for problem (Pλ).

Many other fractional problems were also actively studied in recent years, such as
fractional Kirchhoff type problems, fractional Schrödinger problems, and also Brézis–
Nirenberg problem for fractional operators. Interested readers can refer to [20–25] for
details.

This paper is organized as follows: In Sect. 2, we give all the necessary functional back-
ground related to problem (Pλ), which is naturally connected to the very definition of the
operator Ls. In Sect. 3, the variational formulation of the first eigenvalue and some prop-
erties of eigenfunctions are obtained, while Sect. 4 is devoted to proving fractional Faber–
Krahn inequality.

2 Preliminaries
In this section, we provide a self-contained description of the functional background
which is necessary for the well-posedness of problem (Pλ). For further details, one can
see [3, 9, 10, 26–28] and the references therein.

In the last years, there has been a growing interest in the study of nonlinear problems
involving fractional powers of the Laplace operator (–�)s, 0 < s < 1. The fractional Laplace
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of a function u is defined via Fourier transform and it can be expressed by

(–�)su(x) = cN ,sP.V.
∫

RN

u(x) – u(y)
|x – y|N+2s dy, (2.1)

where cN ,s is a positive constant. Observe from (2.1) that the fractional Laplacian is a non-
local operator. This fact does not allow us to apply local PDE techniques to treat nonlinear
problems for (–�)s. To overcome this difficulty, L. Caffarelli and L. Silvestre showed in [6]
that any fractional power of the Laplacian can be determined as an operator that maps a
Dirichlet boundary condition to a Neumann-type condition via an extension problem.

However, for a general fractional operator Ls, the Fourier transform is not available,
which necessitates finding a language that can explain in a clear and unified way the con-
cepts of Ls. Stinga and Torrea [3, 27] gave the following semigroup formula:

Lsu(x) =
1

Γ (–s)

∫ ∞

0

(
e–tLf (x) – f (x)

) dt
t1+s , (2.2)

where {e–tLu}t>0 is the heat diffusion semigroup generated by L and Γ is the Gamma func-
tion. When L = –�, the above formula reduces to (2.1). Moreover, they proved that the
fractional operators (2.2) can be described as Dirichlet-to-Neumann maps for an exten-
sion problem in the spirit of [6], which generalizes the Caffarelli–Silvestre result. In fact,
let E be an open subset ofRN and L denote a nonnegative and self-adjoint linear second or-
der partial differential operator defined in L2(E). For u ∈ Dom(Ls), consider the following
extension problem to the upper half space:

⎧
⎨

⎩

–Lw + 1–2s
y wy + wyy = 0 in E × (0, +∞),

w(x, 0) = u(x), x ∈ E.
(2.3)

Then for the solution w(x, y) of problem (2.3), it is proved that

–
1
ks

lim
y→0+

y1–2s ∂w
∂y

(x, y) = Lsu(x), (2.4)

where ks = 2s|Γ (–s)|
4sΓ (s) . See also [3, 9, 27] for a detailed account on this question.

In this paper, as was done for (–�)s in [10], we keep the definition of fractional operator
Ls in R

N through the above extension method but ask the functions u(x) to vanish outside
of Ω . So, let E = R

N in (2.3) and denote C+ = R
N × (0, +∞). Using the extension problem

(2.3) and expression (2.4), the nonlocal problem (Pλ) is reformulated in a local way as
follows:

⎧
⎪⎪⎨

⎪⎪⎩

–Lw + 1–2s
y wy + wyy = 0 in C+,

w(x, 0) = 0, x ∈ R
N \ Ω ,

– 1
ks

limy→0+ y1–2s ∂w
∂y (x, y) = λu(x), x ∈ Ω .

(2.5)
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Note that operator L has the form of – div(A(x)∇). Then denoting by B(x) =
( A(x) 0

0 1

)
, prob-

lem (2.5) is equivalent to the problem

⎧
⎪⎪⎨

⎪⎪⎩

div(y1–2sB(x)∇w) = 0 in C+,

w(x, 0) = 0, x ∈ R
N \ Ω ,

– 1
ks

limy→0+ y1–2s ∂w
∂y (x, y) = λu(x), x ∈ Ω .

(2.6)

In order to introduce the concept of weak solution to problem (2.6), it is convenient to
define the weighted energy space

Xs(C+)
=

{

w ∈ H1
loc

(
C+)

:
∫

C+
y1–2s∣∣∇w(x, y)

∣
∣2 dx dy < +∞

}

,

equipped with the norm

‖w‖Xs(C+) =
(∫

C+
y1–2s∣∣∇w(x, y)

∣
∣2 dx dy

) 1
2

.

Now, let us define the space of all functions in Xs(C+) whose trace overRN vanishes outside
of Ω , namely

Xs
Ω

(
C+)

=
{

w ∈ Xs(C+)
: w|RN ×{0} ≡ 0 in R

N \ Ω
}

,

which gives a proper meaning of solutions to problem (2.6) in a bounded domain Ω .
From a detailed discussion in [26], we know that the domain of the natural fractional

Laplacian (–�)s is the space H(Ω) defined by

H(Ω) =

⎧
⎪⎪⎨

⎪⎪⎩

Hs(Ω) if 0 < s < 1
2 ,

H
1
2

00(Ω) if s = 1
2 ,

Hs
0(Ω) if 1

2 < s < 1,

(2.7)

where Hs(Ω) and Hs
0(Ω) are classical fractional Sobolev spaces (see [29]) and

H
1
2

00(Ω) =
{

u ∈ H
1
2 (Ω) :

∫

Ω

u2(x)
d2(x)

dx < ∞
}

with d(x) = dist(x, ∂Ω) < ∞. It turns out that H(Ω) = {w|Ω×{0} : w ∈ Xs
Ω (C+)}. In addition,

we have the following compact embedding.

Lemma 2.1 Let 1 ≤ q < 2	
s = 2N

N–2s . Then, TrΩ (Xs
Ω (C+)) is compactly embedded in Lq(Ω).

Proof We know that the trace TrΩ (Xs
Ω (C+)) = H(Ω) ⊂ Hs(Ω) and Hs(Ω) ⊂⊂ Lq when

1 ≤ q < 2	
s , see [28]. Here ⊂⊂ denotes compact embedding. This completes the proof of

the lemma. �

Then according to [9, 10], the following definition of weak solution to problem (2.6) is
provided.
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Definition 2.1 We say that w ∈ Xs
Ω (C+) is a weak solution of (2.6) if for any ϕ ∈ Xs

Ω (C+),
it holds:

∫

C+
y1–2sB(x)∇w(x, y)∇ϕ(x, y) dx dy = λ

∫

Ω

w(x, 0)ϕ(x, 0) dx.

If w is a solution to the extended problem (2.6), then the trace function u = TrΩ (w) :=
w(x, 0) will be called a weak solution to problem (Pλ).

Remark 2.1 It is easy to see that the function u = TrΩ (w) belongs to the space H(Ω).

3 General results about eigenvalues
Theorem 3.1 The first eigenvalue of problem (Pλ) is positive and can be characterized as
follows:

λ1 = min
w∈Xs

Ω (C+)
‖w(x,0)‖L2(Ω)=1

∫

C+
y1–2sB(x)∇w · ∇w dx dy, (3.1)

or equivalently,

λ1 = min
w∈Xs

Ω (C+)
w(x,0) �=0

∫

C+ y1–2sB(x)∇w · ∇w dx dy
∫

Ω
|w(x, 0)|2 dx

.

Moreover, there exists a nonegative function e1 ∈ Xs
Ω (C+) attaining the minimum in (3.1),

and then e1(x, 0) is a nonnegative eigenfunction of problem (Pλ) corresponding to λ1.

Proof Let J : Xs
Ω (C+) →R be the functional defined as follows:

J(w) =
∫

C+
y1–2sB(x)∇w · ∇w dx dy, w ∈ M, (3.2)

where M = {w ∈ Xs
Ω (C+) : ‖w(x, 0)‖L2(Ω) = 1}. Take a minimizing sequence {wj}j∈N for J on

M, that is, a sequence {wj}j∈N ⊂ M such that

J(wj) → inf
w∈M

J(w).

Then the sequence {J(wj)}j∈N is bounded. So by the uniform ellipticity condition, we have

J(wj) ≥ min{Λ, 1}‖wj‖2
Xs

Ω (C+),

which implies {‖wj‖2
Xs

Ω (C+)}j∈N is also bounded.
Since Xs

Ω (C+) is a reflexive space, up to a sequence, still denoted by wj, we have that
{wj}j∈N converges weakly in Xs

Ω (C+) to some e. By Lemma 2.1, we deduce that

wj(x, 0) → e(x, 0) in L2(Ω)

as j → +∞. So, ‖e(x, 0)‖L2(Ω) = 1, that is, e ∈ M. Observe that the functional J is continuous
and convex in Xs

Ω (C+), which guarantees that J is weakly lower semicontinuous in Xs
Ω (C+).
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Then

inf
w∈M

J(w) = lim
j→∞ J(wj) ≥ J(e) ≥ inf

w∈M
J(w).

So that, J(e) = infw∈M J(w).
Let e1 = |e|, then e1 ≥ 0. Also, e1 ∈ Xs

Ω (C+) and ‖e1(x, 0)‖L2(Ω) = ‖e(x, 0)‖L2(Ω) = 1, which
imply e1 ∈ M. Moreover,

J(e1) =
∫

C+
y1–2sB(x)∇e1 · ∇e1 dx dy

=
∫

C+
y1–2sB(x)∇e · ∇e dx dy

= J(e) = inf
w∈M

J(w).

Now, let’s prove that the first eigenvalue λ1 = J(e1). Let ε ∈ (–1, 1), ϕ ∈ Xs
Ω (C+) and

uε =
e1 + εϕ

‖e1(x, 0) + εϕ(x, 0)‖L2(Ω)
∈ M.

Then

J(uε) =
∫

C+ y1–2sB(x)∇(e1 + εϕ) · ∇(e1 + εϕ) dx dy
‖e1(x, 0) + εϕ(x, 0)‖2

L2(Ω)

=
∫

C+ y1–2sB(x)∇e1 · ∇e1 dx dy + 2ε
∫

C+ y1–2sB(x)∇e1 · ∇ϕ dx dy + o(ε)
1 + 2ε

∫

Ω
e(x, 0)ϕ(x, 0) dx + o(ε)

. (3.3)

Multiplying the numerator and the denominator by 1 – 2ε
∫

Ω
e(x, 0)ϕ(x, 0) dx + o(ε) in the

above equality, we obtain

J(uε)
(
1 + o(ε)

)

=
∫

C+
y1–2sB(x)∇e1 · ∇e1 dx dy + 2ε

∫

C+
y1–2sB(x)∇e1 · ∇ϕ dx dy

– 2ε

∫

C+
y1–2sB(x)∇e1 · ∇e1 dx dy

∫

Ω

e1(x, 0)ϕ(x, 0) dx + o(ε). (3.4)

This and the minimality of e1 imply that

∫

C+
y1–2sB(x)∇e1 · ∇ϕ dx dy – J(e1)

∫

Ω

e1(x, 0)ϕ(x, 0) dx = 0.

Thus, λ1 = J(e1) = minw∈M J(w), which shows that (3.1) holds. Notice that J(e1) > 0, be-
cause otherwise we would have e1 ≡ 0 /∈ M. Hence, λ1 > 0 and e1(x, 0) is a nonnegative
eigenfunction corresponding to λ1. The proof of Theorem 3.1 is completed. �

4 Faber–Krahn inequality
Theorem 4.1 If λ1 is the first eigenvalue of problem (Pλ), then

λ1 ≥ λ
	
1,
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where λ
	
1 is the first eigenvalue of the problem

⎧
⎨

⎩

(–Λ�)sv = λv in Ω	,

v = 0 on R
N \ Ω	

(Qλ)

and Ω	 is the ball centered at the origin such that |Ω	| = |Ω|. Furthermore, λ1 = λ
	
1 if and

only if Ω = Ω	 and
∑

aij(x)xj = Λxi a.e. in R
N modulo translations.

Remark 4.1 In the case s = 1 and N = 2, the above result is known as the Faber–Krahn
theorem, which can be stated as follows: a membrane with the lowest principle frequency
is the circular one.

Remark 4.2 The extension problem associated with (Qλ) can be written as

⎧
⎪⎪⎨

⎪⎪⎩

div(y1–2sB̃(x)∇w) = 0 in C+,

w(x, 0) = 0, x ∈R
N \ Ω	,

– 1
ks

limy→0+ y1–2s ∂w
∂y = λv(x), x ∈ Ω	,

(4.1)

where matrix B̃(x) is diagonal with values Λ for the first N diagonal elements and 1 for the
remaining element.

Before proving the theorem, we recall some basic notions of rearrangements and some
related fundamental properties. Let E be an open subset of RN (which may be the whole
space) and f : E →R be a measurable function. We define the distribution function μf of
f as

μf (t) =
∣
∣
{

x ∈ E :
∣
∣f (x)

∣
∣ > t

}∣
∣, t ≥ 0,

and the decreasing rearrangement of f as

f ∗(s) = inf
{

t ≥ 0 : μf (t) ≤ s
}

, s ∈ (
0, |E|).

Furthermore, let E	 be the ball centered at the origin having the same Lebesgue measure
as E and CN denote the measure of the unit ball. We define the function

f 	(x) = f ∗(CN |x|N)
, x ∈ E	,

which is called the spherically symmetric rearrangement of f . For an exhaustive treatment
of rearrangements, we refer to [30–32] and the references therein. Here we only state some
properties which will turn useful for what follows.

(i) Conservation of the Lp norms:

‖f ‖Lp(E) =
∥
∥f 	

∥
∥

Lp(E	), 1 ≤ p < +∞.
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(ii) Hardy–Littlewood inequality:

∫

E

∣
∣f (x)g(x)

∣
∣dx ≤

∫

E	

f 	(x)g	(x) dx,

where f , g are measurable functions on E.
(iii) Pólya–Szegö inequality:

∥
∥∇f 	

∥
∥

Lp(E	) ≤ ‖∇f ‖Lp(E),∀f ∈ W 1,p
0 (E), 1 < p < +∞.

Furthermore, the following lemma holds (see [33, 34]).

Lemma 4.1 Let us suppose that

∣
∣
∣

{
x : 0 < f 	(x) < ess sup

x∈E

∣
∣f (x)

∣
∣,

∣
∣∇f 	(x)

∣
∣ = 0

}∣
∣
∣ = 0.

Then if equality sign holds in Pólya–Szegö inequality, we have |f | = f 	 a.e. up to transla-
tions.

When we deal with two-variable functions

f : (x, y) ∈ C+
E →R,

where C+
E = E × (0, +∞), it will be convenient to define the so-called Steiner symmetriza-

tion of f . Denote by f ∗(s, y) the decreasing rearrangement of f , with respect to x for y fixed.
We define the function

f 	(x, y) = f ∗(CN |x|N , y
)
,

which is called the Steiner symmetrization of f , with respect to the line x = 0. Clearly, f 	

is a spherically symmetric and decreasing function with respect to x, for any fixed y.

Proof of Theorem 4.1 Let e be a nonnegative eigenfunction corresponding to the first
eigenvalue of (Pλ). Then by the uniformly ellipticity condition, we have

λ1 =
∫

C+ y1–2sB(x)∇e(x, y) · ∇e(x, y) dx dy
∫

Ω
|e(x, 0)|2 dx

≥
∫ +∞

0 y1–2s dy
∫

RN (Λ|∇xe(x, y)|2 + |ey(x, y)|2) dx
∫

Ω
|e(x, 0)|2 dx

. (4.2)

By Pólya–Szegö inequality, we have

∫

RN

∣
∣∇xe(x, y)

∣
∣2 dx ≥

∫

RN

∣
∣∇xe	(x, y)

∣
∣2 dx. (4.3)

Moreover, it follows that
∫

RN

∣
∣ey(x, y)

∣
∣2 dx ≥

∫

RN

∣
∣e	

y(x, y)
∣
∣2 dx. (4.4)
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In fact,

∫

RN

∣
∣ey(x, y)

∣
∣2 dx = lim

ỹ→y

∫

RN

∣
∣
∣
∣
e(x, ỹ) – e(x, y)

ỹ – y

∣
∣
∣
∣

2

dx

= lim
ỹ→y

∫

RN [e2(x, ỹ) – 2e(x, ỹ)e(x, y) + e2(x, y)] dx
(ỹ – y)2 .

By Hardy–Littlewood inequality, we conclude that

∫

RN

∣
∣ey(x, y)

∣
∣2 dx ≥ lim

ỹ→y

∫

RN [e	2 (x, ỹ) – 2e	(x, ỹ)e	(x, y) + e	2 (x, y)] dx
(ỹ – y)2

=
∫

RN
lim
ỹ→y

∣
∣
∣
∣
e	(x, ỹ) – e	(x, y)

ỹ – y

∣
∣
∣
∣

2

dx

=
∫

RN

∣
∣e	

y(x, y)
∣
∣2 dx.

Then combining (4.2)–(4.4) and the property (i) of rearrangements, we get

λ1 =
∫

C+ y1–2sB(x)∇e(x, y) · ∇e(x, y) dx dy
∫

Ω
|e(x, 0)|2 dx

≥
∫ +∞

0 y1–2s dy
∫

RN (Λ|∇xe	(x, y)|2 + |e	
y(x, y)|2) dx

∫

Ω	 |e	(x, 0)|2 dx

=
∫

C+ y1–2sB̃(x)∇e	(x, y) · ∇e	(x, y) dx dy
∫

Ω	 |e	(x, 0)|2 dx
. (4.5)

By Theorem 3.1, we obtain

λ
	
1 = min

w∈Xs
Ω	 (C+)

∫

C+ y1–2sB̃(x)∇w(x, y) · ∇w(x, y) dx dy
∫

Ω	 |w(x, 0)|2 dx
.

Note that (4.3) and (4.4) imply that e	 ∈ Xs
Ω	 (C+). Thus λ1 ≥ λ

	
1.

On the other hand, we observe that if λ1 = λ
	
1, then λ

	
1 attains the minimum at the func-

tion e	(x, y), that is, e	(x, 0) is an eigenfunction of problem (Qλ) corresponding to the first
eigenvalue λ

	
1. Moreover, equalities hold through (4.2) and (4.5). Then the following equal-

ity holds:

∫

RN

∣
∣∇xe(x, y)

∣
∣2 dx =

∫

RN

∣
∣∇xe	(x, y)

∣
∣2 dx, y ∈ (0, +∞) (4.6)

because ‖e(x, 0)‖L2(Ω) = ‖e	(x, 0)‖L2(Ω	). Since e	 is an eigenfunction of (Qλ), we deduce
from the regularity theory (see [7, 9]) that

∣
∣
∣

{
x : 0 < e	(x, y) < sup

x∈RN
e	(x, y),

∣
∣∇xe	(x, y)

∣
∣ = 0

}∣
∣
∣ = 0, for y ∈ (0, +∞).

By Lemma 4.1, we get that e	(x, y) = e(x, y) modulo translations. Thus, for every fixed y > 0,
function e(x, y) is spherically symmetric up to translations. Taking the limit as y → 0, we
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conclude that e(x, 0) is also spherically symmetric in R
N . This means that the domain

Ω , which is the positivity set of e(x, 0) in R
N , must be a ball, that is, Ω = Ω	 modulo

translations. Finally, since the vector ∇xe(x, y) = ∇xe	(x, y) points in the direction x for fixed
y, we have that if the equality holds in (4.2), then

A(x)x · x = Λ|x|2 a.e. in R
N ,

that is, A(x)x = Λx a.e., which implies that
∑

aij(x)xj = Λxi a.e. in R
N (see also [35, 36]). �

5 Conclusions
For the fractional variable coefficients elliptic operator defined on a bounded domain, it
has been pointed out that the variational formulation of the first eigenvalue given before
does not allow using a variational approach to prove the fractional Faber–Krahn inequal-
ity. In this paper, we proved a different variational formulation of the first eigenvalue for
(Pλ). Following this, a variational proof of the fractional Faber–Krahn inequality has been
achieved by employing suitable rearrangement techniques. Based on this point, our work
is valuable.
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